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Abstract

:

It is well-known that mathematical models are the basis for system analysis and controller design. This paper considers the parameter identification problems of stochastic systems by the controlled autoregressive model. A gradient-based iterative algorithm is derived from observation data by using the gradient search. By using the multi-innovation identification theory, we propose a multi-innovation gradient-based iterative algorithm to improve the performance of the algorithm. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed algorithms.
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1. Introduction


Parameter estimation deals with the problem of building mathematical models of systems [1,2,3,4,5] based on observation data [6,7,8] and is the basis for system identification [9,10,11]. It has widespread applications in many areas [12,13,14,15,16]. For instance, system identification is used to get the appropriate models for control system designs [17,18], simulations and predictions [19,20] in control and system modelling [21,22]. Recently, Bottegal et al. proposed a two-experiment method to identify Wiener systems by using the data acquired from two separate experiments, in which the first experiment estimates the static nonlinearity and the second experiment identifies the linear block based on the estimated nonlinearity [23]. For nonlinear errors-in-variables systems contaminated with outliers, a robust identification approach is presented by means of the expectation maximization under the framework of the maximum likelihood estimation [24,25].



The recursive identification and the iterative identification are two important types of parameter estimation methods [26,27]. In recursive identification methods, the parameter estimates can be computed recursively in real-time [28,29]. Differing from the recursive methods, the basic idea of the iterative methods is to update the parameter estimates by using batch data [30,31,32]. In recent years, a number of iterative identification methods have been proposed for all kinds of systems. A data filtering-based iterative estimation algorithm is studied for an infinite impulse response filter with colored noise [33]. For  Box-Jenkins models, Liu et al. proposed a least squares-based iterative algorithm according to the auxiliary model identification idea and the iterative search [34]. Other related work includes the recursive algorithms [35,36] and the iterative algorithms [37,38,39].



The multi-innovation theory provides a new idea for system identification [40,41]. The innovation is the useful information that can improve the parameter estimation accuracy. The basic idea of the multi-innovation theory is to expand the dimension of the innovation and to enhance the data utilization. A brief review of the multi-innovation algorithms is listed as follows. An adaptive filtering based multi-innovation stochastic gradient algorithm was derived for bilinear systems with colored noise and can give small parameter estimation errors as the innovation length increases [42]. A  multi-innovation gradient algorithm was developed based on the Kalman filtering to solve the joint state and parameter estimation problem for a nonlinear state space system with time-delay [43].



Identification is to fit a closest model of a practical system from observation data. The commonly used techniques are some optimization methods. These methods include linear programming and convex mixed integer nonlinear programs [44]. Some related optimization algorithms and solvers have been proposed for complete global optimization problems [45], such as the general algebraic modeling system (GAMS) and mixed-integer nonlinear programming (MINLP) solver [46] and the mixed-integer linear programming (MILP) and MINLP approaches for solving nonlinear discrete transportation problem [47]. This paper focuses on the parameter identification problems of controlled autoregressive systems by using the gradient search [48] and the multi-innovation identification theory [49]. The basic idea is to use the iterative technique for computing the parameter estimation through defining and minimizing two quadratic criterion functions. The main contributions of this paper are as follows.



	
Based on the gradient search, a gradient-based iterative algorithm is presented for identifying the parameters of controlled autoregressive systems.



	
A multi-innovation gradient-based iterative algorithm is derived for improving the performance of the algorithm by using the multi-innovation identification theory.






The outlines of this paper are organized as follows. Section 2 defines some definitions and derives the identification model of controlled autoregressive systems. Section 3 derives a gradient-based iterative algorithm. Section 4 proposes a multi-innovation gradient-based iterative algorithm. Section 5 offers an example to illustrate the effectiveness of the proposed algorithms. Finally, Section 6 gives some concluding remarks.




2. The System Description


Let us introduce some symbols used in this paper. The symbol In denotes an identity matrix of appropriate size (n×n); 1n stands for an n-dimensional column vector whose elements are 1; the superscript T stands for the vector/matrix transpose; the norm of a matrix (or a column vector) X is defined by ∥X∥2:=tr[XXT].



Consider the dynamic stochastic systems described by the following controlled autoregressive (CAR) model:


A(z)y(t)=B(z)u(t)+v(t),



(1)




where {u(t)} is the input sequence of the system and {y(t)} is the output sequence of the system, {v(t)} is a white noise sequence with zero mean, A(z) and B(z) are polynomials in the unit backward shift operator [z−1y(t)=y(t−1), zy(t)=y(t+1)], and defined as




A(z):=1+a1z−1+a2z−2+⋯+anaz−na,B(z):=b1z−1+b2z−2+⋯+bnbz−nb.









Assume that na and nb are known, and y(t)=0, u(t)=0 and v(t)=0 for t⩽0.



Let n:=na+nb, define the parameter vectors:


ϑ:=ab∈Rn,a:=[a1,a2,⋯,ana]T∈Rna,b:=[b1,b2,⋯,bnb]T∈Rnb,








and the corresponding information vectors:


φ(t):=φa(t)φb(t)∈Rn,φa(t):=[−y(t−1),−y(t−2),⋯,−y(t−na)]T∈Rna,φb(t):=[u(t−1),u(t−2),⋯,u(t−nb)]T∈Rnb.











Through the above definitions, the system in Equation (1) can be rewritten as




y(t)=[1−A(z)]y(t)+B(z)u(t)+v(t)=(−a1z−1−a2z−2−⋯−anaz−na)y(t)+(b1z−1+b2z−2+⋯+bnbz−nb)u(t)+v(t)=−a1y(t−1)−a2y(t−2)−⋯−anay(t−na)+b1u(t−1)+b2u(t−2)+⋯+bnbu(t−nb)+v(t)=[−y(t−1),−y(t−2),⋯,−y(t−na)]a+[u(t−1),u(t−2),⋯,u(t−nb)]b+v(t)=φaT(t)a+φbT(t)b+v(t)=φT(t)ϑ+v(t).



(2)





This identification model for System in (1) involves two different parameter vectors a and b, which are merged to a new vector ϑ, and two different information vectors φa(t) and φb(t), which are merged to a new vector φ(t) composed of available input-output data u(t−i) and y(t−i). The objective of this paper is by means of the gradient search and based on the multi-innovation identification theory to derive new identification algorithms for estimating the system parameter vectors from available data {u(t),y(t)}.




3. The Gradient-Based Iterative Algorithm


In this section, we first define a criterion function and present a gradient-based iterative algorithm by using the gradient search. In addition, a brief discussion about the choice of the iterative step-size is given in this section.



Let k=1,2,3,⋯ be an iterative variable and ϑ^k:=a^kb^k be the iterative estimate of ϑ=ab at iteration k. λmax[X] is the largest eigenvalue of the symmetric matrix X.



The observation data are basic for parameter identification algorithms. This paper uses a batch of data with the length L and is based on Model (2), we define the stacked output data vector Y(L) and the stacked data matrix Φ(L) as


Y(L):=y(1)y(2)⋮y(L)∈RL,Φ(L):=φT(1)φT(2)⋮φT(L)∈RL×n.








Define a static criterion function


J1(ϑ):=12∑t=1L[y(t)−φT(t)ϑ]2,








which can be equivalently expressed as


J1(ϑ):=12∥Y(L)−Φ(L)ϑ∥2.











By means of the negative gradient search, computing the partial derivative of J1(ϑ) with respect to ϑ, we can obtain the iterative relation:


ϑ^k=ϑ^k−1−μgrad[J2(ϑ^k−1)]=ϑ^k−1+μΦT(L)[Y(L)−Φ(L)ϑ^k−1]=[In−μΦT(L)Φ(L)]ϑ^k−1+μΦT(L)Y(L),








where μ>0 is an iterative step-size or a convergence factor. The above equation can be seen as a discrete-time system. To ensure the convergence of ϑ^k, all the eigenvalues of matrix [I−μΦ^T(L)Φ^(L)] must be in the unit circle, that is to say μ should satisfy −In⩽In−μΦT(L)Φ(L)⩽In, or 0⩽μΦT(L)Φ(L)⩽2In, so a conservative choice of μ is




μ⩽2λmax[ΦT(L)Φ(L)]=2λmax−1[ΦT(L)Φ(L)].









In order to avoid computing the complicated eigenvalues of a square matrix and to reduce computational cost, we use the trace of the matrix and take another way for selecting the step-size




μ⩽2∥Φ(L)∥2=2∥Φ(L)∥−2.









Then we can obtain the gradient-based iterative (GI) algorithm for estimating the parameter vector ϑ of the CAR system in (1) [4]:


ϑ^k=ϑ^k−1+μΦT(L)[Y(L)−Φ(L)ϑ^k−1],k=1,2,3,⋯



(3)






μ=2λmax−1[ΦT(L)Φ(L)],orμ=2∥Φ(L)∥−2,



(4)






Y(L)=[y(1),y(2),⋯,y(L)]T,



(5)






Φ(L)=[φ(1),φ(2),⋯,φ(L)]T,



(6)






φ(t)=φa(t)φb(t),t=1,2,⋯,L,



(7)






φa(t)=[−y(t−1),−y(t−2),⋯,−y(t−na)]T,



(8)






φb(t)=[u(t−1),u(t−2),⋯,u(t−nb)]T.



(9)







The steps of computing ϑ^k involved in the GI algorithm in Equations (3)–(9) are summarized in the following. The pseudo-code of implementing the gradient-based iterative algorithm is shown in Algorithm 1.



	
For t⩽0, all the variables are set to zero. Let k=1, give the data length L (L≫n) and set the initial values: ϑ^0=1n/p0, p0=106, and the parameter estimation accuracy ε.



	
Collect the input and output data u(t) and y(t), t=1, 2, ⋯, L.



	
Form the information vectors φa(t), φb(t) and φ(t) using Equations (8)–(9) and (7).



	
Construct the stacked output vector Y(L) by Equation (5) and the stacked information matrix Φ(L) by Equation (6), select a large μ according to Equation (4).



	
Update the parameter vector estimate ϑ^k using Equation (3).



	
Compare ϑ^k with ϑ^k−1: If ∥ϑ^k−ϑ^k−1∥>ε, increase k by 1 and go to step 5; otherwise, obtain the iteration k and the parameter estimation vector ϑ^k.











	Algorithm 1 The pseudo-code of implementing the gradient-based iterative algorithm.



	
	Data:  

	
{u(t),y(t),t=1,2,⋯,L}, na, nb, ε, N  




	Result:  

	
ϑ^k 




	1:

	
Initialization:  ϑ^0=[1,1,⋯,1]T/p0∈Rna+nb,  p0=106.




	2:

	
fort=1:Ldo 




	3:

	
    Form the information vectors φa(t), φb(t) and φ(t) using (8)–(9) and (7). 




	4:

	
end for 




	5:

	
Construct the stacked output vector Y(L) by (5). 




	6:

	
Construct the stacked information matrix Φ(L) by (6). 




	7:

	
fork=1do 




	8:

	
    Compute the step-size μ using (4): 




	9:

	
    μ=2λmax−1[ΦT(L)Φ(L)] or μ=2∥Φ(L)∥−2; 




	10:

	
   Update the parameter vector estimate ϑ^k using (3): 




	11:

	
   ϑ^k+1=ϑ^k+μΦT(L)[Y(L)−Φ(L)ϑ^k]; 




	12:

	
   If ∥ϑ^k−ϑ^k−1∥>ε 




	13:

	
   k=k+1; 




	14:

	
   else 




	15:

	
   Obtain the iteration k and the parameter estimation vector ϑ^k, break; 




	16:

	
   end 




	17:

	
end for












The flowchart of computing ϑ^k in the GI algorithm is shown in Figure 1.



Remark 1.

The criterion function is quadratic and and a convex optimization problem. For a static optimization problem, a constant step-size is often used for simplification in parameter estimation algorithms.





Remark 2.

The computation is an important property of an algorithm, and is represented by the floating-point operation of multiplications/divisions and additions/subtractions (the flop for short). Table 1 gives the computational efficiency of the GI algorithm.





Remark 3.

The gradient algorithm can be used to find the optimal solution for quadratic optimization problems and nonlinear optimization problems. It can handle not only the linear regression systems with the known information vector, but also the linear and nonlinear systems with the unknown information vector. However, Under the same data length L, the estimation accuracy of the GI algorithm becomes high as the iterative index k increases, and when the data length L increases, the estimation accuracy also becomes high. Thus, we choose a sufficient large data length in practice





Remark 4.

If we choose the step-size as μ=2∥Φ(L)∥−2 and eliminate the intermediate variables Y(L) and Φ(L), the GI algorithm can be equivalently transformed into


ϑ^k=ϑ^k−1+2∑j=1L∥φ(j)∥2−1∑j=1Lφ(j)[y(j)−φT(j)ϑ^k−1].



(10)







In order to improve the performance of the GI algorithm, we introduce a forgetting factor 0⩽λ⩽1 and obtain the forgetting factor GI algorithm:


ϑ^k=ϑ^k−1+2∑t=1LλL−t∥φ(t)∥2−1∑t=1LλL−tφ(t)[y(t)−φT(t)ϑ^k−1].



(11)










4. The Multi-Innovation Gradient-Based Iterative Algorithm


The multi-innovation identification algorithm uses the data in a moving data window to update the parameter estimates. The moving data window, which is also called the dynamical data window, moves along with t. The length of the moving data window can be variable or invariable. In this section, we derive a multi-innovation gradient-based iterative algorithm with the constant window length.



Consider the newest p data from j=t−p+1 to j=t (p represents the data length, i.e., the length of the moving data window), and define the stacked output vector Y(p,t) and the stacked information matrix Φ(p,t) as




Y(p,t):=y(t)y(t−1)⋮y(t−p+1)∈Rp,Φ(p,t):=φT(t)φT(t−1)⋮φT(t−p+1)∈Rp×n.



(12)





According to the identification model in (2), define a dynamic data window criterion function:


J2(ϑ):=12∑j=t−p+1t[y(j)−φT(j)ϑ]2=12∥Y(p,t)−Φ(p,t)ϑ∥2.











Using the negative gradient search to minimize J2(ϑ), we can obtain the following iterative relation:


ϑ^k(t)=ϑ^k−1(t)−μ(t)grad[J6(ϑ^k−1(t))]=ϑ^k−1(t)+μ(t)ΦT(p,t)[Y(p,t)−Φ(p,t)ϑ^k−1(t)]=[In−μ(t)ΦT(p,t)Φ(p,t)]ϑ^k−1(t)+μ(t)ΦT(p,t)Y(p,t),



(13)




where μ(t)⩾0 is the step-size of the time t at iteration k. Similarly, in order to guarantee the convergence of the parameter estimation vector ϑ^k(t), μ(t) can be conservatively chosen as




μ(t)⩽2λmax[ΦT(p,t)Φ(p,t)]=2λmax−1[ΦT(p,t)Φ(p,t)].



(14)





In consideration of the computational cost of the eigenvalue calculation, by using the norm μ(t) is to take as


μ(t)⩽2∥Φ(p,t)∥2=2∥Φ(p,t)∥−2.



(15)







Equations (12)–(15) and (7)–(9) form the multi-innovation gradient-based iterative (MIGI) algorithm for estimating the parameter vector ϑ [4]:


ϑ^k(t)=ϑ^k−1(t)+μ(t)ΦT(p,t)[Y(p,t)−Φ(p,t)ϑ^k−1(t)],k=1,2,3,⋯



(16)






μ(t)⩽2λmax−1[ΦT(p,t)Φ(p,t)],orμ(t)⩽2∥Φ(p,t)∥−2,



(17)






Y(p,t)=[y(t),y(t−1),⋯,y(t−p+1)]T,



(18)






Φ(p,t)=[φ(t),φ(t−1),⋯,φ(t−p+1)]T,



(19)






φ(t)=φa(t)φb(t),



(20)






φa(t)=[−y(t−1),−y(t−2),⋯,−y(t−na)]T,



(21)






φb(t)=[u(t−1),u(t−2),⋯,u(t−nb)]T.



(22)







The identification steps of the MIGI algorithm in Equations (16)–(22) for computing ϑ^k(t) are listed as follows.



	
For t⩽0, all the variables are set to zero. Let t=1, give the data length p (p≫n) and set the initial values: ϑ^0(t)=1n/p0, p0=106, the maximum iteration kmax and the accuracy ε.



	
Let k=1, collect the input and output data u(t) and y(t).



	
Form the information vectors φa(t), φb(t) and φ(t) using Equations (21)–(22) and (20).



	
Construct the stacked output vector Y(p,t) by Equation (18) and the stacked information matrix Φ(p,t) by Equation (19), select a large μ(t) according to Equation (17).



	
Update the parameter vector estimate ϑ^k(t) using Equation (16).



	
If k<kmax, increase k by 1 and go to Step 5; otherwise, proceed with the next step.



	
Compare ϑ^k(t) with ϑ^k−1(t): If ∥ϑ^k(t)−ϑ^k−1(t)∥>ε, set ϑ^0(t+1):=ϑ^k(t) and increase k by 1 and go to step 2; otherwise, obtain the parameter estimation vector ϑ^k(t).






The flowchart of computing computing the parameter estimation vector ϑ^k(t) is shown in Figure 2.



Remark 5.

The multi-innovation gradient identification method can improve the parameter estimation accuracy by expanding the dimension of the innovation and making full use of the system information. The MIGI algorithm in Equations (16)–(22) can be seen as an application of the multi-innovation theory in the iterative identification. In particular, we use the newest p data from j=t−p+1 to j=t to do the iterative estimation. When k=kmax, move the data window forward to the next moment, introduce new observation data and eliminate the oldest data to keep p data in the data window. The MISG algorithm enhances the utilization of data and improves the parameter estimation accuracy.





Remark 6.

When take p=t=L, the MIGI algorithm reduces to the GI algorithm. That is the MIGI algorithm is the extension of the GI algorithm, or the GI algorithm is the special case of the MIGI algorithm.





Furthermore, the proposed approaches in the paper can combine other mathematical tools [50,51,52] and statistical strategies [53,54,55,56,57,58,59,60] to study the parameter estimation problems of linear and nonlinear systems with different disturbance noises [61,62,63,64], and can be applied to other literature [65,66,67,68] such as signal processing [69,70,71,72,73,74] and neural networks [75,76,77].




5. Example


In industrial processes, some control task can be simplified into a water tank control plant, as is shown in Figure 3 [78].



In this system, the manipulated variable is the position of the inlet water valve, denoted u(t); the measured variable is the water level in the tank, denoted y(t). For a two-level water tank plant, it can be described by a second-order controlled autoregressive system, we assume that its mathematical model is given by




A(z)y(t)=B(z)u(t)+v(t),A(z)=1+a1z−1+a2z−2=1+1.35z−1+0.75z−2,B(z)=b1z−1+b2z−2=1.68z−1+2.32z−2.









The parameter vector to be identified is given by




ϑ=[a1,a2,b1,b2]T=[1.35,0.75,1.68,2.32]T.









In simulation, the input {u(t)} is taken as an uncorrelated uniform distribution random signal sequence with zero mean and unit variance, {v(t)} is taken as a normal distribution white noise sequence with zero mean and variance σ2. Using the simulation model parameters and the input signal generates the output signal {y(t)}.



Taking the noise variances σ2=0.202, σ2=1.002 and σ2=2.002, respectively, the corresponding noise-to-signal ratios were δns=13.51%, δns=67.55%, and δns=135.11%. Setting the data length L=3000, the convergence factor μ=λmax−1[ΦT(L)Φ(L)], applying the GI algorithm and the input-output data {u(t),y(t)} to estimate the parameters of this example system, the GI parameter estimates and errors versus with different noise variances are shown in Table 2, Table 3 and Table 4, the GI estimation errors δ:=∥ϑ^(t)−ϑ∥/∥ϑ∥ versus k are shown in Figure 4 with σ2=0.202, σ2=1.002 and σ2=2.002, and the GI estimates of the parameters a1, a2, b1 and b2 versus k are shown in Figure 5 for σ2=0.202.



From Table 2, Table 3 and Table 4 and Figure 4 and Figure 5, we can draw the following conclusions.



	
As the noise levels decrease, the GI algorithm can give more accurate parameter estimates—see the parameter estimation errors in the last columns in Table 2, Table 3 and Table 4 and the parameter estimation error curves in Figure 4 under different noise variances.



	
The GI parameter estimates approach to their true values for sufficiently large data length as the iteration k increases—see Figure 5.







6. Conclusions


Modeling a dynamical system is the first step for system analysis and design in control engineering. Through defining and minimizing a quadratic criterion function by using observation data, this paper studies and derives a gradient-based iterative algorithm for stochastic systems described by the controlled autoregressive model based on the gradient search. Furthermore, in order to track time-varying parameters, a multi-innovation gradient-based iterative algorithm has been proposed by means of the multi-innovation identification theory. The proposed algorithms have the following advantages.



	
For a lower noise level, the gradient-based algorithm can give more accurate parameter estimates. The parameter estimation errors become smaller as the iterative index increases.



	
The gradient-based iterative parameter estimates approach their true values for sufficiently large data length and iterative index.



	
The multi-innovation gradient-based iterative algorithm can track time-varying parameters of dynamical systems, improving the performance of the algorithms.



	
The simulation results indicate that the proposed algorithms are effective for estimating the parameters of stochastic systems.



	
The proposed methods in this paper can be extended to model industrial processes and network systems [79,80,81,82,83,84] by means of some other mathematical tools and approaches [85,86,87,88,89,90].
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Figure 1. The flowchart of the gradient-based iterative (GI) algorithm. 
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Figure 2. The flowchart of the multi-innovation gradient-based iterative (MIGI) algorithm. 
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Figure 3. A water tank plant. 
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Figure 4. The GI estimation errors δ versus k with σ2=0.202, σ2=1.002 and σ2=2.002. 
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Figure 5. The GI estimates versus k with σ2=0.202. 
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Table 1. The computational efficiency of the gradient-based iterative (GI) algorithm.






Table 1. The computational efficiency of the gradient-based iterative (GI) algorithm.





	
Variables

	
Expressions

	
Multiplications

	
Additions






	
ϑ^k

	
ϑ^k=ϑ^k−1+μΦT(L)[Y(L)−Φ(L)ϑ^k−1]∈Rn

	
(2nL+n)k

	
2nLk




	
μ

	
μ⩽2∥Φ(L)∥−2∈R

	
nL+1

	
nL−1




	
Sum

	
(2nL+n)k+nL+1

	
2nLk+nL−1




	
Total flops

	
N1:=(4nL+n)k+2nL
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Table 2. The GI estimates and their errors with σ2=0.202.
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	k
	a1
	a2
	b1
	b2
	δ(%)





	1
	0.36787
	−0.03138
	0.08512
	0.00447
	94.61743



	2
	0.49364
	0.09219
	0.16729
	0.03988
	90.39550



	5
	0.72013
	0.30680
	0.39043
	0.18999
	80.09229



	10
	0.88253
	0.44424
	0.69306
	0.47742
	66.48636



	20
	1.02561
	0.54320
	1.10288
	0.97583
	46.48051



	50
	1.22656
	0.67165
	1.56551
	1.80449
	16.83784



	100
	1.32469
	0.73450
	1.67354
	2.21545
	3.34572



	150
	1.34439
	0.74715
	1.68095
	2.29850
	0.68915



	200
	1.34836
	0.74970
	1.68146
	2.31527
	0.16042



	True values
	1.35000
	0.75000
	1.68000
	2.32000
	-
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Table 3. The GI estimates and their errors with σ2=1.002.
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	k
	a1
	a2
	b1
	b2
	δ(%)





	1
	0.39074
	−0.07246
	0.05593
	0.00225
	95.24273



	2
	0.51599
	0.05176
	0.11093
	0.02612
	91.71095



	5
	0.75720
	0.28762
	0.26578
	0.12989
	83.37742



	10
	0.93536
	0.45376
	0.49189
	0.34387
	72.56593



	20
	1.05985
	0.55458
	0.84302
	0.75447
	55.60085



	50
	1.20990
	0.65849
	1.39092
	1.55649
	25.60909



	100
	1.30606
	0.72444
	1.63629
	2.08855
	7.40476



	150
	1.33488
	0.74426
	1.67889
	2.24897
	2.23868



	200
	1.34356
	0.75024
	1.68613
	2.29741
	0.74605



	True values
	1.35000
	0.75000
	1.68000
	2.32000
	-
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Table 4. The GI estimates and their errors with σ2=2.002.






Table 4. The GI estimates and their errors with σ2=2.002.





	k
	a1
	a2
	b1
	b2
	δ(%)





	1
	0.41321
	−0.11502
	0.02712
	0.00069
	95.88923



	2
	0.53665
	0.00817
	0.05426
	0.01247
	93.10387



	5
	0.79437
	0.26457
	0.13329
	0.06494
	87.03542



	10
	1.00553
	0.47258
	0.25709
	0.18223
	80.07592



	20
	1.13655
	0.59653
	0.47660
	0.43831
	69.11109



	50
	1.21869
	0.66123
	0.95452
	1.06581
	44.78973



	100
	1.28208
	0.70753
	1.37278
	1.68366
	21.85326



	150
	1.31416
	0.73098
	1.55522
	1.99714
	10.70952



	200
	1.33042
	0.74288
	1.63461
	2.15631
	5.25922



	True values
	1.35000
	0.75000
	1.68000
	2.32000
	-
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