Article # **Fuzzy Filters of Hoops Based on Fuzzy Points** Mona Aaly Kologani ¹, Mohammad Mohseni Takallo ² and Hee Sik Kim ^{3,*} - ¹ Hatef Higher Education Institute, Zahedan 8301, Iran; mona4011@gmail.com - Department of Mathematics, Shahid Beheshti University, Tehran 7561, Iran; mohammad.mohseni1122@gmail.com - Department of Mathematics, Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea - * Correspondence: heekim@hanyang.ac.kr; Tel.: +82-10-9276-5630 or +82-2-2220-0897 Received: 12 April 2019; Accepted: 6 May 2019; Published: 14 May 2019 **Abstract:** In this paper, we define the concepts of (\in, \in) and $(\in, \in \lor q)$ -fuzzy filters of hoops, discuss some properties, and find some equivalent definitions of them. We define a congruence relation on hoops by an (\in, \in) -fuzzy filter and show that the quotient structure of this relation is a hoop. **Keywords:** sub-hoop; (\in, \in) -fuzzy sub-hoop; (\in, \in) -fuzzy sub-hoop; (\in, \in) -fuzzy filter; (\in, \in) (\in, \in) -fuzzy filter ### 1. Introduction The hoop, which was introduced by Bosbach in [1,2], is naturally-ordered commutative residuated integral monoids. Several properties of hoops are displayed in [3–14]. The idea of the quasi-coincidence of a fuzzy point with a fuzzy set, which was introduced in [15], has played a very important role in generating fuzzy subalgebras of BCK/BCI-algebras, called (α, β) -fuzzy subalgebras of BCK/BCI-algebras, introduced by Jun [16]. Moreover, $(\in, \in \lor q)$ -fuzzy subalgebra is a useful generalization of a fuzzy subalgebra in BCK/BCI-algebras. Many researcher applied the fuzzy structures on logical algebras [17–22]. Now, in this paper, we want to introduce these notions and investigate the existing fuzzy subsystems on hoops. Borzooei and Aaly Kologani in [8] defined the concepts of filters, (positive) implicative and fantastic filters of the hoop, and discussed their properties. Then, they defined a congruence relation on the hoop by a filter and proved that the quotient structure of this relation is a hoop. Finally, they investigated under what conditions that quotient structure will be the Brouwerian semilattice, Heyting algebra, and the Wajsberg hoop. The aim of the paper is to define the concepts of (\in, \in) -fuzzy filters and $(\in, \in \lor q)$ -fuzzy filters of hoops, discuss some properties and find equivalent definitions of them. By using an (\in, \in) -fuzzy filter of hoops, we define a congruence relation on hoops, and we show that the quotient structure of this relation forms a hoop. ### 2. Preliminaries By a *hoop*, we mean an algebraic structure $(H, \odot, \rightarrow, 1)$ in which $(H, \odot, 1)$ is a commutative, monoid and for any $x, y, z \in H$, the following assertions are valid. (H1) $$x \to x = 1$$. (H2) $x \odot (x \to y) = y \odot (y \to x)$. (H3) $x \to (y \to z) = (x \odot y) \to z$ (See [1,2]). For any $x, y \in H$, we can define a relation \le on hoop H by $x \le y$ if and only if $x \to y = 1$. It is easy to see that (H, \le) is a poset. Therefore, in any hoop H, if for any $x \in H$, there exists an element $0 \in H$ such that $0 \le x$, then H is called a *bounded hoop*. Let $x^0 = 1$, $x^n = x^{n-1} \odot x$, for any $n \in \mathbb{N}$. If H Mathematics **2019**, 7, 430 2 of 11 is a bounded hoop, then we define a negation " ' " on H by $x' = x \to 0$, for all $x \in H$. By a *sub-hoop* of a hoop H, we mean a subset S of H that satisfies the condition: $$(\forall x, y \in H)(x, y \in S \implies x \odot y \in S, x \to y \in S). \tag{1}$$ Note that every non-empty sub-hoop contains the element 1. **Proposition 1.** [23] Let $(H, \odot, \rightarrow, 1)$ be a hoop. Then, the following conditions hold, for all $x, y, z \in H$: - (i) (H, \leq) is a meet-semilattice such that $x \wedge y = x \odot (x \rightarrow y)$. - (ii) $x \odot y \le z$ if and only if $x \le y \to z$. - (iii) $x \odot y \le x$, y and $x^n \le x$, for any $n \in \mathbb{N}$. - (iv) $x \leq y \rightarrow x$. - (v) $1 \to x = x \text{ and } x \to 1 = 1.$ - $(vi) \ x \leq (x \rightarrow y) \rightarrow y.$ - (vii) $(x \to y) \odot (y \to z) \le (x \to z)$. - (viii) $x \le y$ implies $x \odot z \le y \odot z$, $z \to x \le z \to y$ and $y \to z \le x \to z$. Let *F* be a non-empty subset of a hoop *H*. Then, *F* is called a *filter* of *H* if, for any $x, y \in F$, $x \odot y \in F$ and, for any $y \in H$ and $x \in F$, if $x \le y$, then $y \in F$ (see [23]). Let *X* be a nonempty set, $x \in X$ and $t \in (0,1]$. The *fuzzy point* with support *x* and value *t* is defined as: $$\mu(y) := \left\{ \begin{array}{ll} t \in (0,1] & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{array} \right.$$ and is denoted by x_t . For a fuzzy point x_t and a fuzzy set λ in a set X, Pu and Liu [15] defined the symbol $x_t \alpha \lambda$, where $\alpha \in \{ \in, q, \in \lor q, \in \land q \}$. This means that, $x_t \in \lambda$ (resp. $x_t q \lambda$) if $\lambda(x) \geq t$ (resp. $\lambda(x) + t > 1$). Then, x_t is said to *belong to* (resp. *be quasi-coincident with*) a fuzzy set λ . Moreover, $x_t \in \lor q \lambda$ (resp. $x_t \in \land q \lambda$) means that $x_t \in \lambda$ or $x_t q \lambda$ (resp. $x_t \in \lambda$ and $x_t q \lambda$). From now one, we let H denote a hoop, unless otherwise specified. # 3. (α, β) -Fuzzy Filters for $(\alpha, \beta) \in \{(\in, \in), (\in, \in \lor q)\}$ In this section, we define (α, β) -fuzzy filters of hoops for $(\alpha, \beta) \in \{(\in, \in), (\in, \in \lor q)\}$, and we investigate some of their properties. Furthermore, we define a congruence relation on hoops by these filters and prove that the corresponding quotients are a bounded hoop. **Definition 1.** *Let* $(\alpha, \beta) \in \{(\in, \in), (\in, \in \lor q)\}$ *. Let* λ *be a fuzzy set of* H. *Then,* λ *is called an* (α, β) *-fuzzy filter of* H *if the following assertions are valid.* $$(\forall x \in H)(\forall t \in (0,1])(x_t \alpha \lambda \Rightarrow 1_t \beta \lambda), \tag{2}$$ $$(\forall x, y \in H)(\forall t, k \in (0,1])(x_t \alpha \lambda, (x \to y)_k \alpha \lambda \Rightarrow y_{\min\{t,k\}} \beta \lambda). \tag{3}$$ **Example 1.** On the set $H = \{0, a, b, 1\}$, we define two operations \odot and \rightarrow on H by: | \rightarrow | 0 | а | b | 1 | \odot | 0 | а | b | 1 | |---------------|---|---|---|---|-------------|---|---|---|---| | 0
a
b | 1 | 1 | 1 | 1 | 0
a
b | 0 | 0 | 0 | 0 | | а | а | 1 | 1 | 1 | а | 0 | 0 | а | а | | b | 0 | а | 1 | 1 | b | 0 | а | b | b | | 1 | 0 | а | b | 1 | 1 | 0 | а | b | 1 | Mathematics 2019, 7, 430 3 of 11 Then, $(H, \odot, \rightarrow, 1)$ is a hoop. Define the fuzzy set λ in H by $\lambda(0) = \lambda(a) = 0.4$, $\lambda(b) = 0.6$, and $\lambda(1) = 0.8$. Then, λ is an (\in, \in) -fuzzy filter of H, and it is clear that λ is an (\in, \in) q)-fuzzy filter of H. **Theorem 1.** A fuzzy set λ in H is an (\in, \in) -fuzzy filter of H if and only if the following conditions hold: $$(\forall x \in H)(\lambda(1) \ge \lambda(x)),\tag{4}$$ $$(\forall x, y \in H)(\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y)\}). \tag{5}$$ **Proof.** Let λ be an (\in, \in) -fuzzy filter of H and $x \in H$ such that $\lambda(x) = t$. Since λ is an (\in, \in) -fuzzy filter of H, by Definition 1, $\lambda(1) \ge t = \lambda(x)$. Therefore, $\lambda(1) \ge \lambda(x)$. Now, let $x, y \in H$. If $\lambda(x) = t$ and $\lambda(x \to y) = k$, then $x_t \in \lambda$ and $(x \to y)_k \in \lambda$. Since λ is an (\in, \in) -fuzzy filter of H, we have $y_{\min\{t,k\}} \in \lambda$, so: $$\lambda(y) \ge \min\{t, k\} = \min\{\lambda(x), \lambda(x \to y)\}\$$ Conversely, suppose $x \in H$ and $t \in (0,1]$. If $x_t \in \lambda$, then $\lambda(x) \ge t$. Since $\lambda(1) \ge \lambda(x)$, we have $\lambda(1) \ge t$, and so, $1_t \in \lambda$. Furthermore, if $x_t \in \lambda$ and $(x \to y)_k \in \lambda$, then by assumption, $$\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y)\} \ge \min\{t, k\}$$ Hence, $y_{\min\{t,k\}} \in \lambda$. Therefore, λ is an (\in, \in) -fuzzy filter of H. \square **Proposition 2.** *If* λ *is an* (\in, \in) *-fuzzy filter of* H, *then the following statement holds.* $$(\forall x, y \in H)(x \le y \implies \lambda(x) \le \lambda(y)). \tag{6}$$ **Proof.** Let $x, y \in H$ such that $x \le y$. Therefore, it is clear that $x \to y = 1$. Since λ is an (\in, \in) -fuzzy filter of H, by Theorem 1, $\lambda(1) \ge \lambda(x)$ and $\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y)\}$, for any $x, y \in H$. Then: $$\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y)\} = \min\{\lambda(x), \lambda(1)\} = \lambda(x)$$ Hence, $\lambda(y) \geq \lambda(x)$. \square **Theorem 2.** A fuzzy set λ in H is an (\in, \in) -fuzzy sub-hoop of H such that, for any $x \in H$, $\lambda(x) \leq \lambda(1)$. Then, for any $x, y, z \in H$, the following statements are equivalent: - (i) λ is an (\in, \in) -fuzzy filter of H, - (ii) if $(x \to y)_t \in \lambda$ and $(y \to z)_k \in \lambda$, then $(x \to z)_{\min\{t,k\}} \in \lambda$, - (iii) if $(x \to y)_t \in \lambda$ and $(x \odot z)_k \in \lambda$, then $(y \odot z)_{\min\{t,k\}} \in \lambda$. **Proof.** $(i) \Rightarrow (ii)$ Let λ be an (\in, \in) -fuzzy filter of H such that $(x \to y)_t \in \lambda$ and $(y \to z)_k \in \lambda$. Then, $\lambda(x \to y) \ge t$ and $\lambda(y \to z) \ge k$. By Proposition 1(vii), $x \to y \le (y \to z) \to (x \to z)$. Then, by Proposition 2, $$\lambda(x \to y) \le \lambda((y \to z) \to (x \to z))$$ Since $(x \to y)_t \in \lambda$, we have $((y \to z) \to (x \to z))_t \in \lambda$. Thus, by (i), $$\begin{aligned} \min\{t,k\} & \leq & \min\{\lambda(x \to y), \lambda(y \to z)\} \\ & \leq & \min\{\lambda((y \to z) \to (x \to z)), \lambda(y \to z)\} \\ & \leq & \lambda(x \to z) \end{aligned}$$ Hence, $(x \to z)_{\min\{t,k\}} \in \lambda$. - $(ii) \Rightarrow (i)$ It is enough to let x = 1. - $(i) \Rightarrow (iii)$ Let λ be an (\in, \in) -fuzzy filter of H such that $(x \to y)_t \in \lambda$ and $(x \odot z)_k \in \lambda$. Then, Mathematics 2019, 7, 430 4 of 11 by Proposition 1(vi), $z \odot x \odot (x \to y) \le z \odot y$. Thus, $x \to y \le (z \odot x) \to (z \odot y)$. By Proposition 2, $\lambda(x \to y) \le \lambda((z \odot x) \to (z \odot y))$, so: $$\min\{t,k\} \leq \min\{\lambda(x \to y), \lambda(z \odot x)\}$$ $$\leq \min\{\lambda(z \odot x), \lambda((z \odot x) \to (z \odot y))\}$$ $$\leq \lambda(z \odot y)$$ Hence, $(y \odot z)_{\min\{t,k\}} \in \lambda$. (iii) \Rightarrow (i) It is enough to let z = 1. \square **Theorem 3.** Let λ be an (\in, \in) -fuzzy filter of H, $x, y \in H$, and $t \in (0,1]$. Define: $$x \equiv_{\lambda} y$$ if and only if $(x \to y)_t \in \lambda$ and $(y \to x)_t \in \lambda$ *Then,* \equiv_{λ} *is a congruence relation on H.* **Proof.** It is clear that \equiv_{λ} is reflexive and symmetric. Now, we prove that \equiv_{λ} is transitive. For this, suppose $x \equiv_{\lambda} y$ and $y \equiv_{\lambda} z$. Then, there exists $t, m \in (0,1]$ such that $(x \to y)_t \in \lambda$ and $(y \to x)_t \in \lambda$, and also, $(y \to z)_m \in \lambda$ and $(z \to y)_m \in \lambda$. By Proposition 1(vii), $x \to y \le (y \to z) \to (x \to z)$, and by Proposition 2, we have: $$\begin{aligned} \min\{t,m\} & \leq & \min\{\lambda(x \to y), \lambda(y \to z)\} \\ & \leq & \min\{\lambda(y \to z), \lambda((y \to z) \to (x \to z))\} \\ & \leq & \lambda(x \to z) \end{aligned}$$ Hence, $(x \to z)_{\min\{t,m\}} \in \lambda$. In a similar way, we get that: $$\min\{t, m\} \leq \min\{\lambda(z \to y), \lambda(y \to x)\}$$ $$\leq \min\{\lambda(y \to x), \lambda((y \to x) \to (z \to x))\}$$ $$\leq \lambda(z \to x)$$ Hence, $(z \to x)_{\min\{t,m\}} \in \lambda$. Therefore, $x \equiv_{\lambda} z$. Suppose that $x \equiv_{\lambda} y$. We show that $x \odot z \equiv_{\lambda} y \odot z$, for any $x,y,z \in H$. Since $x \equiv_{\lambda} y$, for any $t \in (0,1]$, we have $(x \to y)_t \in \lambda$ and $(y \to x)_t \in \lambda$. Since $y \odot z \le y \odot z$, $y \le z \to (y \odot z)$. By Proposition 1(viii), $x \to y \le x \to (z \to (y \odot z))$, and so, $x \to y \le (x \odot z) \to (y \odot z)$. Since λ is an (\in, \in) -fuzzy filter of H, by Proposition 2, we have: $$t \le \lambda(x \to y) \le \lambda((x \odot z) \to (y \odot z))$$ Hence, $((x \odot z) \to (y \odot z))_t \in \lambda$. In a similar way, since $x \odot z \le x \odot z$, we get $x \le z \to (x \odot z)$. By Proposition 1(viii), $y \to x \le y \to (z \to (x \odot z))$, and so, $y \to x \le (y \odot z) \to (y \odot z)$. Since λ is an (\in, \in) -fuzzy filter of H, by Proposition 2, we have: $$t < \lambda(y \to x) < \lambda((y \odot z) \to (x \odot z))$$ Hence, $((y \odot z) \to (x \odot z))_t \in \lambda$. Therefore, $x \odot z \equiv_{\lambda} y \odot z$. Finally, suppose that $x \equiv_{\lambda} y$; we show that $x \to z \equiv_{\lambda} y \to z$, for any $x, y, z \in H$. Since $x \equiv_{\lambda} y$, for any $t \in (0, 1]$, we have $(x \to y)_t \in \lambda$ and $(y \to x)_t \in \lambda$. By Proposition 1(vii) and Proposition 2, $$t < \lambda(x \to y) < \lambda((y \to z) \to (x \to z))$$ Mathematics **2019**, 7, 430 5 of 11 and: $$t \le \lambda(y \to x) \le \lambda((x \to z) \to (y \to z))$$ Hence, $x \to z \equiv_{\lambda} y \to z$. It is easy to see that $z \to x \equiv_{\lambda} z \to y$. Therefore, \equiv_{λ} is a congruence relation on H. \square **Theorem 4.** Let $\frac{H}{\equiv_{\lambda}} = \{[a]_{\lambda} \mid a \in H\}$, and operations \otimes and \leadsto on $\frac{H}{\equiv_{\lambda}}$ are defined as follows: $$[a]_{\lambda}\otimes [b]_{\lambda}=[a\odot b]_{\lambda}$$ and $[a]_{\lambda}\leadsto [b]_{\lambda}=[a o b]_{\lambda}$ Then, $(\frac{H}{\equiv_{\lambda}}, \otimes, \leadsto, [1]_{\lambda})$ is a hoop. **Proof.** We have $[a]_{\lambda} = [b]_{\lambda}$ and $[c]_{\lambda} = [d]_{\lambda}$ if and only if $a \equiv_{\lambda} b$ and $c \equiv_{\lambda} d$. Since \equiv_{λ} is the congruence relation on H, then all above operations are well-defined. Thus, by routine calculation, we can see that $\frac{H}{\equiv_{\lambda}}$ is a hoop. \square Now, we define a relation on $\frac{H}{\equiv_{\lambda}}$ by: $$[a]_{\lambda} \leq [b]_{\lambda}$$ if and only if $(a \to b)_t \in \lambda$, for any $a, b \in H$ and $t \in (0,1]$ It is easy to see that $(\frac{H}{\equiv_{\lambda}}, \leq)$ is a poset. Note: According to the definition of the congruence relation, it is clear that: $$[1]_{\lambda} = \{a \in H \mid (a \to 1)_t \in \lambda \text{ and } (1 \to a)_t \in \lambda\} = \{a \in H \mid a_t \in \lambda\}.$$ Therefore, as we define a relation on quotient, $[a]_{\lambda} \leq [b]_{\lambda}$ if and only if $(a \to b)_t \in \lambda$, it is similar to writing $[a]_{\lambda} \leq [b]_{\lambda}$ if and only if $[a]_{\lambda} \to [b]_{\lambda} \in [1]_{\lambda}$. **Theorem 5.** *If* λ *is a non-zero* (\in, \in) -*fuzzy filter of* H, *then the set:* $$H_0 := \{ x \in H \mid \lambda(x) \neq 0 \} \tag{7}$$ is a filter of H. **Proof.** Let $x \in H_0$. Since $\lambda(x) \neq 0$, we conclude that there exists $t \in (0,1]$ such that $\lambda(x) \geq t$. Moreover, from λ being an (\in, \in) -fuzzy filter of H, by Definition 1, $x_t \in \lambda$, then $1_t \in \lambda$. Hence, $\lambda(1) \geq \lambda(x) = t \neq 0$, and so, $1 \in H_0$. Now, suppose that $x, x \to y \in H_0$. Then, there exist $t, k \in (0,1]$, such that $\lambda(x) \geq t$ and $\lambda(x \to y) \geq k$, and so, $x_t \in \lambda$ and $(x \to y)_k \in \lambda$. Thus, by Definition 1, $y_{\min\{t,k\}} \in \lambda$, and so, $\lambda(y) \geq \min\{t,k\} \neq 0$. Hence, $y \in H_0$. Therefore, H_0 is a filter of H. \square **Proposition 3.** *If* λ *is a non-zero* $(\in, \in \lor q)$ *-fuzzy filter of* H*, then* $\lambda(1) > 0$. **Proof.** Let $\lambda(1) = 0$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, by Theorem 1, for any $x \in H$, $\lambda(x) \le \lambda(1) = 0$. Hence, for any $x \in H$, $\lambda(x) = 0$, and so, λ is a zero $(\in, \in \lor q)$ -fuzzy filter of H, which is a contradiction. Therefore, $\lambda(1) > 0$. \square **Theorem 6.** For any filter F of H and $t \in (0,0.5]$, there exists an $(\in, \in \lor q)$ -fuzzy filter λ of H such that its \in -level set is equal to F. **Proof.** Let $t \in (0,0.5]$ and $\lambda : H \to [0,1]$ be defined by $\lambda(x) = t$, for any $x \in F$, and $\lambda(x) = 0$, otherwise. By this definition, it is clear that $U(\lambda;t) = F$. Therefore, it is enough to prove that λ is an $(\in, \in \lor q)$ -fuzzy filter of H. Let $x \in H$. Then, $\lambda(x) = 0$ or $\lambda(x) = t$. Since F is a filter of H and $1 \in F$, we have $t = \lambda(1) \ge \lambda(x)$, for any $x \in H$. Now, suppose that $x_t \in \lambda$ and $(x \to y)_k \in \lambda$. We consider Mathematics 2019, 7, 430 6 of 11 the following cases: <u>Case 1:</u> If $\lambda(x) = t$ and $\lambda(x \to y) = t$, then $x, x \to y \in F$. Since F is a filter of H, we have $y \in F$, and so, $\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y)\} = t$. Hence, $y_t \in \lambda$. Therefore, λ is an $(\in, \in \lor q)$ -fuzzy filter of H. <u>Case 2:</u> If $\lambda(x) = t$ and $\lambda(x \to y) = 0$, then it is clear that: $$\lambda(y) \ge \min{\{\lambda(x), \lambda(x \to y)\}} = 0$$ Hence, $y_0 \in \lambda$. Therefore, λ is an $(\in, \in \lor q)$ -fuzzy filter of H. Case 3: If $\lambda(x) = 0$ and $\lambda(x \to y) = 0$, then it is clear that: $$\lambda(y) \ge \min{\{\lambda(x), \lambda(x \to y)\}} = 0$$ Hence, $y_0 \in \lambda$. Therefore, λ is an $(\in, \in \lor q)$ -fuzzy filter of H. Therefore, in all cases, λ is an $(\in, \in \lor q)$ -fuzzy filter of H and $U(\lambda; t) = F$. \square For any fuzzy set λ in H and $t \in (0,1]$, we define three sets that are called the \in -level set, q-set, and $\in \vee q$ -set, respectively, as follows. $$U(\lambda;t) := \{x \in H \mid \lambda(x) \ge t\}.$$ $$\lambda_q^t := \{x \in H \mid x_t \, q \, \lambda\}.$$ $$\lambda_{\in \vee q}^t := \{x \in H \mid x_t \in \vee q\lambda\}.$$ **Theorem 7.** Given a fuzzy set λ in H, the following statements are equivalent. - (i) The nonempty \in -level set $U(\lambda;t)$ of λ is a filter of H, for all $t \in (0.5,1]$. - (ii) λ satisfies the following assertions. $$(\forall x \in H)(\lambda(x) \le \max\{\lambda(1), 0.5\}). \tag{8}$$ $$(\forall x, y \in H)(\max\{\lambda(y), 0.5\} \ge \min\{\lambda(x \to y), \lambda(x)\}). \tag{9}$$ **Proof.** Let $x \in H$ and $t \in (0.5,1]$ such that $\lambda(x) = t$. Then, $x \in U(\lambda;t)$. Since $U(\lambda;t)$ is a filter of H, $1 \in U(\lambda;t)$. Thus, $\lambda(1) \geq t$. Moreover, since $t \in (0.5,1]$, we have $\max\{\lambda(1),0.5\} \geq \lambda(1) \geq t = \lambda(x)$. Hence, $\max\{\lambda(1),0.5\} \geq \lambda(x)$. Now, suppose $x,y \in H$ and $t,k \in (0.5,1]$ such that $\lambda(x) = t$ and $\lambda(x \to y) = k$. Then, $x,x \to y \in U(\lambda;\min\{t,k\})$. Since $U(\lambda;\min\{t,k\})$ is a filter of H, we have $y \in U(\lambda;\min\{t,k\})$. Thus, $\lambda(y) \geq \min\{t,k\}$. From $t,k \in (0.5,1]$, we conclude that, $$\max\{\lambda(y), 0.5\} \ge \min\{t, k\} = \min\{\lambda(x), \lambda(x \to y)\}\$$ Hence, $$\max\{\lambda(y), 0.5\} \ge \min\{\lambda(x), \lambda(x \to y)\}$$ Conversely, let $x \in U(\lambda; t)$. Then, $\lambda(x) \ge t$. Since $t \in (0.5, 1]$, by assumption: $$t \le \lambda(x) \le \max\{\lambda(1), 0.5\} = \lambda(1)$$ Thus, $\lambda(1) \ge t$, so $1 \in U(\lambda; t)$. Now, suppose that $x, x \to y \in U(\lambda; t)$, for any $x, y \in H$ and $t \in (0.5, 1]$. Then, $\lambda(x) \ge t$ and $\lambda(x \to y) \ge t$. By assumption, $$\max\{\lambda(y), 0.5\} \ge \min\{\lambda(x \to y), \lambda(x)\} \ge t$$ Since $t \in (0.5, 1]$, we have $\lambda(y) \ge t$, so $y \in U(\lambda; t)$. Hence, $U(\lambda; t)$ is a filter of H. \square It is clear that every (\in, \in) -fuzzy filter of H is an $(\in, \in \lor q)$ -fuzzy filter of H. However, the converse may not be true, in general. Mathematics 2019, 7, 430 7 of 11 **Example 2.** On the set $H = \{0, a, b, c, d, 1\}$, we define two operations \odot and \rightarrow as follows: | \rightarrow | 0 | а | b | С | d | 1 | \odot | 0 | а | b | С | d | 1 | |---------------|---|---|---|---|---|---|---------|---|---|---|---|---|---| | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | а | c | 1 | b | С | b | 1 | а | 0 | а | d | 0 | d | а | | b | d | а | 1 | b | а | 1 | b | 0 | d | С | С | 0 | b | | С | | | | | | | С | 0 | 0 | С | С | 0 | c | | d | | | | | | | d | | | | | | | | 1 | 0 | а | b | С | d | 1 | 1 | 0 | а | b | С | d | 1 | By routine calculations, it is clear that $(H, \odot, \rightarrow, 0, 1)$ is a bounded hoop. Define a fuzzy set λ in H as follows: $$\lambda: H \to [0,1], \ x \mapsto \begin{cases} 0.1 \text{ if } x = 0, \\ 0.1 \text{ if } x = a, \\ 0.2 \text{ if } x = b, \\ 0.3 \text{ if } x = c, \\ 0.1 \text{ if } x = d, \\ 0.5 \text{ if } x = 1 \end{cases}$$ It is easy to see that λ is an $(\in, \in \lor q)$ -fuzzy filter of hoop H, but it is not an $(\in, \in \lor q)$ -fuzzy filter of H; because: $$0.2 = \lambda(b) \not\ge \min\{\lambda(c), \lambda(c \to b)\} = \min\{\lambda(c), \lambda(1)\} = \min\{0.3, 0.5\} = 0.3$$ *However, it is not an* (\in, \in) *-fuzzy filter of H.* Now, we investigate under which conditions any $(\in, \in \lor q)$ -fuzzy filter is an (\in, \in) -fuzzy filter. **Theorem 8.** *If an* $(\in, \in \lor q)$ *-fuzzy filter* λ *of* H *satisfies the condition:* $$(\forall x \in H)(\lambda(x) < 0.5),\tag{10}$$ then λ is an (\in, \in) -fuzzy filter of H. **Proof.** Let $x_t \in \lambda$, for any $x \in H$ and $t \in (0,0.5)$. Since λ is an $(\in, \in \vee q)$ -fuzzy filter of H, by Definition 1, $1_t \in \lambda$ or $1_t q \lambda$. If $1_t \in \lambda$, then the proof is clear. If $1_t q \lambda$, then $\lambda(1) + t > 1$. Since $t \in (0,0.5)$, $1-t \in [0.5,1]$, then $\lambda(1) > t$. Hence, $1_t \in \lambda$. Now, suppose that $x_t \in \lambda$ and $(x \to y)_k \in \lambda$. From λ is an $(\in, \in \vee q)$ -fuzzy filter of H, by Definition 1, $y_{\min\{t,k\}} \in \lambda$ or $y_{\min\{t,k\}} \in \lambda$. If $y_{\min\{t,k\}} \in \lambda$, then the proof is complete. However, if $y_{\min\{t,k\}} q \lambda$, then $\lambda(y) + \min\{t,k\} > 1$, and so, $\lambda(y) > 1 - \min\{t,k\}$. Since $t \in (0,0.5)$, we have $1 - \min\{t,k\} \in [0.5,1]$, and so, $\lambda(y) > \min\{t,k\}$. Then, $y_{\min\{t,k\}} \in \lambda$. Therefore, λ is an (\in, \in) -fuzzy filter of H. \square **Theorem 9.** *If* λ *is an* $(\in, \in \lor q)$ -fuzzy filter of H, then the q-set λ_q^t is a filter of H, for all $t \in (0.5, 1]$. **Proof.** Let $x \in \lambda_q^t$, for any $x \in H$ and $t \in (0.5,1]$. Then, $\lambda(x) + t > 1$, and so, $\lambda(x) > 1 - t$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, by Definition 1, we have $1_{1-t} \in \lambda$ or $1_{1-t}q\lambda$. If $1_{1-t}q\lambda$, then it is clear that $\lambda(1) > t$. Since $t \in (0.5,1]$, we have $\lambda(1) + t > 2t > 1$, and so, $1 \in \lambda_q^t$. If $1_{1-t} \in \lambda$, then $\lambda(1) \ge 1 - t$, and so, $\lambda(1) + t > 1$. Thus, in both cases, $1 \in \lambda_q^t$. Now, suppose that $x, x \to y \in \lambda_q^t$, for any $x, y \in H$ and $t \in (0.5,1]$. Then, $\lambda(x) + t > 1$ and $\lambda(x \to y) + t > 1$, and so, $\lambda(x) > 1 - t$ and $\lambda(x \to y) > 1 - t$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, by Definition 1, we have $y_{\min\{1-t,1-t\}} \in \lambda$ or $y_{\min\{1-t,1-t\}}q\lambda$. If $y_{1-t} \in \lambda$, then $\lambda(y) > 1 - t$, and so, $\lambda(y) + t > 1$. If $y_{1-t}q\lambda$, then $\lambda(y) + 1 - t > 1$, and so, $\lambda(y) > t$. Since $t \in (0.5,1]$, we have $\lambda(y) + t > 2t > 1$. Hence, in both cases, $y \in \lambda_q^t$. Therefore, λ_q^t is a filter of H, for any $t \in (0.5,1]$. \square Mathematics 2019, 7, 430 8 of 11 **Theorem 10.** A fuzzy set λ in H is an $(\in, \in \lor q)$ -fuzzy filter of H if and only if the following assertion is valid. $$(\forall x, y \in H) \left(\begin{array}{c} \lambda(1) \ge \min\{\lambda(x), 0.5\} \\ \lambda(y) \ge \min\{\lambda(x), \lambda(x \to y), 0.5\} \end{array} \right). \tag{11}$$ **Proof.** Let $x_t \in \lambda$, for any $x \in H$ and $t \in (0,1]$. Since λ is an $(\in, \in \vee q)$ -fuzzy filter of H, we have $1_t \in \lambda$ or $1_t q \lambda$. It means that $\lambda(1) \geq t$ or $\lambda(1) > 1 - t$. Therefore, $\lambda(1) \geq \min\{\lambda(x), 0.5\}$. In a similar way, if $x_t \in \lambda$ and $(x \to y)_k \in \lambda$, for any $x, y \in H$ and $t, k \in (0,1]$, since λ is an $(\in, \in \vee q)$ -fuzzy filter of H, then we have $y_{\min\{t,k\}} \in \lambda$ or $y_{\min\{t,k\}} q \lambda$. This means that $\lambda(y) \geq \min\{t,k\}$ or $\lambda(1) > \min\{1 - t, 1 - k\}$. Therefore, $\lambda(y) \geq \min\{\lambda(x), \lambda(x \to y), 0.5\}$. Conversely, let $x_t \in \lambda$, for any $t \in (0,1]$ and $x \in H$. Then, by assumption, we have $\lambda(1) \geq \min\{\lambda(x), 0.5\}$. If $t \in (0,0.5]$, then $\lambda(1) \geq \lambda(x) = t$, and so, $\lambda(1) + t > t + 0.5 > 1$; thus, $\lambda(1) \geq t = t$. Now, suppose that $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Then, by assumption, we have $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Now, suppose that $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Now, suppose that $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Then, by assumption, we have $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Then, by assumption, we have $\lambda(1) \geq t = t$. If $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$ and $\lambda(1) \geq t = t$. Then, by assumption, we have $\lambda(1) \geq t = t$. $$\lambda(y) \ge \min\{\lambda(x), \lambda(x \to y), 0.5\} = \min\{t, k\}$$ Hence, $y_{\min\{t,k\}} \in \lambda$. If $t, k \in (0.5, 1]$, then: $$\lambda(y) \ge \min{\{\lambda(x), \lambda(x \to y), 0.5\}} = 0.5$$ Therefore, $\lambda(y) + \min\{t, k\} > \min\{t, k\} + 0.5 > 1$. Thus, $y_{\min\{t, k\}} q \lambda$. Hence, $y_{\min\{t, k\}} \in \forall q \lambda$. Therefore, λ is an $(\in, \in \forall q)$ -fuzzy filter of H. \square **Theorem 11.** A fuzzy set λ in H is an $(\in, \in \lor q)$ -fuzzy filter of H if and only if the non-empty \in -level set $U(\lambda;t)$ of λ is a filter of H, for all $t \in (0,0.5]$. **Proof.** Let λ be an $(\in, \in \lor q)$ -fuzzy filter of H and $x \in U(\lambda;t)$, for any $t \in (0,0.5]$. Then, $\lambda(x) \geq t$, and so, $x_t \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, $1_t \in \lambda$ or $1_t q \lambda$. If $1_t \in \lambda$, then it is clear that $1 \in U(\lambda;t)$, and if $1_t q \lambda$, then $\lambda(1) > 1 - t$. Since $t \in (0,0.5]$, $1 - t \in (0.5,1]$, so $\lambda(1) > 1 - t > t$. Thus, $1 \in U(\lambda;t)$. Now, suppose that $x, x \to y \in U(\lambda;t)$, then $\lambda(x) \geq t$ and $\lambda(x \to y) \geq t$, and so, $x_t \in \lambda$ and $(x \to y)_t \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, $y_t \in \lambda$ or $y_t q \lambda$. If $y_t \in \lambda$, then it is clear that $y \in U(\lambda;t)$, and if $y_t q \lambda$, then $\lambda(y) > 1 - t$. Since $t \in (0,0.5]$, $1 - t \in (0.5,1]$, so $\lambda(y) > 1 - t > t$. Thus, $y \in U(\lambda;t)$. Therefore, $U(\lambda;t)$ is a filter of H, for any $t \in (0,0.5]$. Conversely, suppose $U(\lambda;t)$ is a filter of H and $x_t \in \lambda$, for any $x \in H$ and $t \in (0,0.5]$. Then, $\lambda(x) \geq t$, so $x \in U(\lambda;t)$. Since $U(\lambda;t)$ is a filter of H, $1 \in U(\lambda;t)$, so $\lambda(1) \geq t$. Hence, $1_t \in \lambda$, and so, $1_t \in \forall q\lambda$. Now, let $x_t \in \lambda$ and $(x \to y)_k \in \lambda$, for any $x,y \in H$ and $t,k \in (0,0.5]$. Then, $\lambda(x) \geq t$ and $\lambda(x \to y) \geq k$, and so, $x,x \to y \in U(\lambda;\min\{t,k\})$. Since $U(\lambda;t)$ is a filter of H, $y \in U(\lambda;\min\{t,k\})$, and so, $\lambda(y) \geq \min\{t,k\}$. Hence, $y_{\min\{t,k\}} \in \lambda$. Therefore, $y_{\min\{t,k\}} \in \forall q\lambda$. Therefore, λ is an $(\in, \in \forall q)$ -fuzzy filter of H, for any $t \in (0,0.5]$. \square **Theorem 12.** A fuzzy set λ in H is an $(\in, \in \lor q)$ -fuzzy filter of H if and only if the following assertion is valid. $$(\forall x, y \in H) \left(\begin{array}{c} \lambda(x \odot y) \ge \min\{\lambda(x), \lambda(y), 0.5\} \\ x \le y \Rightarrow \lambda(y) \ge \min\{\lambda(x), 0.5\} \end{array} \right). \tag{12}$$ **Proof.** Assume that λ is an $(\in, \in \lor q)$ -fuzzy filter of H and $x,y \in H$. Then, by Theorem 11, $U(\lambda;t)$ is a filter of H, for any $t \in (0,0.5]$. If $x,y \in U(\lambda;t)$ and $t \in (0,0.5]$, then $x \odot y \in U(\lambda;t)$. Thus, $\lambda(x \odot y) \ge t = \min\{\lambda(x), \lambda(y)\}$. If $t \in (0.5,1]$, it is clear that $\lambda(x \odot y) \ge \min\{\lambda(x), \lambda(y), 0.5\}$. Now, suppose $x \le y$. If $\lambda(x) \ge t$ and $t \in (0,0.5]$, then $x \in U(\lambda;t)$. Since $U(\lambda;t)$ is a filter of H, $y \in U(\lambda;t)$. Thus, $\lambda(y) \ge \lambda(x)$, for $t \in (0,0.5]$. If $t \in (0.5,1]$, then $\lambda(y) \ge \min\{\lambda(x), 0.5\}$. Mathematics 2019, 7, 430 9 of 11 Conversely, let λ be a fuzzy set in H that satisfies the condition (12). Since $x \le 1$ for all $x \in H$, we have $\lambda(1) \ge \min\{\lambda(x), 0.5\}$ for all $x \in H$. Since $x \odot (x \to y) \le y$ for all $x, y \in H$, we get: $$\lambda(y) \ge \min\{\lambda(x \odot (x \to y)), 0.5\}$$ $$\ge \min\{\min\{\lambda(x), \lambda(x \to y), 0.5\}, 0.5\}$$ $$= \min\{\lambda(x), \lambda(x \to y), 0.5\}$$ for all $x, y \in H$. It follows from Theorem 10 that λ is an $(\in, \in \lor q)$ -fuzzy filter of H. \square **Theorem 13.** A fuzzy set λ in H is an $(\in, \in \lor q)$ -fuzzy filter of H if and only if $\lambda_{\in \lor q}^t$ is a filter of H, for all $t \in (0,1]$ (we call $\lambda_{\in \lor q}^t$ an $\in \lor q$ -level filter of λ). **Proof.** Let λ be an $(\in, \in \lor q)$ -fuzzy filter of H and $x \in \lambda_{\in \lor q}^t$, for any $x \in H$ and $t \in (0,1]$. Then, $x \in U(\lambda;t)$ or $x \in \lambda_q^t$. This means that $x_t \in \lambda$ or $x_{1-t} \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, we have, if $x_t \in \lambda$, then $1_t \in \lambda$ or $1_t q \lambda$. Furthermore, if $x_{1-t} \in \lambda$, then $1_{1-t} \in \lambda$ or $x_{1-t} q \lambda$; this means that $x_t q \lambda$ or $x_t \in \lambda$. Hence, in both cases, $1_t \in \lor q \lambda$, and so, $1 \in \lambda_{\in \lor q}^t$. In a similar way, let $x, x \to y \in \lambda_{\in \lor q}^t$, for $x, y \in H$ and $t \in (0,1]$. Then, $x, x \to y \in U(\lambda;t)$ or $x, x \to y \in \lambda_q^t$ or $x \in U(\lambda;t)$ and $x \to y \in \lambda_q^t$. Therefore, we have the following cases: <u>Case 1:</u> if $x, x \to y \in U(\lambda; t)$, then $x_t \in \lambda$ and $(x \to y)_t \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, $y_t \in \lambda$ or $y_t q \lambda$. Therefore, $y \in \lambda_{\in \lor q}^t$. <u>Case 2:</u> if $x, x \to y \in \lambda_q^t$, then $x_{1-t} \in \lambda$ and $(x \to y)_{1-t} \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, $y_{1-t} \in \lambda$ or $y_{1-t}q\lambda$. It is equivalent to $y_tq\lambda$ or $y_t \in \lambda$, respectively. Therefore, $y \in \lambda_{\in \lor q}^t$. <u>Case 3:</u> if $x \in U(\lambda;t)$ and $x \to y \in \lambda_q^t$, then $x_t \in \lambda$ and $(x \to y)_{1-t} \in \lambda$. Since λ is an $(\in, \in \vee q)$ -fuzzy filter of H, $\lambda(y) \ge \min\{1-t,t\}$, and so, it is equal to $y_t \in \lambda$ or $y_t q \lambda$. Thus, in both cases, $y \in \lambda_{\in \vee q}^t$. Therefore, $\lambda_{\in \vee q}^t$ is a filter of H. Conversely, let $x_t \in \lambda$, for any $x \in H$ and $t \in (0,1]$. Since $\lambda_{\in \vee q}^t$ is a filter of H, $1 \in \lambda_{\in \vee q}^t$. Then, $1_t \in \vee q\lambda$. Now, suppose that $x_t \in \lambda$ and $(x \to y)_k \in \lambda$, for any $x, y \in H$ and $t, k \in (0,1]$. Then, it is clear that $x, x \to y \in \lambda_{\in \vee q}^{\min\{t,k\}}$. Since $\lambda_{\in \vee q}^t$ is a filter of H, $y \in \lambda_{\in \vee q}^{\min\{t,k\}}$. Therefore, $y_{\min\{t,k\}} \in \lambda$ or $y_{\min\{t,k\}}q\lambda$. Hence, $y_{\min\{t,k\}} \in \vee q\lambda$. Therefore, λ is an $(\in, \in \vee q)$ -fuzzy filter of H. \square **Theorem 14.** *Let* $f: H \to K$ *be a homomorphism of hoops. If* λ *and* μ *are* $(\in, \in \lor q)$ *-fuzzy filters of* H *and* K*, respectively, then:* - (i) $f^{-1}(\mu)$ is an $(\in, \in \lor q)$ -fuzzy filter of H. - (ii) If f is onto and λ satisfies the condition: $$(\forall T \subseteq H)(\exists x_0 \in T) \left(\lambda(x_0) = \sup_{x \in T} \lambda(x)\right), \tag{13}$$ then $f(\lambda)$ is an $(\in, \in \lor q)$ -fuzzy filter of K. **Proof.** (*i*) Let $x_t \in f^{-1}(\mu)$, for any $x \in H$ and $t \in (0,1]$. Then, $f(x)_t \in \mu$. Since μ is an $(\in, \in \lor q)$ -fuzzy filter of H, we have $f(1)_t \in \lor q\mu$. Thus, $1_t \in \lor qf^{-1}(\mu)$. Now, suppose $x_t \in f^{-1}(\mu)$ and $(x \to y)_k \in f^{-1}(\mu)$, for any $x, y \in H$ and $t, k \in (0,1]$. Then, $f(x)_t \in \mu$ and $f(x \to y)_k \in \mu$. Since μ is an $(\in, \in \lor q)$ -fuzzy filter of H, we have $f(y)_{\min\{t,k\}} \in \lor q\mu$. Hence, $y_{\min\{t,k\}} \in \lor qf^{-1}(\mu)$. Therefore, $f^{-1}(\mu)$ is an $(\in, \in \lor q)$ -fuzzy filter of H. (ii) Let $a \in K$ and $t \in (0,1]$ be such that $a_t \in f(\lambda)$. Then, $(f(\lambda))(a) \ge t$. By assumption, there exists $x \in f^{-1}(a)$ such that $\lambda(x) = \sup_{z \in f^{-1}(a)} \lambda(z)$. Then, $x_t \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, we have $1_t \in \lambda$. Now, $1 \in f^{-1}(1)$, so $(f(\lambda))(1) \ge \lambda(1)$, then $(f(\lambda))(1) \ge t$ or $(f(\lambda))(1) + t > 1$. Thus, $1_t \in \lor qf(\lambda)$. In a similar way, let $a, a \to b \in K$ and $t, k \in (0, 1]$ be such that $a_t \in f(\lambda)$ and $(a \to b)_k \in f(\lambda)$. Then, $(f(\lambda))(a) \ge t$ and $(f(\lambda))(a \to b) \ge k$. By assumption, there exist $x \in f^{-1}(a)$ Mathematics 2019, 7, 430 10 of 11 and $x \to y \in f^{-1}(a \to b)$ such that $\lambda(x) = \sup_{z \in f^{-1}(a)} \lambda(z)$ and $\lambda(x \to y) = \sup_{w \in f^{-1}(a \to b)} \lambda(w)$. Then, $x_t \in \lambda$ and $(x \to y)_k \in \lambda$. Since λ is an $(\in, \in \lor q)$ -fuzzy filter of H, we have $y_{\min\{t,k\}} \in \lambda$. Now, $y \in f^{-1}(y)$, so $(f(\lambda))(y) \ge \lambda(y)$, then $(f(\lambda))(y) \ge \min\{t,k\}$ or $(f(\lambda))(y) + \min\{t,k\} > 1$. Thus, $y_{\min\{t,k\}} \in \lor qf(\lambda)$. \square **Theorem 15.** *Let* λ *be an* $(\in, \in \lor q)$ *-fuzzy filter of* H *such that:* $$|\{\lambda(x) \mid \lambda(x) < 0.5\}| \ge 2.$$ *Then, there exist two* $(\in, \in \lor q)$ *-fuzzy filters* μ *and* ν *of* H *such that:* - (i) $\lambda = \mu \cup \nu$. - (ii) $\operatorname{Im}(\mu)$ and $\operatorname{Im}(\nu)$ have at least two elements. - (iii) μ and ν do not have the same family of $\in \vee$ q-level filters. **Proof.** Let $\{\lambda(x) \mid \lambda(x) < 0.5\} = \{t_1, t_2, \dots, t_r\}$ where $t_1 > t_2 > \dots > t_r$ and $r \ge 2$. Then, the chain of $\in \forall q$ -level filters of λ is: $$\lambda_{\in \vee q}^{0.5} \subseteq \lambda_{\in \vee q}^{t_1} \subseteq \lambda_{\in \vee q}^{t_2} \subseteq \cdots \subseteq \lambda_{\in \vee q}^{t_r} = H.$$ Define two fuzzy sets μ and ν in H by: $$\mu(x) = \begin{cases} t_1 \text{ if } x \in \lambda_{\in \vee q}^{t_1}, \\ t_n \text{ if } x \in \lambda_{\in \vee q}^{t_n} \setminus \lambda_{\in \vee q}^{t_{n-1}} \text{ for } n = 2, 3, \dots, r, \end{cases}$$ and: $$\nu(x) = \begin{cases} \lambda(x) \text{ if } x \in \lambda_{\in \forall q}^{0.5}, \\ k \text{ if } x \in \lambda_{\in \forall q}^{t_2} \setminus \lambda_{\in \forall q}^{0.5}, \\ t_n \text{ if } x \in \lambda_{\in \forall q}^{t_n} \setminus \lambda_{\in \forall q}^{t_{n-1}} \text{ for } n = 3, 4, \dots, r, \end{cases}$$ respectively, where $k \in (t_3, t_2)$. Then, μ and ν are $(\in, \in \lor q)$ -fuzzy filters of H, and $\mu \subseteq \lambda$ and $\nu \subseteq \lambda$. The chains of $\in \lor q$ -level filters of μ and ν are given by: $$\mu^{t_1}_{\in \vee q} \subseteq \mu^{t_2}_{\in \vee q} \subseteq \cdots \subseteq \mu^{t_r}_{\in \vee q} \text{ and } \nu^{0.5}_{\in \vee q} \subseteq \nu^{t_2}_{\in \vee q} \subseteq \cdots \subseteq \nu^{t_r}_{\in \vee q}$$ respectively. It is clear that $\mu \cup \nu = \lambda$. This completes the proof. ## 4. Conclusions Our aim was to define the concepts of (\in, \in) -fuzzy filters and $(\in, \in \lor q)$ -fuzzy filters of hoops, and we discussed some properties and found some equivalent definitions of them. Then, we defined a congruence relation on the hoop by an (\in, \in) -fuzzy filter of the hoop and proved that the quotient structure of this relation is a hoop. For future works, we will introduce (α, β) -fuzzy (positive) implicative filters for $(\alpha, \beta) \in \{(\in, \in), (\in, \in \lor q)\}$ of hoops, investigate some of their properties, and try to find some equivalent definitions of them. Furthermore, we study the relation between them. Moreover, we can investigate the corresponding quotients. **Author Contributions:** The authors had the same contributions to complete the paper. Funding: This research received no external funding. **Acknowledgments:** The authors wish to thank the anonymous reviewers for their valuable suggestions. Conflicts of Interest: The authors declare no conflicts of interest. Mathematics 2019, 7, 430 11 of 11 #### References 1. Bosbach, B. Komplementäre Halbgruppen, Axiomatik und Arithmetik. *Fundam. Math.* **1969**, *64*, 257–287. [CrossRef] - 2. Bosbach, B. Komplementäre Halbgruppen, Kongruenzen and Quotienten. *Fundam. Math.* **1970**, *69*, 1–14. [CrossRef] - 3. Alavia S.Z.; Borzooei, R.A.; Aaly Kologani, M. Fuzzy filters in pseudo hoops. *J. Intell. Fuzzy Syst.* **2017**, 32, 1997–2007. [CrossRef] - 4. Alavia, S.Z.; Borzooei, R.A.; Aaly Kologani, M. Filter theory of pseudo hoop-algebras. *Ital. J. Pure Appl. Math.* **2017**, *37*, 619–632. - 5. Aaly Kologani, M.; Borzooei, R.A. On ideal theory of hoops. Mathematica Bohomica 2019. [CrossRef] - 6. Blok, W.J.; Ferreirim, I.M.A. On the structure of hoops. Algebra Universalis 2000, 43, 233–257. [CrossRef] - 7. Blok, W.J.; Ferreirim, I.M.A. Hoops and their implicational reducts. Log. Comput. Sci. 1993, 28, 219–230. - 8. Borzooei, R.A.; Aaly Kologani, M. Filter theory of hoop-algebras. *J. Adv. Res. Pure Math.* **2014**, *6*, 72–86. [CrossRef] - 9. Borzooei, R.A.; Varasteh, H.R.; Borna, K. Fundamental hoop-algebras. Ratio Math. 2015, 29, 25–40. - 10. Namdar, A; Borzooei, R.A. Nodal filters in hoop algebras. Soft Comput. 2018, 22, 7119–7128. [CrossRef] - 11. Ghorbani, S. Localization of hoop-algebras. J. Adv. Res. Pure Math. 2013, 5, 1–13. [CrossRef] - 12. Luo, C.F.; Xin, X.L.; He, P. *n*-fold (positive) implicative filters of hoops. *Ital. J. Pure Appl. Math.* **2017**, *38*, 631–642. - 13. Khorami, R.T.; Saeid, A.B. Some unitary operators on hoop-algebras. *Fuzzy Inf. Eng.* **2017**, *9*, 205–223. [CrossRef] - 14. Zander, M.A. Decomposability of the finitely generated free hoop residuation algebra. *Stud. Log.* **2008**, *88*, 233–246. [CrossRef] - 15. Pu, P.M.; Liu, Y.M. Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence. *J. Math. Anal. Appl.* **1980**, *76*, 571–599. - 16. Jun, Y.B. On (α, β) -fuzzy subalgebras of *BCK/BCI*-algebras. *Bull. Korean Math. Soc.* **2005**, 42, 703–711. [CrossRef] - 17. Allen, P.J.; Kim, H.S.; Neggers, J. Smarandache disjoint in BCK/d-algebras. Sci. Math. Jpn. 2005, 61, 447–449. - 18. Allen, P.J.; Kim, H.S.; Neggers, J. On companion d-algebras. Math. Slovaca 2007, 57, 93–106. [CrossRef] - 19. Allen, P.J.; Kim, H.S.; Neggers, J. Deformations of *d/BCK*-algebras. *Bull. Korean Math. Soc.* **2011**, *48*, 315–324. [CrossRef] - 20. Lee, Y.C.; Kim, H.S. On d-subalgebras of d-transitive d^* -algebras. Math. Slovaca 1999, 49, 27–33. - 21. Neggers, J.; Kim, H.S. On *d*-Algebras. *Math. Slovaca* **1999**, 49, 19–26. - 22. Neggers, J.; Jun, Y.B.; Kim, H.S. On d-ideals in d-algebras. Math. Slovaca 1999, 49, 243–251. - 23. Georgescu, G.; Leustean, L.; Preoteasa, V. Pseudo-hoops. J. Mult.-Valued Log. Soft Comput. 2005, 11, 153–184. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).