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Abstract: In the present article, fractional-order telegraph equations are solved by using the
Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional
derivative. Series form solutions are obtained for fractional-order telegraph equations by using the
proposed method. Some numerical examples are presented to understand the procedure of the
Laplace-Adomian decomposition method. As the Laplace-Adomian decomposition procedure has
shown the least volume of calculations and high rate of convergence compared to other analytical
techniques, the Laplace-Adomian decomposition method is considered to be one of the best analytical
techniques for solving fractional-order, non-linear partial differential equations—particularly the
fractional-order telegraph equation.

Keywords: Laplace-adomian decomposition method; fractional-order of telegraph equations; Caputo
operator

1. Introduction

Fractional calculus has significant roles in different areas of applied mathematics, due to its
various applications in the modeling of different physical phenomena in science and engineering.
The most general concept of derivatives, Dα( f (x)), where α is a non-integer, has improved the early
development of ordinary derivatives. In fact, in the development of fractional calculus, numerous
scientists, such as Euler, Riemann Liouville, Leibniz, Bernoulli, L’Hospital, and Wallis have greatly
contributed to this research area [1]. Further on, researchers have made greater contributions towards
fractional calculus. Fractional calculus has many applications in different areas of applied science,
such as damping visco-elasticity, biology, electronics, signal processing, genetics algorithms, robotic
technology, traffic systems, telecommunication, chemistry, and physics, as well as economy and
finance [2,3].

In view of the above applications, mathematicians have developed new techniques for solving
different fractional differential equations (FDEs) in particular, fractional partial differential equations
(FPDEs). For this connection, a modified Bernoulli equation function technique is presented for the
solution of time-fractional Burger equations [4]. Investigations of non-linear FPDEs are suggested
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in [5] by using the homotopy perturbation transform method. An approximate solution for fractional
differentiation of the generalized Mittag Leffler law by means of exponential decay was discussed
in [6], and Kilbas et al. discussed various applications of FDEs in [7]. Exact solutions to the FDEs and
Laplace Transform of FDEs [8,9], have been things such as fractional dynamical systems [10], entropy
and convexity PDEs [11], entropy analysis of soccer dynamics [12], the Laplace homotopy analysis
method (LHAM) [13], and the new analytical technique (NAT) [14].

The Laplace transform and Adomian decomposition method are two powerful methods that
have been used to develop the Laplace-Adomian decomposition method (LADM) [15,16]. Many
physical phenomena which are modeled by PDE and FPDEs are solved by using Laplace Adomian
decomposition method. such as the numerical solution of fractional Whitham-Broer-Kaup equations
that was suggested in [17], where the solution FPDEs are successfully presented in [18], and
the approximate solution of non-linear fractional Volterra Fredholm Integro differential equations are
discussed in [19], and the system of delayed differential equations are successfully described in [20].
The solution of the well-known diffusion equation is given in [21], and the application of the proposed
method for the other non-linear PDEs is cited in [22]. The analytical solution of third-order dispersive
fractional partial differential equations is given in [23].

The telegraph equation was developed by Oliver Heaviside in the 1880s, which describes the
distance and time on an electric transmission line with voltage and current. The telegraph equation
is usually applied in the investigation of electric signals, as well as wave propagations in the wave
phenomena and cable transmission line. The telegraph equation has many applications in fields such
as radio frequency, wireless signals, telephone lines, and microwave transmission [24]. Different
numerical and analytical techniques have been used to solve fractional-order telegraph equations,
such as the Homotopy perturbation method (HPM) and Laplace transform (LT) [25]. The q-Homotopy
analysis transform method (q-HATM) is used for the numerical solution fractional-order telegraph
equation. Regarding the convergence of q-HAM, some numerical examples are considered for the
validity of the method. The numerical results provided by q-HAM shows convergence toward the
exact solution of the problem [26], and the modified adomian decomposition method (MADM) [27] and
reduced differential transform method (RDTM) are used to solve second-order hyperbolic telegraph
equations and the fractional-order hyperbolic telegraph equation, respectively. FRDM was recently
extended by Keskin and Oturanc for FDEs, where they showed that FRDTM can easily give the exact
solution for both linear and nonlinear FDEs [28,29]. The Reproducing Kernel method (RKM) [30]
and variational iteration method (VIM) are used to solve telegraph equations. The results of VIM are
exactly the same as Adomian decomposition method (ADM), but VIM needs less computation [31].
The Rationalized Haar wavelet (RHW) [32] and Sinc-collocation method (SCM) have been used for
second-order linear hyperbolic telegraph equations, and these methods have an exponential rate of
convergence, meaning that they are therefore considered to be very useful for approximating solutions
for PDEs [33]. Generalized finite difference/spectral Galerkin methods have also been discussed for
the numerical solution of fractional telegraph equations. In this paper, the stability and convergence
of the analyzed equations are discussed. Also, some illustration examples are presented to verify
the theoretical idea [34], as well as the Legendre spectral Galerkin method (LSGM) [35], and the
generalized differential transform method (GDTM) [36].

In the present work, we will be applying LADM to solve the following types of
telegraph equations.

(1) One-dimensional space-time fractional telegraph equation is given by

∂2γυ

∂t2γ
+ 2α

∂γυ

∂tγ
+ β2υ =

∂2ρυ

∂x2ρ
+ g(x, t), 0 < γ, ρ ≤ 1,
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with initial and boundary conditions

υ(x, 0) = ϕ1(x), υt(x, 0) = ϕ2(x)

υ(0, t) = ϕ1(t), υx(0, t) = ϕ2(t)

(2) Two-dimensional fractional-order telegraph equation is defined as

∂2γυ

∂t2γ
+ 2α

∂γυ

∂tγ
+ β2υ =

∂2υ

∂x2 +
∂2υ

∂y2 + g(x, y, t), 0 < γ ≤ 1, ρ = 1,

with initial and boundary conditions

υ(x, y, 0) = ψ1(x, y), υt(x, y, 0) = ψ2(x, y)

(3) Three-dimensional fractional-order telegraph equation is given by

∂2γυ

∂t2γ
+ 2α

∂γυ

∂tγ
+ β2υ =

∂2υ

∂x2 +
∂2υ

∂y2 +
∂2υ

∂z2 + g(x, y, z, t), 0 < γ ≤ 1, ρ = 1,

with initial and boundary conditions

υ(x, y, z, 0) = κ1(x, y, z), υt(x, y, z, 0) = κ2(x, y, z).

The accuracy of the proposed method is compared with the solutions obtained by the Fractional
Reduced Differential Transform Method (FRDTM) and homotopy analysis transform method (HATM).
The comparisons show that the proposed method has a higher rate of convergence than FRDTM and
HATM.

2. Definitions and Preliminary Concepts

In this unit, among the few definitions of fractional calculus presented in the article due to
Riemann Liouville, Grunewald Letnikov, Caputo, the simple descriptions and introductions of the first
folks are reconsidered, which we wish to use so as to further our education.

Definition 1. Riemann-Liouville fractional integral [3]

Iγ
x g(x) =

g(x) if γ = 0
1

Γ(γ)

∫ x
0 (x− υ)γ−1g(υ)dυ if γ > 0,

where Γ denotes the gamma function defined by,

Γ(ω) =
∫ ∞

0
e−xxω−1dx ω ∈ C,

Definition 2. The Caputo operator of order γ for a fractional derivative is given by the following mathematical
expression for n ∈ N, x > 0, g ∈ Ct, t ≥ −1 in [1].

Dγg(x) =
∂γg(x)

∂tγ
=

In−γ
[

∂γg(x)
∂tγ

]
, if n− 1 < γ ≤ n, n ∈ N

∂γg(x)
∂tγ ,

Hence, we require the subsequent properties given in the next Lemma.
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Lemma 1. If n− 1 < γ ≤ n with n ∈ N and g ∈ Ct with t ≥ −1, then

Iγ Iag(x) = Iγ+ag(x), a, γ≥0.

Iγxλ =
Γ(λ + 1)

Γ(γ + λ + 1)
xγ+λ, γ > 0, λ > −1, x > 0.

IγDγg(x) = g(x)−
n−1

∑
k=0

g(k)(0+)
xk

k!
, for x > 0, n− 1 < γ ≤ n.

In the current study, the Caputo operator is reasonable, as other fractional derivative operators have certain
disadvantages. The following is further information about fractional derivatives.

Definition 3. The function h(t) defined on I is said to be of exponential order γ if there exist positive constants
M and T, such that [3]

e−γx|h(x)| ≤ M

for all x ≥ X.
If h(x) is of class C and of exponential order γ, then the Laplace transform of h(x), x > 0 is defined by

H(s) = L[h(x)] =
∫ ∞

0
e−sxh(x)dx.

where s can be either real or complex.

Definition 4. If h1 and h2 are two continuous functions and belong to real-space, then the Laplace transform
in terms of convolution is given by

L[h1 ∗ h2] = L[h1(x)] ∗ L[h2(x)],

here h1 ∗ h2 defines the convolution between h1 and h2,

(h1 ∗ h2)x =
∫ τ

0
h1(τ)h2(x− τ)dx.

The fractional derivative in terms of a Laplace transform is

L
(

Dγ
x h(x)

)
= sγH(s)−

n−1

∑
k=0

sγ−1−kh(k)(0), n− 1 < γ ≤ n,

where H(s) is the Laplace transform of h(x).

Definition 5. The Mittag-Leffler function Eγ(p) for γ > 0 is defined by the following subsequent series.

Eγ(p) =
∞

∑
n=0

pn

Γ(γn + 1)
γ > 0 p ∈ C.

3. Idea of Fractional Laplace-Adomian Decomposition Method

In this section, the Laplace-Adomian Decomposition Method is discussed for the solution
of FPDEs.

Dγυ(x, t) + Lυ(x, t) + Nυ(x, t) = q(x, t), x, t ≥ 0, m− 1 < γ < m, (1)

where Dγ = ∂γ

∂tγ is the Caputo Operator γ, m ∈ N, L and N are linear and non-linear functions, and
q is the source function.
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The initial condition is
υ(x, 0) = k(x), (2)

Applying the Laplace transform to Equation (1), we have

L [Dγυ(x, t)] + L [Lυ(x, t) + Nυ(x, t)] = L [q(x, t)] , (3)

applying the fractional derivative property of the Laplace transform, we get

sγL [υ(x, t)]− sγ−1υ(x, 0) = L [q(x, t)]−L [Lυ(x, t) + Nυ(x, t)] ,

L [υ(x, t)] =
1
s

υ(x, 0) +
1
sγ
L [q(x, t)]− 1

sγ
L [Lυ(x, t) + Nυ(x, t)] ,

Now, υ(x, 0) = k(x)

L [υ(x, t)] =
k(x)

s
+

1
sγ
L [q(x, t)]− 1

sγ
L [Lυ(x, t) + Nυ(x, t)] . (4)

The ADM solution υ(x, t) is represented by the following infinite series

υ(x, t) =
∞

∑
j=0

υj(x, t), (5)

and the non-linear terms (if any) in the problem are defined by the infinite series of Adomian
polynomials.

Nυ(x, t) =
∞

∑
j=0

Aj, (6)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjυj)

]]
λ=0

, j = 0, 1, 2... (7)

substituting Equations (5) and (6) into Equation (4), we get

L
[

∞

∑
j=0

υj(x, t)

]
=

k(x)
s

+
1
sγ
L [q(x, t)]− 1

sγ
L
[

L
∞

∑
j=0

υj(x, t) +
∞

∑
j=0

Aj

]
. (8)

Now using LADM, we have

L [υ0(x, t)] =
k(x)

s
+

1
sγ
L [q(x, t)] ,

Generally, we can write

L
[
υj+1(x, t)

]
= − 1

sγ
L
[
Lυj(x, t) + Aj

]
, j ≥ 1. (9)

Applying the inverse Laplace transform in Equation (9), we get

υ0(x, t) = k(x) + L−1
[

1
sγ
L [q(x, t)]

]

υj+1(x, t) = −L−1
[

1
sγ
L
[
Lυj(x, t) + Aj

]]
. (10)
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4. Results

Example 1. Consider the following time-fractional linear telegraph equation [29]:

∂2γυ

∂t2γ
+ 2

∂γυ

∂tγ
+ υ =

∂2υ

∂x2 , 0 < γ ≤ 1, t ≥ 0, (11)

with initial condition
υ(x, 0) = ex, υt(x, 0) = −2ex (12)

Taking the Laplace transform of Equation (11),

L
[

∂2γυ

∂t2γ

]
= −L

[
2

∂γυ

∂tγ
+ υ− ∂2υ

∂x2

]
,

s2γL [υ(x, t)]− s2γ−1υ(x, 0)− s2γ−2υt(x, 0) = −L
[

2
∂γυ

∂tγ
+ υ− ∂2υ

∂x2

]
.

Applying the inverse Laplace transform

υ(x, t) = L−1
[

υ(x, 0)
s

+
υt(x, 0)

s2 − 1
s2γ
L
[

2
∂γυ

∂tγ
+ υ− ∂2υ

∂x2

]]
.

Using the ADM procedure, we get:

υ0(x, t) = L−1
[

υ(x, 0)
s

+
υt(x, 0)

s2

]
= L−1

[
ex

s
− 2ex

s2

]
υ0(x, t) = ex(1− 2t) (13)

υj+1 = −L−1

[
1

s2γ
L
[

2
∂γυj

∂tγ
+ υj −

∂2υj

∂x2

]]
, j = 0, 1, 2, ...

for j = 0

υ1(x, t) = −L−1
[

1
s2γ
L
[

2
∂γυ0

∂tγ
+ υ0 −

∂2υ0

∂x2

]]
υ1(x, t) = −L−1

[
−4ex

sγ+2

]
= 4ex tγ+1

Γ(γ + 2)
.

(14)

The subsequent terms are

υ2(x, t) = −L−1
[

1
s2γ
L
[

2
∂γυ1

∂tγ
+ υ1 −

∂2υ1

∂x2

]]
= −8ex t2γ+1

Γ(2γ + 2)
,

υ3(x, t) = −L−1
[

1
s2γ
L
[

2
∂γυ2

∂tγ
+ υ2 −

∂2υ2

∂x2

]]
= 16ex t3γ+1

Γ(3γ + 2)
,

.

.

(15)

The LADM solution for Example 1 is

υ(x, t) = υ0(x, t) + υ1(x, t) + υ2(x, t) + υ3(x, t) + υ4(x, t)...

υ(x, t) = ex
[

1− 2t + 4
tγ+1

Γ(γ + 2)
− 8

t2γ+1

Γ(2γ + 2)
+ 16

t3γ+1

Γ(3γ + 2)
...
]

,
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where when γ = 1, then the LADM solution is

υ(x, t) = ex
[

1− 2t +
(2t)2

2!
− (2t)3

3!
+

(2t)4

4!
...
]

. (16)

This result is calculated to the exact solution in a closed form:

υ(x, t) = ex−2t

In Figure 1, the exact solution and LADM solution of Example 1 at γ = 1 is represented by Graphs (a) and (b),
respectively. From the given graphs, it can be observed that both the exact solution and LADM solution are in
strong agreement with each other. In Figures 2 and 3, the LADM solution of Example 1 at γ = 0.75, 0.50 are
represented by Graphs (a) and (b).

Figure 1. The (a) Exact and (b) LADM solutions of υ(x, t) of Example 1 at γ = 1.

Figure 2. The LADM solution of υ(x, t) of Example 1 at (a) γ = 0.75 and (b) at γ = 0.50.
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Figure 3. The comparison plots at γ = 0.75 and 0.50.

Example 2. Consider the following time-fractional telegraph equation:

∂2γυ

∂x2γ
=

∂2υ

∂t2 +
∂υ

∂t
+ υ, 1 < γ ≤ 2, t ≥ 0, (17)

with initial condition

υ(0, t) = e−t, υx(0, t) = e−t (18)

Taking the Laplace transform of (17),

L
[

∂2γυ

∂x2γ

]
= L

[
∂2υ

∂t2 +
∂υ

∂t
+ υ

]
,

s2γL [υ(x, t)]− s2γ−1υ(0, t)− s2γ−2υx(0, t) = L
[

∂2υ

∂t2 +
∂υ

∂t
+ υ

]
.

Applying the inverse Laplace transform:

υ(x, t) = L−1
[

υ(0, t)
s

+
υx(0, t)

s2 +
1

s2γ
L
[

∂2υ

∂t2 +
∂υ

∂t
+ υ

]]
.

Using the ADM procedure, we get:

υ0(x, t) = L−1
[

υ(0, t)
s

+
υx(0, t)

s2

]
= L−1

[
e−t

s
+

e−t

s2

]
υ0(x, t) = e−t(1 + x) (19)

υj+1(x, t) = L−1

[
1

s2γ
L
[

∂2υj

∂t2 +
∂υj

∂t
+ υj

]]
, j = 0, 1, 2, ...

for j = 0

υ1(x, t) = L−1
[

1
s2γ
L
[

∂2υ0

∂t2 +
∂υ0

∂t
+ υ0

]]
υ1(x, t) = L−1

[
e−t

sγ+1 +
e−t

sγ+2

]
= e−t xγ

Γ(γ + 1)
+ e−t xγ+1

Γ(γ + 2)
.

(20)
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The subsequent terms are:

υ2(x, t) = L−1
[

1
s2γ
L
[

∂2υ1

∂t2 +
∂υ1

∂t
+ υ1

]]
= e−t x2γ

Γ(2γ + 1)
+ e−t x2γ+1

Γ(2γ + 2)
,

υ3(x, t) = L−1
[

1
s2γ
L
[

∂2υ2

∂t2 +
∂υ2

∂t
+ υ2

]]
= e−t x3γ

Γ(3γ + 1)
+ e−t x3γ+1

Γ(3γ + 2)
,

.

.

(21)

The LADM solution for Example 4.2 is:

υ(x, t) = υ0(x, t) + υ1(x, t) + υ2(x, t) + υ3(x, t) + υ4(x, t)...

υ(x, t) = et[1 + x +
xγ

Γ(γ + 1)
+

xγ+1

Γ(γ + 2)
+

x2γ

Γ(2γ + 1)
+

x2γ+1

Γ(2γ + 2)

+
x3γ

Γ(3γ + 1)
+

x3γ+1

Γ(3γ + 2)
...],

when γ = 2, the LADM solution is

υ(x, t) = et
[

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
...
]

. (22)

This result was calculated to the exact solution in a closed form:

υ(x, t) = ex−t

In Figure 4, the LADM solution of Example 2 at γ = 1, γ = 0.75 are represented by Graphs (a) and (b),
respectively. From the given graphs, it can be observed that both the exact and LADM solutions are in strong
agreement with each other. In Figure 5, the LADM solution of Example 2 at γ = 0.75 is represented by graph
(a) and error graph (b) at γ = 1, respectively.

Figure 4. The (a) LADM solutions of υ(x, t) of Example 2 at γ = 1 and (b) γ = 0.75.
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Figure 5. The LADM solution of υ(x, t) of Example 2 at (a) γ = 0.50 and (b) Error plot at γ = 1.

Example 3. Consider the following non-homogeneous space-time fractional telegraph equation:

∂γυ

∂xγ
=

∂2υ

∂t2 +
∂υ

∂t
+ υ− x2 − t + 1, 0 < γ ≤ 1, t ≥ 0, (23)

with initial condition

υ(0, t) = t, υx(0, t) = 0. (24)

Taking the Laplace transform of (23),

L
[

∂γυ

∂xγ

]
= L

[
∂2υ

∂t2 +
∂υ

∂t
+ υ− x2 − t + 1

]
,

sγL [υ(x, t)]− sγ−1υ(0, t)− sγ−2υx(0, t) = L
[

∂2υ

∂t2 +
∂υ

∂t
+ υ− x2 − t + 1

]
.

Applying the inverse Laplace transform

υ(x, t) = L−1
[

υ(0, t)
s

+
υx(0, t)

s2 − 2
sγ+3 −

t
sγ+1 +

1
sγ+1 +

1
sγ
L
[

∂2υ

∂t2 +
∂υ

∂t
+ υ

]]
.

Using the ADM procedure, we get

υ0(x, t) = L−1
[

υ(0, t)
s

+
υx(0, t)

s2 − 2
sγ+3 −

t
sγ+1 +

1
sγ+1

]
,

υ0(x, t) = L−1
[

t
s
− 2

sγ+3 −
t

sγ+1 +
1

sγ+1

]

υ0(x, t) = t− 2xγ+2

Γ(γ + 3)
− txγ

Γ(γ + 1)
+

xγ

Γ(γ + 1)
(25)

υj+1(x, t) = L−1

[
1
sγ
L
[

∂2υj

∂t2 +
∂υj

∂t
+ υj

]]
, j = 0, 1, 2, ...
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for j = 0

υ1(x, t) = L−1
[

1
s2γ
L
[

∂2υ0

∂t2 +
∂υ0

∂t
+ υ0

]]
υ1(x, t) =

xγ

Γ(γ + 1)
+

txγ

Γ(γ + 1)
− 2x2γ+2

Γ(2γ + 3)
− tx2γ

Γ(2γ + 1)
.

(26)

The LADM solution for Example 3 is

υ(x, t) = [t− 2xγ+2

Γ(γ + 3)
+

2xγ

Γ(γ + 1)
− 2x2γ+2

Γ(2γ + 3)
− tx2γ

Γ(2γ + 1)
...],

when γ = 1, then the LADM solution is

υ(x, t) =
[

t + 2x− 2x2

2!
− 2x3

3!
− 2x4

4!
...
]

. (27)

This result is calculated to the exact solution in a closed form;

υ(x, t) = t + x2

In Figure 6, the LADM solution of Example 3 at γ = 1, γ = 0.75 are represented by Graphs (a) and (b),
respectively. From the given graphs it can be observed that both exact and LADM solutions are in strong
agreement with each other. In Figure 7 the LADM solution of Example 3 at γ = 0.75 are represented by graph
(a) and Error graph (b) at γ = 1, respectively.

Figure 6. The (a) Exact and (b) LADM solutions of υ(x, t) of Example 4.3, at γ = 1.



Mathematics 2019, 7, 5 12 of 19

Figure 7. The LADM solution of υ(x, t) of Example 3, at (a) γ = 0.50 and (b) Error plot at γ = 1.

Example 4. Consider the linear time-fractional linear telegraph equation:

∂2γυ

∂t2γ
+ 3

∂γυ

∂tγ
+ 2υ =

∂2υ

∂x2 +
∂2υ

∂y2 , 0 < γ ≤ 1, t ≥ 0, (28)

with initial condition

υ(x, y, 0) = ex+y, υt(x, y, 0) = −3ex+y (29)

Taking the Laplace transform of Equation (28),

L
[

∂2γυ

∂t2γ

]
= −L

[
3

∂γυ

∂tγ
+ 2υ− ∂2υ

∂x2 −
∂2υ

∂y2

]
,

s2γL [υ(x, y, t)]− s2γ−1υ(x, y, 0)− s2γ−2υt(x, y, 0) = −L
[

3
∂γυ

∂tγ
+ 2υ− ∂2υ

∂x2 −
∂2υ

∂y2

]
.

Applying the inverse Laplace transform

υ(x, y, t) = L−1
[

υ(x, y, 0)
s

+
υt(x, y, 0)

s2 − 1
s2γ
L
[

3
∂γυ

∂tγ
+ 2υ− ∂2υ

∂x2 −
∂2υ

∂y2

]]
.

Using the ADM procedure, we get

υ0(x, y, t) = L−1
[

υ(x, y, 0)
s

+
υt(x, y, 0)

s2

]
= L−1

[
ex+y

s
− 3ex+y

s2

]
υ0(x, y, t) = ex+y(1− 3t) (30)

υj+1(x, y, t) = −L−1

[
1

s2γ
L
[

3
∂γυj

∂tγ
+ 2υj −

∂2υj

∂x2 −
∂2υj

∂y2

]]
, j = 0, 1, 2, ...
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for j = 0

υ1(x, y, t) = −L−1
[

1
s2γ
L
[

3
∂γυ0

∂tγ
+ 2υ0 −

∂2υ0

∂x2 −
∂2υ0

∂y2

]]
υ1(x, y, t) = −L−1

[
−9ex+y

sγ+2

]
= 9ex+y tγ+1

Γ(γ + 2)
.

(31)

The subsequent terms are

υ2(x, t) = −L−1
[

1
s2γ
L
[

3
∂γυ1

∂tγ
+ 2υ1 −

∂2υ1

∂x2 −
∂2υ1

∂y2

]]
= −27ex+y t2γ+1

Γ(2γ + 2)
,

υ3(x, t) = −L−1
[

1
s2γ
L
[

3
∂γυ2

∂tγ
+ 2υ2 −

∂2υ2

∂x2 −
∂2υ2

∂y2

]]
= 81ex+y t3γ+1

Γ(3γ + 2)
,

.

.

(32)

The LADM solution for Example 4 is

υ(x, y, t) = υ0(x, t) + υ1(x, t) + υ2(x, t) + υ3(x, t) + υ4(x, t)...

υ(x, t) = ex+y
[

1− 3t + 9
tγ+1

Γ(γ + 2)
− 27

t2γ+1

Γ(2γ + 2)
+ 81

t3γ+1

Γ(3γ + 2)
...
]

,

when γ = 1, then LADM solution is

υ(x, y, t) = ex+y
[

1− 3t +
(3t)2

2!
− (3t)3

3!
+

(3t)4

4!
...
]

. (33)

This result is calculated to the exact solution in a closed form;

υ(x, y, t) = ex+y−3t

In Figure 8, the exact and LADM solutions of Example 4 at γ = 1 are represented by Graphs (a) and (b),
respectively. From the given graphs it can be observed that both exact and LADM solutions are in strong
agreement with each other. In Figures 9 and 10, the LADM solution of Example 4 at γ = 0.75, 0.50 is
represented by graph (a), graph (b), and Error graph (a) at γ = 1, respectively.
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Figure 8. The (a) Exact and (b) LADM solutions of υ(x, y, t) of Example 4 at γ = 1.

Figure 9. The LADM solution of υ(x, y, t) of Example 4.4 at (a) γ = 0.75 and (b) at γ = 0.50.
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Figure 10. The (a) Error plot of υ(x, y, t) of Example 4 at γ = 1.

Example 5. Consider the linear time-fractional linear telegraph equation:

∂2γυ

∂t2γ
+ 2

∂γυ

∂tγ
+ 3υ =

∂2υ

∂x2 +
∂2υ

∂y2 +
∂2υ

∂z2 , 0 < γ ≤ 1, t ≥ 0, (34)

with initial condition

υ(x, y, z, 0) = sinh(x) sinh(y) sinh(z),

υt(x, y, z, 0) = − sinh(x) sinh(y) sinh(z)
(35)

Taking the Laplace transform of Equation (34),

L
[

∂2γυ

∂t2γ

]
= −L

[
2

∂γυ

∂tγ
+ 3υ− ∂2υ

∂x2 −
∂2υ

∂y2 −
∂2υ

∂z2

]
,

s2γL [υ(x, y, z, t)]− s2γ−1υ(x, y, z, 0)− s2γ−2υt(x, y, z, 0)

= −L
[

2
∂γυ

∂tγ
+ 3υ− ∂2υ

∂x2 −
∂2υ

∂y2 −
∂2υ

∂z2

]
.

Applying the inverse Laplace transform

υ(x, y, z, t) = L−1
[

υ(x, y, z, 0)
s

+
υt(x, y, z, 0)

s2

]
−L−1

[
1

s2γ
L
[

2
∂γυ

∂tγ
+ 3υ− ∂2υ

∂x2 −
∂2υ

∂y2 −
∂2υ

∂z2

]]
.

Using the ADM procedure, we get

υ0(x, y, z, t) = L−1
[

υ(x, y, z, 0)
s

+
υt(x, y, z, 0)

s2

]
= L−1

[
sinh(x) sinh(y) sinh(z)

s
− sinh(x) sinh(y) sinh(z)

s2

]
υ0(x, y, z, t) = sinh(x) sinh(y) sinh(z)(1− t) (36)
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υj+1(x, y, z, t) = −L−1

[
1

s2γ
L
[

2
∂γυj

∂tγ
+ 3υj −

∂2υj

∂x2 −
∂2υj

∂y2 −
∂2υj

∂z2

]]
, j = 0, 1, 2, ...

for j = 0

υ1(x, y, z, t) = −L−1
[

1
s2γ
L
[

2
∂γυ0

∂tγ
+ 3υ0 −

∂2υ0

∂x2 −
∂2υ0

∂y2 −
∂2υ0

∂z2

]]
υ1(x, y, z, t) = −L−1

[
2 sinh(x) sinh(y) sinh(z)

sγ+2

]
υ1(x, y, z, t) = −2 sinh(x) sinh(y) sinh(z)

tγ+1

Γ(γ + 2)

(37)

The subsequent terms are

υ2(x, y, z, t) = −L−1
[

1
s2γ
L
[

2
∂γυ1

∂tγ
+ 3υ1 −

∂2υ1

∂x2 −
∂2υ1

∂y2 −
∂2υ1

∂z2

]]
υ2(x, y, z, t) = 4 sinh(x) sinh(y) sinh(z)

t2γ+1

Γ(2γ + 2)
,

υ3(x, y, z, t) = −L−1
[

1
s2γ
L
[

2
∂γυ2

∂tγ
+ 3υ2 −

∂2υ2

∂x2 −
∂2υ2

∂y2 −
∂2υ2

∂z2

]]
υ3(x, y, z, t) = −8 sinh(x) sinh(y) sinh(z)

t3γ+1

Γ(3γ + 2)
,

.

.

(38)

The LADM solution for Example 5 is

υ(x, y, z, t) = υ0(x, y, z, t) + υ1(x, y, z, t) + υ2(x, y, z, t) + υ3(x, y, z, t)...

υ(x, y, z, t) = sinh(x) sinh(y) sinh(z)
[

1 + t− 2
tγ+1

Γ(γ + 2)
+ 4

t2γ+1

Γ(2γ + 2)
− 8

t3γ+1

Γ(3γ + 2)
...
]

,

This result was calculated to the exact solution in a closed form:

υ(x, y, z, t) = e−2t sinh(x) sinh(y) sinh(z)

In Figure 11, the exact and LADM solution of Example 5 at γ = 1 are represented by Graphs (a) and
(b), respectively. From the given graphs it can be observed that both exact and LADM solutions are in strong
agreement with each other. In Figure 12 the LADM solution of Example 5 at γ = 0.75 are represented by graph
(a) and Error graph (b) at γ = 1, respectively.
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Figure 11. The (a) Exact and (b) LADM solutions of υ(x, y, z, t) of Example 4.5, at γ = 1.

Figure 12. The LADM solution of υ(x, y, z, t) of Example 4.5 at (a) γ = 0.50 and (b) Error plot at γ = 1.

5. Conclusions

In this paper, the analytical solutions of telegraph equations and fractional partial differential
equations were determined using LADM. The fractional derivatives were described by using the
Caputo operator. For the LADM, solutions were obtained at fractional and integer orders for all
problems. The results revealed the highest agreement with the exact solutions for the problems. For
some numerical examples, the LADM solutions showed the validity of the proposed method. It is also
showed that the fractional order solutions were convergent to the exact solution for the problems, as the
fractional order approaches the integer order. The implementation of LADM to illustrative examples
have also confirmed that the fractional-order mathematical model can be the best representation of any
experimental data as compared to the integer-order model. Moreover, by taking different fractional
orders, we were able to find a way to set suitable mathematical models for any experimental data,
and thus find reasonable consequences. Hence, it is concluded that LADM is the best tool for the
solution of FPDEs, as compared to ADM and DTM in the literature. LADM was found to provide
the highest rate of convergence to the exact solution for the problems. In future, LADM can be used
to find the analytical solution of other non-linear FPDEs, which are frequently used in science and
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engineering. LADM solutions for fractional-order problems will prove to give the best understanding
of real-world problems presented by FPDEs.
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