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Abstract: A robust continuous-time linear programming problem is formulated and solved
numerically in this paper. The data occurring in the continuous-time linear programming problem
are assumed to be uncertain. In this paper, the uncertainty is treated by following the concept
of robust optimization, which has been extensively studied recently. We introduce the robust
counterpart of the continuous-time linear programming problem. In order to solve this robust
counterpart, a discretization problem is formulated and solved to obtain the e-optimal solution.
The important contribution of this paper is to locate the error bound between the optimal solution
and e-optimal solution.
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1. Introduction

The theory of continuous-time linear programming problem has received considerable attention
for a long time. Tyndall [1,2] treated rigorously a continuous-time linear programming problem with
the constant matrices, which was originated from the “bottleneck problem” proposed by Bellman [3].
Levison [4] generalized the results of Tyndall by considering the time-dependent matrices in which the
functions shown in the objective and constraints were assumed to be continuous on the time interval
[0, T]. In this paper, we are going to consider the continuous-time linear programming problem in
which the data are assumed to be uncertain. The data here mean the real-valued functions or real
numbers. Based on the assumption of uncertainty, we are going to propose and solve the so-called
robust continuous-time linear programming problem.

Meidan and Perold [5], Papageorgiou [6] and Schechter [7] have obtained many interesting results
of the continuous-time linear programming problem. Also, Anderson et al. [8-10], Fleischer and
Sethuraman [11] and Pullan [12-16] investigated a subclass of the continuous-time linear programming
problem, which is called the separated continuous-time linear programming problem and can be used
to model the job-shop scheduling problems. Weiss [17] proposed a Simplex-like algorithm to solve
the separated continuous-time linear programming problem. Also, Shindin and Weiss [17,18] studied
a more generalized separated continuous-time linear programming problem. However, the error
estimate was not studied in the above articles. One of the contributions of this paper is to obtain the
error bound between the optimal solution and numerical optimal solution.

On the other hand, the nonlinear type of continuous-time optimization problems was also studied
by Farr and Hanson [19,20], Grinold [21,22], Hanson and Mond [23], Reiland [24,25], Reiland and
Hanson [26] and Singh [27]. The nonsmooth continuous-time optimization problems was studied
by Rojas-Medar et al. [28] and Singh and Farr [29]. The nonsmooth continuous-time multiobjective
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programming problems was also studied by Nobakhtian and Pouryayevali [30,31]. Zalmai [32-35]
investigated the continuous-time fractional programming problems. However, the numerical methods
were not developed in the above articles.

Wen and Wu [36-38] have developed different numerical methods to solve the continuous-time
linear fractional programming problems. In order to solve the continuous-time problems, the
discretized problems should be considered by dividing the time interval [0, T] into many subintervals.
Since the functions considered in Wen and Wu [36-38] are assumed to be continuous on [0, T], we
can take this advantage to equally divide the time interval [0, T]. In other words, each subinterval
has the same length. In Wu [39], the functions are assumed to be piecewise continuous on the time
interval [0, T]. In this case, the time interval cannot be equally divided. The reason is that, in order to
develop the numerical technique, the functions should be continuous on each subinterval. Therefore
a different methodology for not equally partitioning the time interval was proposed in Wu [39]. In
this paper, we shall solve a more general model that considers the uncertain data in continuous-time
linear programming problem. In other words, we are going to solve the robust counterpart of the
continuous-time linear programming problem. In this paper, we still consider the piecewise continuous
functions on the time interval [0, T|. Therefore, the time interval cannot be equally divided.

Addressing the uncertain data in optimization problems has become an attractive research topic.
As early as the mid 1950s, Dantzig [40] introduced the stochastic optimization as an approach to model
uncertain data by assuming scenarios for the data occurring with different probabilities. One of the
difficulties is to present the exact distribution for the data. Therefore, the so-called robust optimization
might be another choice for modeling the optimization problems with uncertain data. The basic idea of
robust optimization is to assume that each uncertain data falls into a set. For example, the real-valued
data can be assumed to fall into a closed interval for convenience. In order to address the optimization
problems with uncertain data falling into the uncertainty sets, Ben-Tal and Nemirovski [41,42] and
independently El Ghaoui [43,44] proposed to solve the so-called robust optimization problems. Now,
this topic has increasingly received much attention. For example, the research articles contributed
by Averbakh and Zhao [45], Ben-Tal et al. [46], Bertsimas et al. [47-49], Chen et al. [50], Erdogan and
Lyengar [51], Zhang [52] and the references therein can present the main stream of this topic. In this
paper, we propose the robust counterpart of the continuous-time linear programming problem and
design a practical algorithm to solve this problem.

This paper is organized as follows. In Section 2, a robust continuous-time linear programming
problems is formulated. Under some algebraic calculation, it can be transformed into a traditional
form of the continuous-time linear programming problem. In Section 3, we introduce the discretization
problem of the transformed problem. Based on the solutions obtained from the discretization problem,
we can construct the feasible solutions of the transformed problem. Under these settings, the error
bound will be derived. In order to obtain the approximate solution, we also introduce the concept of
e-optimal solutions. In Section 4, we study the convergence of approximate solutions. In Section 5,
based on the obtained results, the computational procedure is proposed and a numerical example is
provided to demonstrate the usefulness of this practical algorithm.

2. Robust Continuous-Time Linear Programming Problems

In this section, a robust continuous-time linear programming problems will be formulated.
We shall use some algebraic calculation to transform it into a traditional form of the
continuous-time linear programming problem. Now, we consider the following continuous-time
linear programming problem:



Mathematics 2019, 7, 435 3 of 50

q T
(CLP)  max )] / ai(t) - zj(t)dt
= Jo

9 9.t

subject to Z Bl']' . Zj(f) < q(t) + Z / Kij . z]-(s)ds

j=1 =170
forallt € [0,T]andi=1,---,p;

zj € L]0, T] and zj(t) > Oforallj=1,--- ,gand t € [0, T],

where Bjj and Kjj are nonnegative real numbers fori =1,--- ,pandj=1,---,g,and aj and ¢; are the
real-valued functions. It is obvious that if the real-valued functions c; are assumed to be non-negative
on [0, T} fori = 1,---,p, then the primal problem (CLP) is feasible with a trivial feasible solution
zj(t) =0forallj=1,--- 4.

Suppose that some of the data B;; and K;; are uncertain such that they should fall into the
uncertainty sets U/p,; and U;;, respectively. Given any fixed i € {1,2,---,p}, wedenote by I l.(B) and

I l.(K) the set of indices in which B;; and K;; are assumed to be uncertain. In other words, if j € [, l-(B), then

Bj; is uncertain, andifjel i(K), then Kij is uncertain. Therefore I i(B) and I i(K) are subsets of {1,2,--- ,q}.
It is clear that if the data B;; is certain, then the uncertainty set Z/lBl.]. = {Bj;} is a singleton set. We
also assume that functions a; and c; are pointwise-uncertain in the sense that, given each t € [0, T],
the uncertain data a(t) and ¢;(t) should fall into the uncertainty sets Vs, (t) and V,(t), respectively.
If function a; or ¢; is assumed to be certain, then each function value a;(t) or ¢;(t) is assumed to be
certain for t € [0, T]. If function a; or ¢; is assumed to be uncertain, then the function value a;(t) or c¢;(t)
may be certain for some t € [0, T]. We denote by I () and (%) the sets of indices in which the functions
aj and ¢; are assumed to be uncertain, respectively. In other words, if j € I (2), then the function a jis
uncertain, and ifi € T (C), then the function ¢; is uncertain.

The robust counterpart of problem (CLP) is assumed to take each data in the corresponding
uncertainty sets, and it is formulated as follows:

q T
(RCLP)  max Jg/o ai(t) - z;(t)dt

q 9 t
subject to ZBi]--z]-(t) <¢i(t) + 2/ Kij - zj(s)ds
j=1 j=1"0
forallt € [0,T]andi=1,---,p;
zj € L]0, T] and zj(t) > 0forallj=1,--- ,gand t € [0, T};
forallB,-j GL{BU foralli=1,---,pandj=1,---,q;
forallKi]-EUKU foralli=1,---,pandj=1,---,q;
forallaj(t) € Vo (t) forallt € [0, T]and j =1, -, g;
forall ¢;(t) € V,,(t) forallt € [0,T]andi=1,---,p.

We can see that the robust counterpart (RCLP) is a continuous-time programming problem
with infinitely many number of constraints. Therefore, it is difficult to solve. However, if we can
determine the suitable uncertainty sets U/ B/ U Kijs Va,- (t) and V,(t), then this semi-infinite problem can
be transformed into a conventional continuous-time linear programming problem.

We assume that all the uncertain data fall into the closed intervals, which will be described below.

e For B;jwithj € Ii(B) and Kj; with j € Ii(K) , we assume that the uncertain data B;; and K;; should
fall into the closed intervals

—[g® _g5. g0 5.
Us, = By ~ By, By + By
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and (0) (0)
0 -~
Z/{Kij = [Kl] Kl], K + Kl']' ,
respectively, where B l-(]-o) > 0and Kfj ) > 0 are the known nominal data of Bjj and Kj;, respectively,
and Eij > (0 and K-]- > ( are the uncertainties such that

o 5 0 _p
B;;" — Bjj = 0and K;;” — Kj; > 0.

(0)

Forj¢ I i(B), we use the notation B, j

(0)

use the notation K; j

to denote the certain data with uncertainty Eij = 0. Also, we

to denote the certain data with uncertainty 121-]» =0forj¢1I l.(K)
For aj with j € 1@ and ¢; with i € 1(%), we assume that

Viy(8) = [a(5) = (), 0" (6) + (1) ] and Vi, () = [l (1) = &i(0), o (1) + @),

where a;o)
and ¢;(t) > 0 are the uncertainties of a;(t) and c;(t), respectively. For j ¢ I (), we use the notation

(0)
a

the notation cEO) (t) to denote the certain function with uncertainties ¢;(t) = 0 for i & I (©) and
te[0,T].

(t) and Cfo) (t) are the known nominal data of a;(t) and c;(t), respectively, and @;(t) > 0

(t) to denote the certain function with uncertainties ;(t) = 0 for all t € [0, T]. Also, we use

In this case, the robust counterpart (RCLP) is written as follows:

T O, L.
(RCLP)  max jga) /O 1)zt + Y / ai(t) - z(t)at

jer@ 70

subject to Y Bi(jo) i+ ) Bijzi(h)

i1y {jjer®y

fori ¢ 19 and for all t € [0, T];
0
Y B m+ X By
(g1} {iiell™}
L
<c(t)+ ) /()Ki(]) zj(s)ds + /Kl] zj(s
{521} {jjer®
fori € I'°) and forall t € [0, T];
zj € L2[0, T] and zj(t) > 0forallj=1,--- ,gand t € [0, T];
forall B;; € Z/IB[]. with j € Ii(B);
for all Kj; € Uy, with j € I{);
for all a;(t) € V, (t) with j € I® for all ¢ € [0, T;
for all ¢;(t) € V. (t) withi € I°) for all t € [0, T].

Next, we are going to convert the above semi-infinite problem (RCLP) into a conventional

continuous-time linear programming problem.
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First of all, the problem (RCLP) can be rewritten as the following equivalent form

(RCLP1) max ¢

T

subjectto ¢ < Z/ tdt+ ) / aj(t) - zj(t)dt
jE1@ jer@ 70
Z B( ) ( )+ Z Bij ~Zj(t)

(g1} {ijel®}
t
SCZ(O )+ Y /K sds+ ) /Kij-z]-(s)ds
(K)3 1K), 70
{]J€I (el ™}

fori ¢ I'9 and for all t € [0, T];
Y B zh+ Y Byz(t)

{5¢11%) {jjer®}
t
0)
<a(t) + ZKA&] zi(s)ds + /KU%
(21} (el
fori € 19 and for all t € [0, T];
¢ eR;

zj € L2[0, T] and zj(t) > 0forallj=1,--- ,gand t € [0, T};
for all B;; € Up, with j € Ii(B);

for all Kij € Uy, with j € IZ.(K);

forall a;(t) € Vo (t) with j € 1@ forall t € [0, T);

forall ¢;(t) € V,(t) withi € 1) forall ¢ € [0, T].

Given any fixedi € {1,--- ,p}, forj € Ii(B), since zj(t) > 0and B;; < Bi(;)) + El-]-, we have

q ~
L B a0+ B Bps0)< LE) 50+ L Bis), 0

(g 1t®y (jjer®y =1 ﬂveﬁm}

Similarly, forj € I i(K), since zj(s) > 0 and Kl.(].o) — K‘j < Kjj, we also have

()
Z /()Ki] zj(s)ds + /Kl]

Grig1y (et
9 t . t
> Z/ KI(JO) j(s)ds — Kjj / zj(s)ds. 2)
j=17 {771y °

Using (1) and (2), we consider the following cases.
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e Foric Il9,since ci(o) (t) —Ci(t) < c(t) forall t € [0, T], we obtain

{7521} {ier®}
t
. /O KO zi(s)ds— Y0 /KU 2i(s)ds — ci(t)
{5211} {771y
9 _
< ZB”O) zi(t)+ ), Bij-z(t)
=1 {jjel?y
N t
- ZK Sds— Y K- [ zi(s)ds | — (V(t) — ()
= ‘/ {ijety ”A ( )

max ) B-(Q)'Zj(t)"’ Y Bjj - z(t)

{ig1®} {jer®}
t
— Z /o k9. ()ds— Z /Kl] z] —¢i(¥)
(g1} {iel®}
q _
=Y B 5+ X Bz ®)
=t {ijel™)
. t
- Z/ K ds— ) Kij-/o zj(s)ds —(co)(t)—a(t)),

where the equality can be attained.
e Fori ¢ I©), we obtain

Y B+ X Bz

{21y {jer®y
- Z /K s)ds — /KU zj(s )ds—c()()
(g1t (jje1™y
L0 5
< ZBZ] Z](t)+ 2 Bl]Z](i')
= et}

q t ~ t
_ ElKl(]O) /0 z]-(s)ds — E Kl] /0 Z]'(S)dS — CEO) (t),
]:

(1™}
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which implies

max 2 By zi()+ Y Bj-z(t)

PR (@) (el
t t (0)
A K -zj(s)ds — Y /OKl-j-zj(s)ds—ci (1)
{mZI {71y
~ Yy 3 Bji-zi(t 4
.Z ij Z]()+ Z 1] Z]() ()
=1 {jjer®)y
> (0)
- Z/ K syds— Y Ki]'-/O zj(s)ds | —¢; 7 (t),
{1y

where the equality can be attained. On the other hand, since a](-o) (t) —a;(t) < aj(t)forjel (@) and
€ [0, T], we have

q T 0) T,\
Z/ a® (1) -zt — Y / ai(t) -z (1)t
=170 jer@ 70
T 0) 4
< /0 a;” ( t)dt + Z/ t,
jEI@ jer

which implies

T
min Z/a]() z] t)dt + Z/
R VTR

]EI
q T T
:Z/o () zi(t)dt— Y / at) - (b, )
j=1" jel(@

where the equality can also be attained. Therefore, from (3), (4) and (5), we conclude that (¢, z(t)) =
(¢,z1(t),- - ,zn(t)) is a feasible solution of problem (RCLP1) if and only if it satisfies the following
inequalities:

)3 Bl.(].o) Zi(t)+ Y Bi-z(t)

=1 {jje1™y
Lot o o [ ) =
< Z/ K" - zj(s)ds — Y KZ-]--/ zj(s)ds +c; (t) — Gi(t) fori € 19
j:1 0 {]]EII(K)} 0
and

L (0)

ZB’J zi(t)+ Y. Bij-z(t)

=1 {rier®}

9t gt .
<) /0 Ki(;)) -zj(s)ds— ), Kjj- ./0 zj(s)ds +C§0)(t) fori ¢ 10
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and

¢ < 2/ dt Z /OTZZ\](t) 'Z]'(t)df.

jel@
This shows that problem (RCLP1) is equivalent to the following problem

(RCLP2) max ¢

subjectto ¢ < 2/ tdt— Y /0 a(t) - zj(t)dt;
jel@
9
Y By Y Bz <V -
I {ijer™
9 0) t t
+ ZKI-]- / (s)ds— ) Kjj /0 zj(s)ds
= rer)
forallt € [0,T] and i € I');
q -~
g31§9> )+ Y Bzt <)
= trger™)
9 0) t . t
+ ZKij ./0 zi(s)ds— ) K ~/0 zj(s)ds
= (el
forallt € [0,T] and i & I(©)
¢ eR;

zj € L*[0, T] and z(t) > Oforall j=1,--- ,qand t € [0, T},

which can also be rewritten as the following continuous-time linear programming problem:

q T
(RCLP3) max ];/0 a]() ) - z(t)dt — ; / aj(t) - z(t
= jell

d -
subjectto ) Bi(jo) zi(t)+ ), Bij-zj(t) < cgo)(t) —Gi(t)

forallt € [0,T] and i € I(9;

L (0) = (0)
Z Bl] . Zj(t) + 2 Bz] . Zj(f) < C; (t)
= {iell™)
q 0) t N t
+ Z Kij . /0 Z]'(S)ds - Z Ki]' : /0 Z]‘(S)dS
= {ijer™y

forallt € [0,T] and i ¢ (e
Z]‘ S LZ[(), T] and Z]‘(t) > 0 for all] =1,--- ,q and t € [0, T]
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According to the duality theory in continuous-time linear programming problem, the dual
problem of (RCLP3) can be formulated as follows

poT T
(DRCLP3)  max ). /0 <Oty wi(ydt— ¥ /0 &) - wi(b)dt
i=1 ic(c)
- B0 3 O _a
subject to ZBZ.]. wi(t)+ ), Bijrwi(t) > a; (t) —aj(t)
i=1 {ijerl®}
oo [T T
—f—ZKij / wi(s)ds — ) Kij-/ w;(s)ds
i=1 t (izje1® !
Jer™}
forallt € [0,T] and j € I®;
p ~
LB wih)+ L Byw®) =al’ ()
i=1 {ije1®y
P [T T
+ZK1‘]’ / wi(s)ds — ) Kij-/ w;(s)ds
i=1 . {ijer™y !

forallt € [0,T] and j ¢ I®;
w; € L?[0, T) and w;(t) > Oforalli=1,---,pand t € [0, T].

In the sequel, we are going to design a computational procedure to numerically solve the robust
counterpart (RCLP3).

3. Discretization

In this section, we shall introduce the discretization problem. Based on the solutions obtained
from the discretization problem, we can construct the feasible solutions of the transformed problem.
Under these settings, the error bound can be derived. On the other hand, in order to obtain the
approximate solution, we also introduce the concept of e-optimal solutions.

In order to develop the efficient numerical method, we assume that the following conditions
are satisfied.

¢ Fori=1,---,pandj=1,---,q, the real numbers Bi(jo) > 0 and KZ.(].O) > 0. The real numbers
Bl.(jo) - §ij >0forje Il.(B) and Kl.(].o) - I?i]« >0forje Ii(K).
e Fori=1,---,pandj=1,---,g, the functions a](-o) and ¢

(0)

. are piecewise continuous on [0, T].

Forj € I and i € I(9), the functions aj and ¢; are also piecewise continuous on [0, T], which says

that the functions a!”) — d;and CZ(O) — C; are piecewise continuous on [0, T] for j € I®) and i € I(©).

e Foreachj=1,---,q, the following inequality is satisfied:
" B0 B
i=1 {ijerl®y
e Foreachi=1,--,pand for

5 = min JBQ + 5. .30 4 5. B. = min {B? . B0
Bl_]?ﬁl;) {Bi]- +Bz]-31] +BZJ>O} andB,_j{;%l){BZ] ‘B1] >0},

the following inequality is satisfied:

min min {Bi, Ei} =0 >0.
i=1,,p
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In other words,
_ | B By B+ By #0forje 1 ”

g

By if By # 0forj ¢ I\,

(0) 0

Let 2; denote the set of discontinuities of functions a i ajforjel () and a](- ) for j 1@ Let ¢;

denote the set of discontinuities of functions CEO) —Ciforiel (¢) and ci(o) fori ¢ 1 (¢). Then, we see that
2l; and ¢; are finite subsets of [0, T]. In order to determine the partition of the time interval [0, T], we
consider the following set

q P
D= U(UQ)U@jy
j=1 i=1
Then, D is a finite subset of [0, T] written by
D= {dOIdlrdZI T /di’}/

where, for convenience, we set dg = 0 and d, = T. It means that dy and d, may be the
endpoint-continuities of functions 4; and ¢;. Let P, be a partition of [0, T] such that D C P, which
means that each closed [d,, dy 1] is also divided into many closed subintervals. In this case, the time
interval [0, T] is not necessarily equally divided into # closed subintervals. Let

Pu = {e(()n)’egn)’ e ler(zn)}/

(n) (n)

where e;’ = 0and e, ' = T. Then, the n closed subintervals are denoted by
El(n) = [el(f)l,el(n)} fori=1,--- ,n. (8)

We also write

B = (7)) and B = o7, )

Let D,(") denote the length of closed interval E"l(n) forl=1,---,n,and let

| Pu = max o).
1=

A

In the limiting case, we shall assume that
| Py ||— 0asn — oo.

In this paper, we assume that there exists n,,n* € N such that
. T

ne-r<n<n*-rand || Py ||< —. )
n

Therefore, in the limiting case, we assume that n, — oo, which implies 7 — oo. In the sequel,
when we say that n — oo, it implicitly means that n,, — oo.

For example, suppose that the length of closed interval [d,, dy11]is [, forv =1, - - -, r. Each closed
interval [dy,dy41] is equally divided by n, subintervals for v = 1,---,r. In this case, the total
subintervals are n = n, - r. We also see that n, = n* and

1 T
| Pn |l= o 'Ug}ax l, < g and n — oo if and only if n, — oc. (10)

T
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Under the above construction for the partition P, we see that the functions a](-o) - ﬁ]- forjel (@),
a](.o) forj ¢ 1), cfo) — ¢ fori € I® and 0

;o fori g1 (¢) are continuous on the open interval El(”) for
=1, ---,n. Now, we define

inf [al%(t) = ()| forje 1@

2 teE™
l inf a<0)(t) forj ¢ 1

teEf”)

and

inf {cgo)(t) - El(t)] fori e I(©)

o teEl(’”
l inf cEO)(t) fori ¢ I(9)

teE,(")

and the vectors

- T
az(n) _ (al(f)'al(;)" 3 r“z(;)) c R7 and Cz(n) _ (cl(?),cl(;’),... ,cf?) € RP.

Then, we see that

Oy —a:(t) forje 1@
i< { PO et Y
j

a

forallt € E"l(n) and/ =1,---,n.

Foreachn € Nand ! =1,---,n, we define the following linear programming problem:

n 9
(Py)  max Yy Dl(n) ~al(;) - Z)j
i=1j=1

subject to Z Bl.(;)) -z1j+ Z E]- 215 < cg'z) fori=1,---,p;
‘ (i1

q
0) B (n)
ZBZ-]- “2]j + Bi]‘ -21j < ¢y

q
(n) (0) (n) 2
+Y YK =y Y Kz
=1 {jer
forl=2,--- ,nandi=1,---,p;
zjj>0forl=1,---,nandj=1,--- 4.
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According to the duality theory of linear programming, the dual problem of (P,) is given by

= L p n ~
(Dy) min Z Z Cl(i ). wWy;

I=1i=1

bject t 3 BY . %, B > oMgM
subject to Z ij wy; + E ij - Wi ) al].

=1 {z‘-fef-“”}
n
+Dl Z Z K @ki — Dl(n) . Z Z Kl']' - Wy
k=I+1i= k=141 e 1Ky

forl=1,---,n—1landj=1,---,q;

ZB Wyt Y, By @i > D,S”)afj]?) forj=1,---,q;
{ije1®}
@ >0forl =1, mandi=1,-,p.

Now, let

Then, by dividing 9 l(n) on both sides of the constraints, the dual problem (D,) can be equivalently
written by

(Dy) min Z ZDI cll wy;

k=I+1i=1 k=141 ge 1K)y
g i

forlzll...,n_landjzll...,q;

" (0) = (n)

ZB“ C Wi + Z Bj; - mea forj=1,---,q;
' {ijerlPy

w; >0forl=1,--- ,nandi=1,---,p.

Recall that Dl(") denotes the length of closed interval El("). We also define

sl(") = max D,(( ") (12)

k=1,

Then, we have

o — max {az(n)foz(i)v' y ,051”)} = max {al(”),sl(i)l}

which say that
s >0 and || Py || s > s (13)
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for/ =1,---,n— 1. For further discussion, we adopt the following notations:
‘l(”) = ]inl/axqal(] ") and Tl(") = kinl,??(,n Tk(") (14)
o (0) >
v = max ZKZ.]. — Z Kij (15)
]J= ) i=1 {Z.jEIl-(K)}
_ - 0 2
¢ = l:nl“axp ; ij Z%K) ij
= {7jel;™'}
sup {aj(p)(t) - ﬁj(t)} forj € 1@
T= max T, where T = te0 1] 0)
=1 sup a; (t) forj ¢ 1@
te[0,T]
sup [CEO)(i‘) - a(t)} fori € 1(9)
= max (;, where (; = ([0 T]
¢ i=1,p G & sup c!”(t) fori ¢ 1(9)
te[0,T]
Now, we also have
Tl(") = max {Tl(n), Tl(f)l,' .- ,Tr(l")} = max {Tl(n) TZ(JF%}
which say that
3 o 6
It is obvious that
T <M<t (17)
foranyn € Nandl=1,---,n
Proposition 1. The following statements hold true.
(i) Let
w_ 1" () vy
oft =B (1?2 20 e

where o is given in (7). We define w “( ) = = v, )forz =1, ,pandl =1,---

following vector

w) — (wg”),wg ). ,v‘vﬁl")) with w(n) = (wgln),wl(zn),- “y

Then w'") is a feasible solution of problem (D). Moreover, we have
ZT)l(i”) < g -exp (r-T- (KT)
foralln e N,i=1,- -,pandl—l

(ii) Given a feasible solution w") of problem (Dn) we define

wl(in) = min {wl(f), ml(n)}

,n, and consider the

o)

(19)
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fori=1,---,pandl =1,--- ,n, and consider the following vector

n n N\ T ., (n ) o HmY "

Then, w'") is a feasible solution of problem (D) satisfying the following inequalities

7 < ) < T 7.2

wy; gm, < 5 exp(r T cr)
foralln e N,i=1,---,pandl =1,--- ,n. Moreover, if each c,(?) is non-negative and w'" is an
optimal solution of problem (D,,), then w'™) is also an optimal solution of problem (D,,).

Proof. To prove part (i), by (6), for each j, there exists i; € {1,2,- -, p} such that Bi(j(;-) >0forj ¢ IZ.(/_B)

or Bi(j(;) + El-].]- > 0forj e Il-(jB). Since 0 < 0 < Bl-(],(;) forj ¢ Ii(].B) or0 <o < Bl-(g) + B\z‘]-j forj e Ii(jB) by (7),
we have
(0) o (n) i 1B
4 R B:/ -, forj & I
) . ijj li 1
Y B -wi+ ), Bi"wliZ{ ! L [ }
4 ij ] (0) ). 7 (1) i (B)
=1 {iie1®)y (Bfff +B'f’) by, forj el
(n)
©. T (n), v\"! (B)
- i o (1 +(5)l 0’) forj ¢ Iif
(0) T (n) - (B)
(B +Byy) - = (1467 ) forje;
n—I
> Tz(n) . (1 +51(") ) g) ] (20)
Since
p
n 0 o (n n = o (n
Bl alf Lol Ryl
i=1 {ije1™)y
(0 w7 () v\"K
<LK - T Ryl s (145 2) by (3)
i=1 i1 (K) v 7
{ijel; ™}
< &M V'Tk(n) 14 Y "k by (15 21
< (145" 2) " by (15)), @y
it follows that, forl =1,--- ,n —1,
n 14 n
n 0 o (n n = o (n
“1(;1)+ )3 ,Zal(c)'Kz(j)‘wl(a>_ YL oKy
k=I+1i=1 k=T e (K)y
. n n n v n—k
<7y s U (1 +5k>.5) (by (14)) and (21))
k=I+1
n ) n—k
<y Y &M I (1 +5m. g) (by (13) and (16))
k=1+1
_ ) Y () vy
=1 1+ ) 5 - (1 +5 U) ]

" n n—I
— (14 1) (22)
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Therefore, from (20), we obtain

p
S e ¥ 8l =)
i=1 {ijerl®y
. () 0 () v (n) (1)
+ Y oKy — Y. oKy
k=I1+1i=1 k=I1+1 {Z]GI )}

fori=1,--- ,n—1and

o

I
—

Bi(jO) o+ Y By al > " > a,(g-),
{ijer®y

which show that w (™ is indeed a feasible solution of problem (D). On the other hand, for/ =1,--- ,n,
from (9), (13) and (17), we have
(n)

£ 1)

Since

T " -T "

Q\l‘l

r-T v\" v . . L
<1+n U) T exp (r-T-E) as n* — oo in the limiting case,

i.e.,, n — oo, this proves (19).
To prove part (ii), foreachj=1,--- ,gand [ =1, - - ,n, we define the index set

Iy ={i: B +By>0forje b ufi:B >oforj P}
Then, I}; # @ by (6). Foreach! =1, - -, n, we see that
p

YBY.aWy Y Bial =Y BY .+ Y BY.al. (23)

— i .
i=1 {izjer®y i€l {ie;jel®)y

For each fixed I =1, - - ,n, we also define the index set
Foreachfixedj=1,---,gandl =1,---,n, we consider the following two cases.

e  Suppose that 11] # ©, i.e., there exists ij; such that B( ) > 0forj & I ) or Bl( ]> B,,]] > 0 for

j€ Ii(zj ), and wl(izj) = ml( " = wl(i,j)- In this case, by (20), forl =1,---,n,wehave

0) | —(n) . 4 1(B)
P - B, - forj &I
0) | ~(n) —(n) iyj iy i
E B -, + E B;: -, > ] i i
i ! ij W i, . _ (B
= 7 : { (B( )+BW) @ forje Ii(lj) }

irjf ijj

0)  o(n) 4 1(B)
B; ;- forj ¢ I n—1
] li i v
= { ; o) . ) () , (I]B) >q" (1 +5" - ;) : (25)
l[j
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Since a'),(;:) < ml(n) = ZT)](;) for each k, by referring to (22), for/ =1,--- ,n — 1, we also have

n

n P
n n 0 _(n n) —(n
A 5 Fol 0wl - 5T o Ryl

1

Lo ) 0 ) v () g ()
< 2 XK wmy = ) Y oKy
k=I1+1i=1 k=I+1 {l]eIl(K)}
1
<o) (14 e Y
which implies, by (25),
) . Y ) 0 () () g -(n)
a + ) Yo Ky wg = ) o Kij - wy,
k=11+1i=1 KT i (60

{ijerl®ly

e  Suppose that I_lj = @, ie,ifi € L then wl(in) = wl(l”) for! = 1,---,n. In this case, for

I=1,---,n—1,wehave

- 2 B(p) wl(l”) + 2 E@ wl(:’)
i€l {ie;jel®)y

Lol ) 0 ) v ) o ()
YooY oK g = ) Y, oKy wy | (by (23)
k=I+1i=1 K=+ e )y
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i=1 {ije1®)
. (n) 0 () v (n) ()
- L Xy Ky g - Y )Y oKy
k=I+1i=1 k=l e Ky

i=1 {ije1®}
Do) 0 )y () o)
- YooKy wg = ) 0 Kij - wy;
k=I1+1i=1 k=I+1 {1]611.(10}

(since w,(a.) > ,(< ") and D,((n) -Kjj = 0)

> ul(;l) (since w(") is a feasible solution of problem (Dy,)).

For | = n, by (23) again, we also have

P
DY =y B Y B w)

i=1 {z:jEI}B)} i€l {zel,,j:jeli<3)}

P

_ 70) _ (n) _ 0) _ (n) R (1)
=) B Y. Bj;" - wy, _ZBij w, + ), Bijwy

i€l {zelnj:jell.(s)} i=1 {ije1®y

> a!) (by the feasibility of w(").

Therefore, from the above two cases, we conclude that w(") is indeed a feasible solution of
problem (Dj,). Since problem (D,) is a minimization problem and

4 n p
Yo g ) < Yo e w,

it says that if w(") is an optimal solution of problem (D,,), then w(") is an optimal solution of problem
(Dy,). This completes the proof. [J

Proposition 2. Suppose that the primal problem (Pn) is feasible with a feasible solution z(") =
2", 2", .. 2", where zl(") = (zl({l),zl(;), . zlq 0T forl=1,---,n. Then

z,,2y 7,
I-1
0<z, )< & (1+||73n|.¢>
] o

q

and

ngl(‘")gg-exp(r-T-i> (26)

]

forallj=1,---,q,1=1,--- ,nandn € N.
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Proof. By (6), for each j, there exists i; € {1,2,-- -, p} such that Bl.(j(;) >0forj ¢ Il-(jB) or Bl.(j(;) + E,-/.]- >0
forj e Il.(jB); thatis, 0 < 0 < Bi(;;) forj ¢ Il.(jB) or0 <o < Bi(j(;) + Eijj forj e IigB). If $ =0, thenKisa

zero matrix . In this case, using the feasibility of z(”), we have

©0), (n) . o 1(B)
o< o) < B 7 forj ¢ 1,
B Vo= (B@ + §1) 'Zl(;l) forj e IlgB)

<ZBIS Zl(s)+ Z Bz]s ZI(S)SCI(Z)SC
{s: SGI( )}
which implies

0< zl(]’?) <

SYEx

For the case of ¢ # 0, we want to show that

I-1
A <L (L)

forallj=1,--- ,gandl =1,--- ,n. We shall prove it by induction on I. Since z(") is a feasible solution
of problem (P,), for I = 1, we have

0) (n) o 1(B)

B/ -z forj & I

i " ij ZB M Yy B 2 <
n B) 1 ijs " *1s = C1j

{ (Bl-(jj)JrB,jj)-zgj) forJEI( } : mo

L {s: sEI( )}
Therefore, for each j, we obtain
(n)
cyj,
% forj ¢ Ii(]_B)
B:"
(n) ij ¢
U ) =7
o i — forj e II»(]_B)
Bi/-j + Bi]-j
Suppose that
I-1
A< S (1P -2)

for/ =1,2,---,r — 1. Then, for each j, we have

() K R S
L <L e (rima ) =y

r—1
<1+ | P |l (4;) —1] : (27)

By the feasibility of z("), we have

) _(n)
B, -z, for j gE q ~
il ] / < B(O) Z(”) + B:.- Z(”)
0 —~ > E rs E ; iis * 4rs
{ (Bl(]]) T Bil‘) ’ Z’(';l) fOI‘] € Iz'(f ) s=1 ” {S:seli(B)} ]
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~

+ Z Z ak ’ 1]5 st) Z Z a]((ﬂ) ’ Kijs ZIEZ)

=1 {s:selI(K)}

q
(n) , R.|. & .
S Cﬂ‘j + || Pﬂ H ’ Z Kl]'S - Z KljS (P || Pn H

s=1 {s:sel.(K)}

1

r—1
(1+1702) —1] ,

4) r—1
(11702) —1] by (27)

<S¢+

which implies

& o\t F o (B
o (111 Pall -2) forj & 1} 1
(n) il g ¢\
5 < s )" so (Pl
| (1+ | Pu | -0> forj € Ii(]_B)
Bij + Bij

Therefore, by induction, we obtain

< (ipn ) < (rnpd) @

forallj=1,---,gand! =1,---,n. From (9), since

§.<1+||7>n I .i)n§§.<1+T.‘P>n§§.(1+”.4’)n

(1+7 T ‘P) Tg.exp<r.T.?;> asn® — oo (ie., n — ),

n g

and

Q\U\z

using (28), we complete the proof. [

Letz(") = (Zgn),zgn), e ,Z,(fl)) with Zln) = (ZZ(T),ZZ(;),- . ,Zl(:;))T be a feasible solution of problem

(Py). Foreachj=1,---,q, we construct the step function 2](.'1) : [0, T] — R as follows:

{ 2" ifre EM forl=1,--- ,n 9

2 ift=T
Then we have the following feasibility.

Proposition 3. Let z(") = (zﬁ”),zg”,-- zy) ))
zl(”) = (zl(l),zl(z), . Zlq )r forl =1, .- ,n. Then the vector-valued step function (Eg ), e ,E,S")) defined

in (29) is a feasible solution of problem (RCLP3).

be a feasible solution of the primal problem (Py), where

Proof. Since z(") is a feasible solution of problem (P,), it follows that

q
o S ,

ZBz‘(j)'le‘f' Y Byzy<dfori=1,---,p G0
j=1 {jjer®y
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and
q
ZBi(j Zj+ ), By ZIJ<C1 +220n) K
= {jjell”y
-1 R
-y Y o .Rj-zyforl=2,--- ,nandi=1,---,p 31)

= gijery
Now, we consider the following two cases.

e  Suppose thatt € Pl(n) for] =2,---,n. Recall that el(f)l is the left-end point of closed interval E"l(").

Then we have

9

yB a0 L Byat ) - LK [ s
=1 {iiell™} =1
+ Z Ki]"/o f]( )(s)ds
{71y
q o n
=y B2+ Y By
= {ier™}
2"21/ )50 (5)4 i RO 50 (g
— K"’ -z (s)ds K s)ds
f e B2 S fo R
-1 o "
+ Y K 2 s+ Y, Ky g (s)ds
ey k=175 ey
q = ~n
<y B 2"n+ Y Bz
=1 {iell™}
q 1-1 -1 R
22/ s+ Y Y [, K2 (s)ds
j=1lk=1 {]:jEII-(K)}kzl k
0

q
:EBEJQ)'Zlf+ Y. Bij-zp- ZZ% z" *Zkj

=1 (e}
-1 n) o
+Y X ¥ K-z
=1 gijery
<’ (by (31))
(0) _ A ; c)
< Cl(o)(t) ci(t) forz‘ el (by (11))
c; /(1) fori ¢ 1()

For | = 1, the desired inequality can be similarly obtained by (30).
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e  Suppose that t = T. Then, we can similarly show that

q -~
B (M) Y By-E(T)
=1 tijer™y
q T
0 n n
_;Ki(j)./o 2}()(5)515+ K Ry / (n)
=1 {izjer
Oy _ & i (
< C’(S) < C%O)(T) G;(T) forielIlc (by (11))
c; ' (T) fori ¢ I

Therefore, we conclude that (Egn)f .. ,Zgn)) is indeed a feasible solution of problem (RCLP3).
This completes the proof. [

Given any optimization problem (P), we denote by V(P) the optimal objective value of problem
(P). For example, the optimal objective value of problem (RCLP3) is denoted by V(RCLP3). Now we
assume that z(") is an optimal solution of problem (P,,). Then we can also construct a feasible solution

(Egn), , E{S”)) of problem (RCLP3) according to (29). Then, using (11), we have

j=1 je[(a) 0
— Z)f/ a2t — f;/ a(t) - zdt
£ lj gom lj

j=11=1""1 jer@ 1=1"%
9 n 9 n

>, Z/E(”) aff) - zVdr =3y of" a5 = v(P,). (32)
j=11=1"%1 j=11=1

Therefore, we have
0T (o) T ~
V(RCLP3) > Z/ a; (t) -zj(t)dt — Y. / a;(t) - Z;(t)dt (by Proposition 3)

j=1"0 jer 70

> V(Py) (by (32)).

Using the weak duality theorem for the primal and dual pair of problems (DRCLP3) and (RCLP3),
we see that

V(DRCLP3) > V(RCLP3) > V(P,) = V(D,). (33)

Next, we want to show that

lim V(D,) = V(DRCLP3). (34)

n—oo

Let w(®) = (wg ),wén),~ .- ,w,(qn)) with wl(n) = (wl(f),wl(;), cee ,wl(;l))T be an optimal solution of
problem (Dj,). We define
wl(i " = = min {wl(z ),ml(n)}

fori=1,--- ,pand!=1,---,n, where ml(") is defined in (18), and consider the following vector

T T
W(n) — (Wg ),W;n), [N /Wﬁln)) Wlth w(”) — (wl(iﬂ’wl(z)’ RPN ’wl(;l))
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Then, according to part (ii) of Proposition 1, we see that w(") is an optimal solution of problem
(Dy,) satisfying the following inequalities

1%

o™ < mln) <X exp (r T. ;) (35)

T
li p
forallneN,i=1,--- ,pandl =1, --- ,n.
()

jj on the half-open

Foreach!/ =1,--- ,nandj =1,:--,q, we define a real-valued function h

interval Fl(n) by

] p _
R () = (e~ t) ;Kff).w}f)— Y Ryeal |, (36)

where el(n) is defined in (8). Forl =1,--- ,n, let

ﬁ:l(n) = max {maX Sup [E(”)(t) + a](O)(t) - al(]n):| !

jﬁ[(a) teEl(n) I]
max sup Vll(f)(t) + tl](»o)(t) —a(t) — ”l(]ﬁ)} } (37)
JEI@ | pln)
€k,
and
nl(n) _ E}axn ﬁ]E”)‘
Then, we have
7_[1(11) — max {ﬁl("), ﬁl(i)l" . 7—1}(1")} = max {ﬁl(n), N}ﬂ} (38)
which says that
2 2l ®
and
B (1)

" >l > { (40)

for/=1,---,n—1. We want to prove

lim 7" =0 = lim 7",
n—oo n—o0

We first provide some useful lemmas.
Lemmal. Fori=1,---,p,j=1,---,qandl =1,--- ,n, we have

sup {a](.o)(t) - ”1(]1'1)] —0 forj ¢ 1@
teE,(”)
sup {a](.o)(t) —ai(t) — ”1(;1)] —0 forje 1@
teE,(")

asn — oo
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and
sup {cfo)(t) - cl<in)] -0 fori g 109
teE;” asn — oo
sup {cgo)(t) —Gi(t) — Cl(?)} —0 foriel© '
teg™

Proof. According to the construction of partition P;, we see that a}o) forj ¢ 1(@), a](-o) —ajforjel (@),
050) fori ¢ I1(9) and CZ(O) — ¢ for i € I'9) are continuous on the open interval El(n) = ( l(f)l,el(n)). It is not
hard to obtain the desired results. [

Lemma 2. Foreachl =1,--- ,n, we have

lim 7" =0 = lim "),
n—oo n—oo

Proof. It suffices to prove

sup [fll(}q)(t) + a}o)(t) — al(;q)} —0 forj ¢ 1@
teE™
su%)) [fz§}1)(t) + a](.o)(t) —a(t) — al(j")} —0 forjeI@
teE"

as n — oo.

From (9), since

-T
oM < P, ||§r7—>0asn—>oo

and a‘)l(ln) is bounded according to (35), it follows that, given any fixed j =1,--- ,g,

D;n) -Ki(]Q) 'wl(i )50 forj ¢ Il.(K)
~ asn — oo.
o (k) = Ry) -l -0 forje 1Y

Now, for j ¢ 1), we have

0< sup {El(;l)(t) + aj(o)(t) - al(].”)} < sup 1_11(]’-1)(1?) + sup {a}o)(t) - al(].”)]

teE,(”> teE,(") teE,(”>
P
0 S 0
< D,(n) . ZKZ'(J') w,(z") - )Y K- wl(l") + sup {a]( )(t) — al(;’)}
i=1 {ijer®y teE™

Using Lemma 1, we complete the proof. O
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We define

4
min ZBi'

) +
j=1-4q | ]

)3

{izje1®y

24 of 50

From (7), we see that 0 < o < ¢*. Also, from (35), we see that the sequence {El(j”) = _, of functions

[0 9)

1 is uniformly

is uniformly bounded, which also says that {nl(n)

constant ¢ such that nl(”)

on [0, T] by
5 iff:é’l(f)lforlzl,m,n
p(”)(t) _ 7'[1(71)’ ift e El(n) forl=1,---,n
(0) (n) (0) .
s s {3 1)} o (1) =70

and a real-valued function §(") : [0, T] — R by

_ e

0—*

v-(T—t)
0—*

A0

- exp [
The following lemma will be used for further discussion.

Lemma 3. We have
() (T . fB“” +
f i=1 i

and, for t € Fl(”) andl=1,--- ,n,

P

n 0 o

e | LB+ LB
i=1 {ije1®y
7(n) (0) m T L0
0+ a0 -+ [0 | LEP - E

> {i:je;™}

() )~ m [T )
0 + a0 — a0 —af) + [ 0s)- Y-

|

bounded. Therefore there exists a

<iforalln e Nand! =1,---,n. Now, we define a real-valued function p(”)

(n)

nj

}} ift=e =T,

(41)

forj ¢ 1)

|

forj ¢ 13

Y. Kyjl|ds forjel@.
{ijer®y

Moreover, the sequence of real-valued functions {§") }oo 4 is uniformly bounded.
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Proof. Fort € Fl(n), from (41), we have

T T (1) AT —
(n) _ [Tp"s) {v ( s)}
/t Frs)ds /t o exp | —— | ds
(1) "
:/e ") o0 [1/ ( S)}dw / ) .exp[v (T—S)}ds
t o* * Py E[En) o* o*
e;rl) l(i’l) v ( S) n nl(n) V. (T_S)
< /t X [ " } ds + Z /E(”) exp [ p } ds (by (39))
k=I1+1""k
(n) (n)
[T [T g L T (o [T
= /t T exXp [ e } ds = " (exp [ o 1 (42)

(n)
v- (T —e_
x.eXp [<0—*11)] fort:el(i)lforl:l,,,,,n

n(n)-ex M fortEE(")forl:1,~~~,n,
I P o I

using (42), it follows that, for t € Fl("),

T
L (1 + % ./(n) f(”)(s)ds> fort = el(i)l forl=1,---,n
Y €1

o* .f(n)(t) > :
7'[1(”) +v- f(”) (s)ds fort € El(n) forl=1,---,n
t
T

> nl(”) +v / f(")(s)ds (since nl(”) <1) (43)

t

Fort = ef,") = T, we also have,

«  ¢(n) _ (0) _ (0) _ _ ()

o* - §"(T) = max {]12% {a] (T) —ay; }]12% {a] (T) —a;(T) — ay; }} : (44)

Foreachj=1,---,gand! =1, --,n, we consider the following cases.

(n)

e Fort=e, =T, from (44), we have
Oy _ (1) i 1)
(T - i BY + Y By >et (1) > aéo)(T) i (n) for]. -
=Y (1) a;(T) —a;(T) —a,’ forje 1@,
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e Forte Pl("), by (43) and (40), we have

p
M@ | B+ L By 2o

i=1 {ijerl®)y
0 TP 4 -
hl(j )(t) + a](o)(t) _ al(]'?) +/ Y £ (s) - Y KSIQ) - ) Kj|ds forj ¢ 1(2)
b= i=1 (ie1®)y
2 1
o R . TE 4 . ,
hl(j (1) —|—a](.0)(t) —a(t) - al(j) + /t Y i (s) - ZKi(jO) - Y Kjl|ds forjei®@.
¥ i=1 i=1 {l]GI,(K)}
Finally, it is obvious that the sequence of real-valued functions {f(") o1 is uniformly bounded.

This completes the proof. [

Foreachi=1,---,p, we define the step function @i(") (t): [0, T] = Rby

(”)(t) _ { wl(ln) + f(”)(t) ifte Pl(n) forl=1,---,n @)

W:
@) +§0(T) ift=T.

Remark 1. According to (35) and Lemma 3, we see that the family of vector-valued functions
{w(m}, cy is uniformly bounded.

Proposition 4. For any n € N, the vector-valued step function (@gn),- x ,@,E,”)) is a feasible solution of
problem (DRCLP3).

Proof. Fort € Fl(n) and/ =1, ---,n, we have

i=1 (ijel®) i=1 {i:je1™y
) () L A R o o0
=) B @+ ), Bj-wy */t Y K-y Y. Kij-@;”|ds
i=1 {ijerlPy i=1 {ijer®y
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P ) ~(n ! n
B @+ T Bat- ) o
=1 j

p
K9 @l - Y K-l

k g k
{l]EI(B)} k:l+1 i=1 lJ : '

1

p =N T P = 7(n
0w (LY ¥ By _/t 7 (s) ;Kg))_ Y Ryj|ds—R(®)

=1 {izje1™®} {ijer®y
(n) _ 7(n) (n) ) 5 T ) E () o
> — Iy, (t) +F7(¢) - ZBif + ) By _/t 7 (s) - ZKU - )Y Kj|ds
i=1 {izje1®} i=1 {i:je1™}

(by the feasibility of w(™) for problem (D))

(m) , 0y _ (1) 4 1(a)

Voa(t : f I
al(n) aJ(O)( ) il/ (n) or]‘ ? (by Lemma 3)
aj; +a (t)—aj(t)—alj for j € 1(2)

B a](-o)(t) forj ¢ 1(2)

| AV —a(t) forje 1@
Suppose that t = T. Then we have

L) () P
Bij - W; (T)+ Z Bl‘]'-w- (T)

=1 {ije1®y

1

i=1 {i:jell.(B)} i=1 {i:jel]-(B)}
= “1(17]1') +(T) - Bl-jo) + ) Ei]- (by the feasibility of w())
=1 {ijer®y
() 4 2Oy — gl forj ¢ 12
Z ﬂ,(% i aj(o)( ) in] (n) Or], # ( (by Lemma 3)
a,; +a; (T)—a]-(T)—anj forj € 1(2)

7 a}o)(T) forj ¢ 1(2)
| (1) (1) forje 1@,
Therefore, we conclude that W is indeed a feasible solution of problem (DRCLP3), and the
proof is complete. [J
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Foreachi = 1,---,pand j = 1,---,q, we define the step functions ﬁ](.n) : [0,T] — R and

c’f") : [0, T] — R as follows:

20 (1) = %”iﬂe#”mu:ann
j n) e,
i ift ="T.

and
‘")(t)—{ cl(f) ifteFl(")forl:1,~--,n

M=,

ni

respectively. For eachi =1,- - -, p, we also define the step function " [0, T] — R by

i

o ifr=T.

ni

—(”)(t){ Z/T)I(ln) iffGFl(n) forl=1,---,n

Lemma4. Fori=1,--- ,pandj=1,--- ,q, we have

/ ! [a@(t) - a-(’”(t)} W (Hdt — 0 forj ¢ 1@
0r ]0 ! ! asmn — oo (46)
/0 [a]< J(#) = @) — a](”)(t)} 2" (Hdt — 0 forje 1@
and .
/ ) = )] o 5yt — 0 fori ¢ 1©
0 ( | asn — co. (47)

1

T
/O () ~a(t) )] -al” (a0 forie 1t
Proof. It is obvious that the following functions

MO RO for j ¢ 1%
]( ( )(t)} .2(”)(1%) forj € 1@

and

ERCRERICIRAC fori g 119
o)~ & - W] @ () forie 1

are continuous a.e. on [0, T, i.e., they are Riemann-integrable on [0, T]. In other words, their Riemann
integral and Lebesgue integral are identical. From Lemma 1, we see that

(O) t) — —('n) t f 1 I(a)
{ ﬂ]( () Ll] () OI‘]¢ _>Oasn—>ooa.e.on[0,T]
]

and
{ C(O)(t) - C"l(n)(t) fori ¢ I1()

( — 0asn — coae on [0, T].
SROREIORER0 foriel(c)} asn = oae on (0T

Since the set of functions {2](-") o, forj = 1,---,q is uniformly bounded according to
Proposition 2, using the Lebesgue bounded convergence theorem, we obtain (46). On the other hand,
since set of functions {wl(”) neq fori =1,---,pis uniformly bounded according to Proposition 1,
using the Lebesgue bounded convergence theorem, we can obtain (47). This completes the proof. [
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Theorem 1. The following statements hold true.

(1) We have
limsup V(D;,) = V(DRCLP3) and 0 < V(DRCLP3) — V(D,,) < ¢,
n—oo
where
SRt () (fy . () . (n)
en:—V(Dn)—i-ZZ/E(n)ci (t) -, dt—ZZ/ ) -y dt
i=11=1""1 icr(@ 1=1
P n 7.[(”) ot
+ Z Z [(n) 17* - exp |:V ( * ):| (0)(t)dt
i=11=1 E o
n (1) . _
_ Z i i -exp M -Gi(t)dt (48)
(n)  g* o*
iel =175

satisfying e, — 0as n — oo.
(i) (No Duality Gap). Suppose that the primal problem (Py,) is feasible. We have

V(DRCLP3) = V(RCLP3) = limsup V(D,) = limsup V(P,)

n—o00 n—o00

and
0 < V(RCLP3) — V(P,) < €.

Proof. To prove part (i), we have
0 < V(DRCLP3) — V(Dy) (by (33))

n P
— V(DRCLP3) - )} /E e aMdt

1=1i=1 1

S O PR o (n) _(n)
< ¢ (b)) @i(tydt — ) [ Gty @i (t)dt =) Y | e @y dt

i=170 ic1(©) I=1i=1"F

(by Proposition 4)

T
_ 2/ nats ¥ [ (V) - &) - @ - 22/ o ol at
(O =1i=1

ig1(e) I=1 iel(e)

/ £)dt + Z/ 5 (1)

:zi/ (¢ —c§7>)-w§?dt+z§
)- (e

zgl( 1(c)
Z( /OT< ()~ (1)) -} (1)t + ):/ CROBEOR RO RO
i1l ielle
T T
i JRROR: (O>()dt+i§> |- (P -am)a
= 49)

Since p(”) is continuous a.e. on [0, T}, it follows that f(”) is also continuous a.e. on [0, T], which
says that f(") is Riemann-integrable on [0, T]. In other words, the Riemann integral and Lebesgue
integral of {) on [0, T] are identical. Since nl(n) — 0 as n — co by Lemma 2, it follows that p(") — 0
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as n — oo a.e. on [0, T], which implies that {(") — 0as n — oo a.e. on [0, T]. Applying the Lebesgue
bounded convergence theorem for integrals, we obtain

/ 51 O (1)dt — 0asn — oo fori ¢ I1(¢)
(0 (50)
/ f )()—a(t))dt%Oasn—)oo fori e I(c)

Using Lemma 4, we conclude that &, — 0 as n — oo. Also, from (49), we obtain
V(Dy) < V(DRCLP3) < V(Dy,) + &5,
which implies

limsup V(D;,) < V(DRCLP3) < limsup [V(Dy,) + €]

n—oo n—oo

<limsup V(D,) + limsupe, = limsup V(D,).

n—oo n—oo n—oo
It is easy to see that ¢, can be written as (48), which proves part (i).

To prove part (ii), by part (i) and inequality (33), we obtain

V(DRCLP3) > V(RCLP3) > limsup V(D,,) = V(DRCLP3).

n—o00

Since V(D,,) = V(P,) for each n € N, we also have

V(DRCLP3) = V(RCLP3) = limsup V(D;) = limsup V(P,)

n—00 n—o0

and
0 < V(RCLP3) — V(P,) = V(DRCLP3) — V(Dy,) < ¢,.

This completes the proof. [

Proposition 5. The following statements hold true.

(i) Suppose that the primal problem (P,) is feasible. Let Z ].") be defined in (29) for j =1,--- ,q. Then, the

error between V(RCLP3) and the objective value of (Eg"),‘ - ,Egn)) is less than or equal to €, defined
in (48), i.e.,

0 < V(RCLP3) (Z/ ) - Zj(t dt—z/a] “Z;(t )gen.

]eI

(i) Let @fn) be defined in (45) fori = 1,---,p. Then, the error between V(DRCLP3) and the objective
(n) ~(n)

value of (@ /- - - , Wy ) is less than or equal to ¢y, i.e.,

0< (é /OT CZ(O)(t) . @i(t)dt — ie;(c) /OTE‘\Z(t) .ﬁ)i(t)dt> _ V(DRCLP?)) <e,

GO
1 7

Proof. To prove part (i), Proposition 3 says that (z ,Zy ) is a feasible solution of problem
(RCLP3). Since

noq
520 fyl 2"t = S 8ol 27 = v(en) = vio) 61
J

=1
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and

forallt € El(n) and! =1,---,n,it follows that

0 < V(RCLP3) (Z/ Hat— Y /OTﬁ]«(t)-’z‘j(t)dt)

jer()

V(RCLP3) Z 3 / a2 (bt
=1j=1
= V(DRCLP3) — V(Dy,) (by (51) and part (ii) of Theorem 1)

< ¢y (by part (i) of Theorem 1).

To prove part (ii), we have

P T
0< (Z/ CZ(O)( - ;(t)dt — Z / ci(t ) — V(DRCLP3) (by Proposition 4)

i 0

=1 icIle

(Ot T oo
Z/ Hdt— Y / &) - @i(t)dt | — V(Dy)
ielle)
(since V(D,,) < V(DRCLP3) by part (i) of Theorem 1)
= Si’l

This completes the proof. [

Definition 1. Given any € > 0, we say that the feasible solution (zge), S, z‘(f)) of problem (RCLP3) is
an e-optimal solution if and only if

0 < V(RCLP3) (2/ J(t)dt — Y /OTaj(t) .z](e>(t)dt) <e.

We say that the feasible solution (wge), e, wgf)) of problem V(DRCLP3) is an e-optimal solution
if and only if

T

0< <Z/ Ot (dt— Y / alt) ~wl.(€)(t)dt> — V(DRCLP3) < e
ielt© 70

Theorem 2. Given any € > 0, the following statements hold true.

(i) The e-optimal solution of problem (RCLP3) exists in the sense: There exists n € N such that

(zge), e ,z‘(f)) = (Eg"), ,Z(,n)), where (Eﬁ"),- . ,Eé")) is obtained from Proposition 5 satisfying
gy < €.

(ii) The e-optimal solution of problem (DRCLP3) exists in the sense: There exists n € N such that
(wge), e ,w;e)) = (@gn)f . ,@E,n)), where (@gn)f . ,@,E,n)) is obtained from Proposition 5 satisfying
ey < €.

Proof. Given any € > 0, from Proposition 5, since ¢, — 0 as n — oo, there exists n € N such that
en < €. Then, the result follows immediately. O
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4. Convergence of Approximate Solutions

In this section, we shall study the convergence of approximate solutions. We first provide some
useful lemmas that can guarantee the feasibility of solutions. On the other hand, the strong duality
theorem can also be established using the limits of approximate solutions.

In the sequel, by referring to (29) and (45), we shall present the convergent properties of the
sequences {z(") }, and {w("}%_, that are constructed from the optimal solutions z(") of problem
(P,) and the optimal solution w(™) of problem (Dj,), respectively. We first provide a useful lemma.

Lemma 5. Let the real-valued function 1 be defined by

exp {V(f—f)] (52)

n(t) = -

T
o
on [0, T], and let (wgo), e, wéo)) be a feasible solution of dual problem (DRCLP3). We define

@) (£) = min {w§°> (t), n(t)} (53)

foralli=1,--- ,pand t € [0,T]. Then (wgl),- . ,w;(gl)) is a feasible solution of dual problem (DRCLP3)
satisfying wi(l)(t) < wi(o)(t) and wl(l)(t) <y(t)foralli=1,--- ,pandt € [0, T].

Proof. By the feasibility of (wgo), e, w,E,O)) for problem (DRCLP3), we have

p _
Y B o)+ L Byw () 4
i=1 {ije1P}
)~ Lo (T 0 o [T 0 -
a;(t) —a(t) + ZKZ.]. : /t w; ' (s)ds— Y Ky /t w;” (s)ds forje I
N i=1 {ije1™y
O S ) s [T o ,
a. PR w: S)ds — PN w: sS)das or
i=1 .. +(K)
{izje;™}

Since K > 0 for j ¢ I/, K{Y) — Kyj > 0 for j € 1! and wf") (t) < w(”)(t), from (54), we obtain

P ~
yB) w0+ T By 9
=1 {ijel®)y
Oy _ i+ v kO [0 2 [ @
a; (t) —a;(t) + Z;Kij /t w; ' (s)ds— Y K /t w; ' (s)ds forjel
S =1 {izjer®y
> T
)+ Z K / )( Jds — ) Kjj - / wl(l)(s)ds for j ¢ 1(@)
' {ije1™} ‘

For any fixed t € [0, T], we define the index sets

I = {j (1) < q(t)} and I = {j w0 () > n(t)}
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and consider
P ~
.Z: Bz‘(]‘O) 'wzgl)(t) + 2 Bi]' ’ wl(l)(t) - Z Bz'(jO) -wfl)(t) + 2 Bz‘(]‘O) -wl(l)(t)
i=1 {l]EI](B)} ZEI§ IEI>

+ B\ij . w.(l) (t) + Z B\i]‘ . wfl) (t) (56)
) jelc} {1]61 (B) jels}

OJ

Then, for each fixed i, we have the following three cases:

e  Suppose that I. = @ (i.e., the second sum is zero). Then, we see that wlgo) (t) = wgl) (t) for all i.
Therefore, we have

p N p ~
Z Bl(]o) wl(l)(t) + Z Bij . wl(l) (f) = 2 Bi(]Q) . wl(o)(t) + Z Bij . wl(o) (t)
i=1 {ijer®y i=1 {ijerlPy

i=1 {izjer®y
0~ Lo [T 5 (T (a)
a;’ (t) —a(t) + ZKij /t (s)ds— ) Kj /t w;(s)ds forjel
N i=1 {ijer™)y
= p T R
a 0)(t) + Z;K 0) /t w(l)(s)ds - Z% ) Kij / (1)( ) forj &1
! {ijer;™}

e  Suppose that I. # @, and that

B(O) =0forallie I, andj & Ii(B)
B{) + Blj =0foralli€ s andj € Ii(B).

Then, from (56), we obtain

Y B wm+ L By
i=1 {i-jel B!
=~
-y L Byl
iele {z:jelf‘”,ielg}
oy S
icl< {z‘jGI(B> jelc}
_ v 30 O w©(
-y B + ) By w;
icl< icls
+ Y Bi-o®m+ L By-w”()
{izjer’® ie1} {ijel;® et}

p -~
=y w0+ L Byl
i=1 {i:je1®)y
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From (55), we obtain

p -~
Y B+ ¥ By-wl()

i=1 {i:je1®}
Ot (0 i [ o '
)+ Y K / w s)ds— ) Kij-/ w;’(s)ds forj e 1@
] 1 ] ) ) t
- i= {i:je;™}
p T ~ T
a )+ Y K /t wl(s)ds—  } Ky : w (s)ds for j ¢ 19
i=1

{izje1™y

e  Suppose that I, # @ and there exists i* € I. such that B( #0forj ¢ IZ* or B( ) + Bj« «j # 0 for
j€ Il(* ), ie., B( ) >oforj¢ Il* or B( ) + Bl* >oforje Il(* ) by (7). Therefore, we obtain

=YY o+ Y Byt = o). (57)
‘ {izjel™ el }

From (52), we see that
T
a-n(t) =T+V~/ 1(s)ds,
t

which implies

O 4y g, [T g [ ¢ 1@
a; (t) + ZKI-]- . /t n(s)ds— ) Kjj - t n(s)ds forj &1
i=1 ®)
oon(t) > trel ™y (58)
(0) _ i e 1)
)+ ZKZ 7(s)ds Z K- ds forje 1),
] ! /t {1]61 } /

forall t € [0, T]. Using (66), (57) and the fact of wi(l) (t) < n(t) and Kl.(jo) — Kij >0forje Ii(K), we
also have

Y B o+ Y ByewlV()

i=1 {ije1®}
T
+) K / syds— ) Ky / 1(s)ds forj &1
- {izje1™y '
= T T
a(o)(t) —aj(t) + ZKZ(]O) / n(s)ds— ) Kl] t n(s)ds forje 1@
=1 {ije1™y
(0) Lo (T s [T . a)
a; (t) + ZKZ.]. /t w; ' (s)ds— ) Ky . Wi (s)ds forj &1
- =1 {ier™}
= p T T
0l () — (1) + » K- [ o )ds - L R W (s)ds forj € 16,
= {ijer;™}
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Therefore, we conclude that (wgl) L, wél)) is a feasible solution of (DRCLP3), and the proof is
complete. O

For further discussion, we need the following useful lemmas.

Lemma 6. (Riesz and Sz.-Nagy [53] (p. 64)) Let { f;}$>, be a sequence in L2[0, T). If the sequence { f }3°
is uniformly bounded with respect to | - |2, then exists a subsequence { fi,;}7° , that weakly converges to some

fo € 12 [0, T]. In other words, for any § € 12 [0, T], we have

lim fk Pt = / folh)

]%oc

Lemma 7. (Levinson [4]) If the sequence { fi } ;2 is uniformly bounded on [0, T] with respect to || - || and
weakly converges to fo € L?[0, T], then

fo(t) < limsup f(t) and fo(t) > ligg}ffk(t) a.e. on [0, T).

k—o0

Theorem 3. (Strong Duality Theorem) Suppose that the primal problem (P,) is feasible.  Let

{(Egn), . A(” Voo 1 and {(w1 PR ,iﬁ;n)) 1 be the sequences that are constructed from the optimal

solutions (zg ),~ e, q )ofproblem (Py,) and the optimal solution (wg ), p )ofproblem (Dy,) according

to (29) and (45), respectively. Then, the following statements hold true.

(i) Foreachj = 1,---,q, there is a subsequence {2](."")},‘?’:1 of {2](.")}2":1 such that {E](.nk)}]‘f:l weakly
converges to some z7, and (23, - - - ,Z},) forms an optimal solution of primal problem (RCLP3).
(ii) For each n, we define

") () = min {&" (1), (1) }

[e9)

where 1 is defined in (52). Then, for eachi =1, - - -, p, there is a subsequence {d)l(nk) Feq of{w§”> <1

such that {u“)f”") } e, weakly converges to some @}, and (W7, - - - , Wy ) forms an optimal solution of dual
problem (DRCLP3).

Moreover we have V(DRCLP3) = V(RCLP3).

Proof. From Proposition 2, it follows that the sequence of functions {(Zgn 257 ) }or_q is uniformly

(1)
bounded with respect to || - ||2. Using Lemma 6, there exists a subsequence {zg k )} {A(n)} .
k=1 n=

that weakly converges to some 250) € L2[0,T]. Using Lemma 6 again, there exists a subsequence

RO R RO L0 _ 12 N .
Z, of <z, that weakly converges to some z; * € L*[0, T]. By induction, there exists
k=1 k=1 -
s s 50 ¢ 12 :
a subsequence { z i of z that weakly converges to some zi' € L#[0, T|] for each j.
k=1 k=1

Therefore we can construct the subsequences {z jnk } o, that weakly converge to z](» ) e 12 [0, T] for
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allj=1,---,4. Since (Eg ), e ,éénk)) is a feasible solution of problem (RCLP3) for each ny, for all
te [O,T],wehavef](nk t) >0forallj=1,---,gand

y Bz‘(]‘O) _’Z\](”k)(t) + Y B‘i]. .gj(”k)(t> (59)
j=1 (jer®y
q t ~ t
Cl(())(t) —Gi(t) + ZKZ(].O) / A](nk)(s)ds - Z Kz’] / A(nk)(s)ds fori € I(°)
j=1 0 {j: ]el 0
= 0) L0 [t 2
c; (t)+ ZKZ.]. / zj"k (s)ds — Kjj / "k fori ¢ 1(9)
j=1 0 {j: ]EI

From Lemma 7, we have

2(0)(15) > liminffgnk)(t) >0a.e.in[0,T],
j k—oo !

which says that 2](.0) (t) >0ae.in[0,T] forallj =1,---,q. Itis clear to see that the sequence

1 ~
Z B ]0) ’\("k) Z Bz] A 2\]{”1() (t)
=1 {]:ferfB)} 1
weakly converges to
q
) Bl.(].o) 2](0) GEEDY B;; - 2](,0) ()
= {ijer™y

Fori € I(©), we obtain

1 ~
Z Bl.(].o) -/Z\](»())(t) + Z B;; .g‘](,o)(t)
j=1

1 ~
<limsup | ) BY -E(nk)(t) + ) B ~2(nk)(t) (by Lemma 7)
e 7= {ijer™)

~

q ot of
< () —a(t) +limsup | YK [5Meas— ¥ Ky [ (9)as| oy 69)

k—oc0 j=1 {j ]'EI,-(K)}
q t N t
=¥ -at)+ LK /O GRIOLE D OF /O 20 (s)ds a.e. in [0, T] (60)
= (el

(by the weak convergence)

For i ¢ I(%), we can similarly obtain

¢ R t
<+ LK [20a - T &y [ 206 ©
i K
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Let A be the subset of [0, T] on which the inequalities (60) and (61) are violated, let N7 be the

subset of [0, T] on which (250) (t), - ,2,(70) (1)) 20,let N = Ny UN7, and define

—_

S0 S0y
(?a»”.ﬁﬂg):{ gl(ﬂ' 2 (1)) éiiﬁ;

where the set A has measure zero. Then (2 (t),- - - ,Z;(t)) > Oforallt € [0,T] and (27 (¢), - - -

@), 20 1) ae on 0T] e, F(
z; € L?(0, T] for each .

e Fort ¢ N, from (60), we have

~ 9 R
Y B+ ¥ Bymm=Y B 5"+ L By

j=1 (el®y =1 {iel™
q t = t
<o -aw+ Lk [500as— ¥ Ky [ 506
= gy 0

=t (et}
From (61), we can similarly obtain
L0 .
) B - Zj O+ ) Bij - Zj (t)
=t (et}
O kO [ e
< (H)+ )] K7 / Zi(s)ds— ), Ky / Z7 (s)ds
=R ey
e Fort e N, from (60), we have
- B0 g By -25(t) =0
2 ij ‘j(t)"’ Z ij Z](t)*
=1 {iier®}

)y = L0 [ oo [T
< () —G(t) + ZKZ-]- . /0 z; (s)ds — Z Kj; - / Z (s)ds.
=1

From (61), we can similarly obtain

E1(1) =
2{0)(1?) a.e. on [0,T] for each j. We also see that
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This shows that (zj(t),---,Z;(t)) is a feasible solution of problem (RCLP3).  Since

(1 (t),-- . z5(t) = (Ego)(t),- - ,EL(]O) (t)) a.e. on [0,T], it follows that the subsequence
{ Eg”k),- - ,Egnk))},‘f’zl is also weakly convergent to (27 (t), -, Z5(t)).

On the other hand, since (@5") Lo, zﬁ;n)) is a feasible solution of problem (DRCLP3) for each

n, Lemma 5 says that (u“)gn), e ,aﬁg,n)) is also a feasible solution of problem (DRCLP3) for each n
satisfying wl( )( t) < @En) (t) foreachi =1, ---,pand t € [0, T|. From Remark 1, it follows that the
~(n)

sequence {(@; - - - ,@;"))};1"’:1 is uniformly bounded. Since

T v-(T—1t) T v-T
n(t) ;P [ > } << exp( - ) forallt € [0, T],
we see that the sequence {(Zbgn), e w;”)) * 1 is also uniformly bounded, which implies that the
sequence {(mg"), R 0 ("))}“’ 1 is uniformly bounded with respect to || - 2. Using Lemma 6, We can
., DI of {@{", -, wy”)ye, that
o (1)

ZZ) ). Wy ") is a feasible solution of
(i
1

)( t) >0foralli=1,---,pand

similarly show that there is a subsequence {(

Wy
weakly converges to some (zbgo),- A )) cl? 510, T] Since (
wW;

problem (DRCLP3) for each ny, for each t € [0, T], we have

Z Bi(jO) . Z\()Enk)(t) + Z B\l] . Z\(Jl(nk) (t)
i=1 {izje1®}
4 T ~ T o .

a® () —a(t) + K- /t o™ (s)ds— Y Ky /t @) (s)ds forj € I
> - et (62)
] o (B S P o T m) 4 1)

a; (t) + ZKU . (s)ds Y. K . (s)ds forj &1

i=1 K

From Lemma 7, for each i, we have

a“;z(o)( t) > hmmfw(nk)(t) >0ae. in[0,T],

k—o0

which says that u“)§0) (t) >ae. in[0,T] foralli=1,---,p. For j € I, by taking the limit inferior on
both sides of (62), we obtain

P R
Y8 2%+ ¥ By-a )

=1 {ije1®y
B0 ) B )
> lim inf ZBz] )+ ), Bijow"™(t)
‘ =1 {irje1®}
S 40 i | kO [T 00 4 T 200 (914
> a; (t)—a](t)—i-l}lrkrglglo ZKz] ) (s)ds— ) Kj . i (s)ds

p T ~ T
=a” (1) —a;() + Y K- / oV s)ds— Y Ky / @\”(s)dsa.e.in[0,T]  (63)
= t t

(by the weak convergence)
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For j ¢ I(®), we can similarly obtain

T T
>al% () + Y K- /t o0 (s)ds— Y K- /t @) (s)ds (64)

i=1 {ijer®y

Foreachi=1,---,p, we see that w("")( t) < 5(t) for each k and for all t € [0, T]. Let N be the
subset of [0, T] on which the inequalities (63) and (64) are violated, let N be the subset of [0, T] on

which (@ (O)( t), -, “;0)( t)) #0,let N = Ny UNj, and define

ey = @0®, w0 g N
@i (), P(t))_{ (q(lt),---,n(t))p ift € N,

where the set A’ has measure zero. Then, for eachi = 1,---,p, @/ (t) > 0 forall t € [0,T] and
wi(t) = wl@ (t) a.e. on [0,T]. We also see that @} € L?[0,T]. Now we are going to claim that
(wy,- -+ ,@y) is a feasible solution of (DRCLP3).

e  Suppose that t ¢ N. For j € 1@, from (63), we have

p S p ) o
YBY e+ L Byai)=YB) w”®+ ¥ By-al
i=1 (ijer®y =1 {ijer™}
Oy —ain+y KO [0 2 [T
> a® () — a(t) + Y K} /t oV s)ds— Y Kij./t 0 (s)ds
=1 {ijer™y
~ T .
= ](0) —l—ZK(O /t Wf (s)ds — Y Kl-j-/t w; (s)ds.
{ijer®y
For j ¢ 1(@), from (64), we can similarly obtain
20 A P
Z Bl] w; (t) + Z Bij w; (t)
i=1 {ije1®)
(0) Lo [T > (T,
>a; (1) + ) K /t wf(s)ds — ) K,-j-/t w7 (s)ds.
i=1 {ijer®y

e  Suppose thatt € N.Foreachi=1,---, p, since zbf”k) (t) < n(t) forall t € [0, T], using Lemma 7,
we have
w}o)(t) < limsup w}"k)(t) < 1(t) a.e.on|0,T].

Nnj—>00
Foreachi=1,---,p,since @} (t) = wio)(t) a.e. on [0, T], it follows that
w; (t) <#(t)ae. onl0,T]. (65)

From (52), we see that
T
c-n(t) = T+1/-/ 1n(s)ds,
t
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which implies

o-n(t) > a](.o)(t) —aj(t) + zKi(]Q) . /tTIj(S)dS — Z IZ,'j . /tTiy(s)ds (66)

i=1 {i:je1™}

forjel (@) and forall t € [0, T]. Therefore, for j € I (a), we obtain

4 . 4 R
YBY @+ L Bypai()=YB) )+ Y By
=1 {izjer®y =1 {ijer®y
> o -1(t) (by (7))
T
> a9 (1) -2 KO / s)ds — K- [ n(s)ds by (66)
{1161 9y
P T . T .
> a6 —a;() + YK / 7 (s)ds — Ri- / @ (s)ds (by (65)).
: = {ije1™} !

For j ¢ 113, we can similarly obtain

O v k0. [T o [T
> a (t)+ZKij /t i (s)ds — ) Kij-/t w; (s)ds.

=1 {ijer®y

Therefore, we conclude that (@j,--- ,@;) is a feasible solution of (DRCLP3). Since

(@1 (t), -, wyp(t) = (wio)(t),- . ,zi);o)(t)) a.e. on [0,T], it follows that the subsequence
{( Vgnk),‘ . ,w},”k))};;l also weakly converges to (@7, -+, @j).

Finally, we want to prove the optimality. Now, we have

q T T
];/O a}(O)(t).%k)(t)dtf Y /O aj(t),gj( O (1)dt

jel(@

+ ¥ [(nk) (a](.O)(t) —a(t) - al(]"k)> ’\(”k) dt—"ZZ/ al(]l’lk z{mo) (H)dt

jer@ =1 E j=11=1
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_ Oy () olm)
_‘gn 1/12,<"k) (aj (5 —ay ) z; - dt
JEI\) =
3 Zk / (<0)() ) <nk>> () i oS ) () S(me)
+ oyl () —ai(t) —a Z) . dt + 0, a2 dt
jel@ =1 AN ! g g j=11=1 : g g
03
_ (0) ()Y (m)
B .guzi/éf”k) (ai (t) =" ) z; v dt
] a =
1y
O/ = () 5 (m)
! guzlfa‘”k) (“f (t) —a;(t) — ;" ) 2y dt+ V(P (67)
] a f—
and
P T T
(0) ~(ng) —~ (1)
c; /(t) ;" (t)dt — Ci(t)-@; * (t)dt
T T
=Y [ aM™wa+ Y [ (V) —ar) @ (at
iﬁlm/o iel(°>/0 ( l )
s 0) 4y . () "k 0 (me)
=) ) £0m) i () - Vdt + ) /E(nk) (Cl (t) Cz(f)) @, dt
ig1(e) I=1""1 ielle) I=1"%51
T T
(0) () Oy _ A~ (k)
£ [ a7 (e 0 -a) 1 oar
ig1(e) iel
03
_ (0) ()Y - (me)
igw )3 /E " (V) =) - o ar
1
+ ) Z/EW (050)(0—@@)—051 ) wz(l"")d“rZZD"k it
ielle) I=1""1 i=11=
T T
+ ¥ / (O t) 5 (Hdt + Y / () ~a(n)) - 1) (e
ig1(© 70 ie1(© 0

1

- 2 2/ o (6000 = &(8) — ff )) @V dt + V(Dy,)

iclle

O (8) - 50w (1) dt a(0) -5 (1)t 68)
ﬂ%j ON +2/ ai(1) - 109 (1

= % Lo (20— ) -l
) 1=1
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Since V (P, ) = V(Dy,) and zbf"k) < @5"") for each i and ny, from (67) and (68), we have

=1 jer®
ny .
(0) ()Y . 5()
_ oo (@ () —ay) Z,. " dt
jga) l—1'/EI( o ( ! y ) I
& (0) (m) . 5 ()
i 1/E{nk) (“1 (t) = a;(t) _“ljk) 2y dt
jerat=
PoT T
> <Oty - ™ (tydt— Y / G(t) - ™ (ot
= o je1(e) 70
iel
1
~ LY Lo (0 =) wfa
i1t 1=17E
5
(0) (m)) . ()
_ (n Ci (t)fc(t) c wz dt
15@)1_2{/]5; k) ( i li ) I
T T
_ Z C(O)(t) f(nk)<t)dt— Z Cl(o)(t)—a(t) f(”k)(t)dt
'&EI(C)/O ieI(C)/O ( )

Using Lemma 4, for j ¢ I®), we have
o2 f: o (601047 2
= /OT () — @™ (1)) -2 (1)t — 0 as k — eo
and, forj € I (@), we have
o< £ [ (1910510 -of) £
- /OT (1) = a5(5) = 2™ (1)) -2 (1)t — 0 as k — oo.

Also, fori ¢ 1(¢), we have

1
T
- /0 () "™ (0)) -0 (1)dt > 0ask — oo

- /O () () — ™ 0)) @™ ()t — Dask — .

42 of 50

(69)

(70)

(71)

(72)

(73)
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By taking limit on both sides of (69), and using (50) and (70)—(73), we obtain

lim [Z/ ™) () dt — Y /Tﬁj(t) .gj(nk)(t)dt]

k—o0 ]61(3)

> lim [Z/ ") (F)df — x / Ei(t)~wf"k)(t)dt].

k—o0

Using the weak convergence, we also obtain

9 T .
et o-goa- 5 [Ta0 50

jel@ - 0
> f/Tc@(t).@*(t)dt— y / &) - @F ().
= l Z l

According to the weak duality theorem between problems (RCLP3) and (DRCLP3), we have that

q
Z/()Ta](o)(t)-ij(t)dt— y /Tﬁj(t)-zj(t)dt

j=1 je1@ 70
PorT (o) . T .
:Z/ ¢ (t) - w; (t)dt — Z/ ci(t) -y (t)dt.
i=170 ielt© 70

and conclude that (27, - - -, z7) and (@, - - - , @}) are the optimal solutions of problems (RCLP3) and
(DRCLP3), respectively. Theorem 1 also says that V(DRCLP3) = V(RCLP3). This completes the

proof. O

5. Computational Procedure and Numerical Example

In this section, based on the above results, we can design a computational procedure. Also, a
numerical example is provided to demonstrate the usefulness of this practical algorithm. The purpose
is to provide the computational procedure to obtain the approximate solutions of the continuous-time
linear programming problem (RCLP3). Of course, the approximate solutions will be the step
functions. According to Proposition 5, it is possible to obtain the appropriate step functions so
that the corresponding objective function value is close enough to the optimal objective function value
when 7 is taken to be sufficiently large.

Recall that, from Theorem 1 and Proposition 5, the error upper bound between the approximate
objective value and the optimal objective value is given by

P (n)
0 _ 7T v-(T—t 0
€n = BN [/ wl(zﬁ)dt—'— £ (;* eXp [ ((,v* )] 'Cz( )(t)dt]
i=11=1 1
n () (T -
Z Z / l(zn)dt + (1) l* exp |:V (T* t):| Al(t)dt‘|
ic1(@ =1 E; o
In order to obtain nl("), by referring to (37), we need to solve
sup {RJ (1) + (0}, (74)

teEZ(")
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where the real-valued function «; is given by

0 e
y(t) =1 {0 ~ )
a; (t) —aj(t) forje 1'%

Now, we define the real-valued function hl(]'?) on El(n) by

R (1) + zxj()t), ift Eé("))
lim (B (f) +ai(t)), ift=e"
=9 e ) -
lim le(.")(t)—i-oc]-(t)), if ¢ = e"
t%e<”)f /
1

Since «; is continuous on the open interval El(n), it follows that le(].") + a; is continuous on E l(").

(n)

This also says that i; j is continuous on the compact interval E l(n). In other words, we have
sup hl(;l) (t) = max hl(;l) (1).
teE™ teE;”

Moreover, if the function }_ll(;) +a; is well-defined at the end-points el(f)l and el("), then we see that

n(8) = B} (£) + ay(t) forall ¢ € B,

Then, the supremum in (74) can be obtained by the following equality

s W) = ma {h;;> (69) 489 (4, sup 00+ ,W)}}  »

et ek

In order to further design the computational procedure, we need to assume that each «; is
twice-differentiable on [0, T] for the purpose of applying the Newton’s method, which also says that «;

is twice-differentiable on the open interval E l(”) foralll =1,---,n. From (75), we need to solve the
following simple type of optimization problem

max hl(-”) (1). (76)
e <o
1-15E5€)
The KKT condition says that if t* is an optimal solution of problem (76), then the following
conditions should be satisfied:

B0, ta=0mman (¢ ) =0= 1 (-5 %),

where A1, Ay > 0 are the Lagrange multipliers. Then, we can see that the optimal solution is

* — o or satisfying 2 (1™ _
“jort*=e orsatisfying T (hlj (t))‘t:t* =0.



Mathematics 2019, 7, 435 45 of 50

Let Zl(]. ") denote the set of all zeros of the real-valued function 5 (h(]n) (t)) on El("). Then, we have

(n) (,(n) (n) (,(n) (1) /4% e (1)
max h(n)( ) — max {hl] (el*l) ,hlj (el ) 'maxt*ez( hl] (t )} 7 lf Zl] 7é @ (77)
teEl(”> ! max {hl(;) (el(n)l) ,hl(?) (el(n)) } , if Zl(]n) = Q.
Fort € E("), we have
d () L (0) () o 4
1je

and

We consider the following cases.

e  Suppose that ; is a linear function of t assumed by
wj(t) =a;-t+biforj=1,---,q.

Then, for t € El("),

0= (e" ~t) ZK o) = ¥ Kyea)) | +at+;

{irje1™y
Using (77), we obtain the following maximum:
1 If
p
— 0)  ~(n) 2. .
4 = ZKU "Wy Z Kl] wl(ln)
i=1 {ijer™y
then
max h(]">( ) = el(") . ZK ‘(") Z Kii . wl(l.") +bj; (78)
teE)" {ijer™y
2 If
g~ Y KO W ¥R -al)
] if li ij li
1 {ijer®y
then
max hl(;)(t) = max {hl(;z) (el(f)l) 'hl(;l) (el(n)> } . (79)
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e Suppose that «; is not a linear function of ¢. In order to obtain the zero t* of % (hl(?) (t)), we can
apply the Newton’s method to generate a sequence {t,, }5_; such that t,, — t* as m — co. The

iteration is given by

tmr1 = tm —
L
ar (hlf ( )> ’t:tm
O o) 2. @
- Y Kpwm ) Kyewy 5 @i)],,,
i=1 {ije1™}
B jel; 80)
= e (
a2 (af(t))’t:tm
form = 0,1,2,- - -. The initial guess is ty. Since the real-valued function %(hl(f) (t)) may have

more than one zero, we need to apply the Newton’s method by taking as many as possible for the
initial guess t.

Now, the computational procedure is given below.

Step 1. Set the error tolerance € and the initial value of natural number n € N.
Step 2. Find the optimal objective value V (D, ) and optimal solution w of dual problem (Dy,).

e Step 3. Find the set Z,@ of all zeros of the real-valued function %(h,(f) (t)) by applying the
Newton method given in (80).

e  Step 4. Evaluate the maximum (76) according to (77)—(79), and evaluate the supremum (74)
according to (75).

e  Step 5. Obtain ﬁl(") using (37) and the supremum obtained in Step 4. Also, using the values of
ﬁ,(n) to obtain 711(") according to (38).

e  Step 6. Evaluate the error upper bound ¢, according to (48). If ¢, < €, then go to Step 7; otherwise,
consider one more subdivision for each closed subinterval and set n <— n + # for some integer 7
and go to Step 2, where 7 is the number of new points of subdivisions such that n satisfies (9).
For example, the inequality (10) can be used.

e Step 7. Find the optimal solution z(") of primal problem (P,,).

e  Step 8. Set the step functions (Egn) (t),---, 2‘(7”) (t)) defined in (29), which will be the approximate

solution of problem (RCLP3). The actual error between V(RCLP3) and the objective value of

(EY') (), ,Eén) (t)) is less than or equal to €, by Proposition 5, where the error tolerance € is
reached for this partition Py,.

In the sequel, we present a numerical example that considers the piecewise continuous functions
on the time interval [0, T]. We consider T = 1 and the following problem

1
maximize / [an(t) - 21 () + an(t) - za ()] dt
0
.t
subjectto  Bi1-z1 (t) + Byp - Zz(t) < Cl(t) +/ [Kll -2 (S) + Kjp - 22(5)] dsforallt € [0, 1];
0

t
Byt - 21 (t) + By - Zz(t) < Cz(t) +/0 [K21 -2 (S) + Ky - Zz(S)] dsforallt € [0, 1];

21,22 € L2[0,1] and z1(t), z2(t) € Ry forall t € [0, T].

The uncertainties are assumed below.

The data B, = By; = 0 are assumed to be certain.

The data B; and Bj; are assumed to be uncertain with the nominal data Bg?) =5.9and Bég) =48

and the uncertainties ES) =0.1and Eég) = 0.2, respectively.
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e The data Ky1, Ky», Ky1 and Ky, are assumed to be uncertain with the nominal data K%g) =11,
Kgg) =21, Kg?) =3.1land Kég) = 1.1 and the uncertainties I/<\ij = 0.1fori,j = 1,2, respectively.
e The data a1 and a; are assumed to be uncertain with the nominal data

et +005t, if0<t<02 2t+0.02t, if0<t<05
dV(#) ={ sint+001t, if02<t<06 andal’(t)={ t+001t, if05<t<07
£2+0.02t, if0.6<t<1 240.02t, if0.7<t<1

and the uncertainties

0.05t, if0<t<02 0.02t, if0<t<05
ai(t) =< 001, if02<t<06 and@d(t)={ 001t if05<t<07
0.02t, if0.6<t<1 0.02t, if07 <t<1,

respectively.
e The data c; and ¢, are assumed to be uncertain with the nominal data

3 +0.02¢, f0<t<03 t4+0.01t, f0<t<04
L0 0 (Int)> +0.01t, if03<t<05 and o0 () = 5t +0.02¢, if0.4<t<05
1 2 4+ 0.03t, if05<t<08 2 £ 40.01t, if05<t<0.8
cost+0.01t, if0.8<t<1 2 4+0.02t, if0.8<t<1.

and the uncertainties

0.01¢, f0<t<03 0.01t, if0<t<04
a(t) = 002, #03<t<05 - () = 0.02t, if0.4<t<05
7Y 0.08t, if05<t<08 27 001t if05<t<08

0.01t, if0.8<t<1 0.02t, if0.8<t<1.

From the discontinuities of the above functions and according to the setting of partition, we see
thatr = 8 and

D ={dy=0,d1 =0.2,dy =0.3,d3 =04,dy =0.5,d5 = 0.6,dg = 0.7,d; = 0.8,dg = 1}.

For n* = 2, it means that each closed interval [dy, d,1] is equally divided by two subintervals
forv =0,1,---7. In this case, we have n = 2 - 8 = 16. Therefore, we obtain a partition Pi¢. By the
definitions of desired quantities, we havev =4 and ¢ = ¢* = 5.

Now, in the following Table 1, for different values of n*, we present the error bound ¢,. We
denote by

V(CLP,) Z/ J(tydt— Y /OTa,(t)-f]W(t)dt

jel@

the approximate optimal objective value of problem (RCLP3). Theorem 1 and Proposition 5 say that
0 < V(RCLP3) — V(CLP,) < ¢,

and
0 < V(CLP,) — V(P,) < V(RCLP3) — V(P,) < ¢,.
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Table 1. Numerical Results.

n* n=mn*-8 &n V(P,) V(CLP,)
2 16 0.0608844 0.1245110 0.1351945
10 80 0.0128651 0.1464201 0.1488228
50 400 0.0026014 0.1511276  0.1516192

100 800 0.0013025 0.1517239 0.1519705
200 1600 0.0006517  0.1520228  0.1521462
300 2400 0.0004346 0.1521225 0.1522048
400 3200 0.0003260 0.1521724 0.1522341
500 4000 0.0002608  0.1522023  0.1522517

Suppose that the decision-maker can tolerate the error € = 0.0005. Then, we see that n* = 300 is
sufficient to achieve this error € by referring to the error bound ¢, = 0.0004346. The numerical results
are obtained by using MATLAB in which the active set method is used to solve the primal and dual
linear programming problems (P, ) and (Dj,), respectively. We need to mention that there is a warning
message from MATLAB when the Simplex method is used to solve the dual problem (D) for large n.
However, the MATLAB has no problem solving the primal problem (P;) using Simplex method.

6. Conclusions

The continuous-time linear programming problem with uncertain data has been studied in this
paper. The data mean the real-valued functions or real numbers. Based on the assumption of uncertainty,
we have numerically solved the so-called robust continuous-time linear programming problem.

The robust continuous-time linear programming problem has been formulated as problem (RCLP)
that has also been transformed into the standard continuous-time linear programming problem
(RCLP3). In this paper, we have successfully presented a computational procedure to obtain the error
bound between the approximate objective function value and the optimal objective function value
of problem (RCLP3). In order to design a computational procedure, we introduce a discretization
problem. Based on the solutions obtained from the discretization problem, the error bound has been
derived. We introduce the concept of e-optimal solutions for the purpose of obtaining the approximate
solution. On the other hand, we have also studied the convergence of approximate solutions and have
established the strong duality theorem.

In the future, we are going to extend the computational procedure proposed in this paper to solve
the nonlinear type of robust continuous-time optimization problems, which will be a challenging topic.
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