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Abstract: In this work, a coevolving memetic particle swarm optimization (CoMPSO) algorithm is
presented. CoMPSO introduces the memetic evolution of local search operators in particle swarm
optimization (PSO) continuous/discrete hybrid search spaces. The proposed solution allows one to
overcome the rigidity of uniform local search strategies when applied to PSO. The key contribution is
that memes provides each particle of a PSO scheme with the ability to adapt its exploration dynamics
to the local characteristics of the search space landscape. The objective is obtained by an original
hybrid continuous/discrete meme representation and a probabilistic co-evolving PSO scheme for
discrete, continuous, or hybrid spaces. The coevolving memetic PSO evolves both the solutions
and their associated memes, i.e. the local search operators. The proposed CoMPSO approach has
been experimented on a standard suite of numerical optimization benchmark problems. Preliminary
experimental results show that CoMPSO is competitive with respect to standard PSO and other
memetic PSO schemes in literature, and its a promising starting point for further research in adaptive
PSO local search operators.

Keywords: memetic particle swarm optimization; adaptive local search operator; co-evolution;
particle swarm optimization; PSO

1. Introduction

Memetic algorithms (MAs) are a class of hybrid evolutionary algorithms (EAs) and have been widely
applied to many complex optimization problems [1], such as scheduling problems [2–4], combinatorial
optimization problems [5–7], multi-objective optimization problems [8,9], and multimodal optimization
problems [10,11]. Population-based evolutionary approaches, such as genetic algorithms (GAs) or particle
swarm optimization (PSO) [12], are able to detect in a fast way the main regions of attraction, while
their local search abilities represent a major drawback [13] from the point of view of solution accuracy
and of the convergence behaviour, especially when applied to multimodal problems. MAs [1,14] have
recently received attention as effective meta-heuristics to improve generic EA schemes by combining
these latter with local search (LS) procedures [13,15]. In MAs, EA operations are employed for global
rough exploration, and LS operators are used to execute further exploitation of single EA individuals.
This allows one to enhance the EA’s capability to solve complicated problems. In the context of
PSO [12], the LS procedure can be regarded as an iterative local move of the particle. The scheme
has been successfully applied to improve different meta-heuristics such as simulated annealing [16],
GAs [17], and PSO [18]. A memetic algorithm that hybridizes PSO with LS, called MPSO, is proposed
in [11] for locating multiple global and local optima in the fitness landscape of multimodal optimization
problems (MMOPs). In this work, the local search is designed by means of two different operators,
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cognition-based local search (CBLS) and random walk with direction exploitation (RWDE), but no
adaptation technique of the local search operators is employed.

Although many GA-based MAs and other EA approaches employing meme evolution have been
proposed in the literature [13,19], the PSO memetic algorithms proposed so far fail to employ meme
evolution, probably because of the difficulty of designing the descriptors of the local search operators,
which are usually statically tailored to the problem, or the class of problems, at hand [7,8,10,11,20].
Indeed, they exhibit, at most, only some form of temporary adaptation that is not preserved or
transmitted through the generations as meta-Lamarkian memes [21].

Since meme evolution is able to provide adaptivity of the local search operators, and many
research results have shown that the advantages of the introduction of a local search in EAs, namely in
PSO, are generalized, we have set as a research objective the investigation of the possibility of
introducing memetic evolution of LS operators in a PSO context. The idea was to design a framework
where memes are not selected in a preliminary evolutionary phase, but where they evolve and adapt
during the search.

The research resulted in the coevolving memetic particle swarm optimization (CoMPSO)
algorithm presented in this work. CoMPSO is an algorithm for numerical optimization in a hybrid sea
and allows one to evolve local search operators in the form of memes associated with the PSO particles
exploring a continuous and/or discrete hybrid search space. A special feature of local search operators,
defined by the memes, is that they are applied in a probabilistic way. A meme is applied to the personal
best position of the associated particle with a given probability and every given number of iterations.
The basic idea is that memes are evolved themselves by means of the PSO-MEME evolution scheme,
a classical PSO scheme modified to manage meme vectors composed of hybrid continuous/discrete
components. Indeed, the PSO-MEME scheme distinguishes the evolution of continuous and discrete
components where a probabilistic technique is applied.

The rest of the paper is structured as follows. Some general issues concerning MAs and PSO
are recalled in Section 2.1, while the coevolving memetic PSO scheme is introduced in Section 2.2 by
describing the proposed co-evolving particle-meme scheme and a probabilistic technique for PSO
evolution of discrete integer components. Experimental results and comparisons with classical PSO
and state-of-the-art static memetic PSO are presented and discussed in Section 3. Finally, in Section 4,
a discussion of the advantages of the proposed approach and a description of future lines of research
conclude the paper.

2. Co-Evolution of Memes in PSO: Models and Methods

In this section, we introduce the architecture of CoMPSO by first recalling some concepts of
memetic algorithms and PSO, respectively in Sections 2.1.1 and 2.1.2. A detailed description of the
CoMPSO scheme is then provided in Section 2.2, focusing on the algorithmic aspects introduced to
guarantee diversity and on the representation for memes in the discrete, continuous, and hybrid space
search, and finally describing and explaining the motivations for meme co-evolution strategies.

2.1. Memetic Algorithms and Particle Swarm Optimization

2.1.1. Memetic Algorithms

MAs, first proposed by Moscato [14,22], represent a recent growing area of research in evolutionary
computation. The MA meta-heuristics essentially combine an EA with local search techniques that
can be seen as a learning procedure that makes individuals capable of performing local refinements.
MAs take inspiration from the Dawkins notion of “meme” [23] representing a unit of cultural evolution
that can exhibit refinement.

MAs are usually distinguished into three main classes. First generation MAs [22] are characterized
by a single fixed meme; i.e., a given local search operator is applied to candidate solutions of the
main EA according to different selection and application criteria (see, for example, [20]). The criteria
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used in the selection of candidates and the frequency of the local search application represent the
parameters of MAs. Second generation MAs, also called “meta-Lamarckian MAs” [21,24], reflect the
principle of memetic transmission and selection; i.e., they are characterized by a pool of given local
search operators (memes) that compete, based on their past merits, to be selected for future local
refinements. The choice of the best memes can be based on different criteria, such as the absolute
fitness of the candidate solutions associated with the meme or the fitness improvement due to past
applications. Finally, the most recent generation of MA schemes are the co-evolving MAs [10,15,25,26],
which introduce the idea of meme evolution. In this case, the pool of memes is not known a priori,
but the memes are represented and evolved by means of EA methods similar to those applied for
candidate solutions. The CoMPSO scheme proposed in this paper falls in this latter class.

2.1.2. Particle Swarm Optimization

Particle swarm optimization (PSO), originally introduced in [18], is a meta-heuristic approach
to continuous optimization problems that is inspired by the collective behavior observed in flocks of
birds. Further variants of PSO have been proposed in [12,27–33].

In PSO, a swarm of artificial entities—the so called particles—navigates the search space, aiming at
optimizing a given objective/fitness function f : Θ→ R, where Θ ⊆ Rd is the feasible region of the
space. The set P = {p1, . . . , pn}, composed of n particles, is endowed with a neighborhood structure;
i.e., a set Ni ⊆ P of neighbors is defined for each particle pi. Every particle has a position in the search
space, which is iteratively evolved using its own search experience and the experience of its neighbors.
Therefore, PSO adopts both cognitive and social strategies [34] in order to focus the search on the most
promising areas.

At every iteration t ∈ N, any particle pi is composed of the following d-dimensional vectors:
the position in the search space xi,t, the velocity vi,t, the personal best position bi,t visited so far by the
particle, and the neighborhood best position gi,t visited so far among the particles in Ni.

Both positions and velocities of the PSO particles are randomly initialized. Then they are iteratively
updated until a stop criterion is met (e.g., the allowed budget of fitness evaluations has been consumed),
according to the following move equations (first studied in [18]):

vi,t+1 = ωvi,t + ϕ1r1,t(bi,t − xi,t) + ϕ2r2,t(gi,t − xi,t), (1)

xi,t+1 = xi,t + vi,t+1. (2)

In Equation (1), the weight ω is the inertial coefficient, ϕ1 and ϕ2 are the acceleration factors,
while the two random vectors r1,t, r2,t ∈ Rd are uniformly distributed in [0, 1]d. The first term of
Equation (1)—the inertia or momentum—is a memory of the trajectory followed by the particle so far.
Its aim is to prevent drastic changes in the search performed by the particle. The second term is the
cognitive component and represents the tendency of the particle to return to the best position ever visited
by itself. Finally, the third term—the social component—models the contribution of the neighbors in the
particle’s trajectory.

After every position update, the fitness of xi,t is evaluated. If it is better than those of the previous
personal and social best positions, these are updated accordingly.

Usually a fully connected topology is adopted as a neighborhood graph among the particles,
so only one global social best gt is needed instead of n local copies of it. It should be noted that
sometimes the particles can exceed the bounds of the feasible search space. A common practice to
address this issue, adopted also in our work, is to restart the out-of-bounds components of a particle in
a position randomly chosen between the old position and the exceeded bound [35,36].

2.2. Coevolving Memetic PSO

Coevolving memetic PSO (CoMPSO) is a hybrid algorithm that combines PSO with the evolution
of local search memetic operators that automatically adapt to the objective function landscape.
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CoMPSO evolution can be seen as the combination of two co-evolving populations: the particles
and the memes. The PSO particles represent the candidate solutions and evolve by means of the
usual PSO laws (see Section 2.1.2). The memes represent the local search operators applicable to
particles and are evolved by a modified PSO scheme that employs an innovative technique designed
to deal with the discrete domains present in the meme representation. Furthermore, another difference
with respect to the standard PSO scheme is the introduction of a diversity control mechanism that
prevents the premature convergence of the particle population to a local optimum. Other example of
the hybridization of PSO can be found in the area of pattern recognition of strings [37–40].

In the following, the general CoMPSO scheme (Section 2.2.1), the diversity control mechanism
of particles evolution (Section 2.2.2), the meme representation (Section 2.2.3), meme evolution
(Section 2.2.4), and the novel technique for managing discrete components in meme PSO (Section 2.2.5)
are introduced.

2.2.1. The CoMPSO Scheme

In the CoMPSO general scheme, a population of n particles, i.e., P = {p1, . . . , pn}, navigates the
search space following PSO dynamics while trying to find the optimum of the given fitness function f .
At each iteration, a local search is possibly applied to a subset of particles in order to improve their
fitness. This local search phase is realized by a meme population, i.e., M = {m1, . . . , mn}, of local
search operators. Each mi is associated with particle pi and is evolved using a PSO-like approach on
the meme space.

Particles in P are encoded using the usual d-dimensional vectors of the PSO scheme
(see Section 2.1.2), i.e., the position vector x(p)

i,t , the velocity vector v(p)
i,t , and the personal best vector

b(p)
i,t , other than the common global best g(p)

t . In this work, a complete neighborhood graph has been

adopted. Similarly, a generic meme mj ∈ M is encoded by the hybrid vectors x(m)
j,t , v(m)

j,t , b(m)
j,t , and g(m)

t ,
i.e., vectors that combine both discrete and continuous components as described in Section 2.2.5.

The general CoMPSO scheme is described by the pseudo-code reported in Algorithm 1.
The populations of particles P and memes M are randomly initialized in their respective feasible

regions. During main-loop iterations, each particle pi is evolved following the scheme described in
Section 2.1.2. LOCAL_SEARCH activates the memetic part of CoMPSO. The local search operators,
defined by the memes in M, are applied in a probabilistic way: mi is applied to the personal best
position of particle pi with a probability γ at every φ iteration, and the local search application is
denoted by mi(pi) or equivalently by x(m)

i (b(p)
i ). Furthermore, for every iteration, the local search is

also applied to the global best particle in position g(p)
t . In this case, the global best particle and its

respective meme are indicated by pg and mg. Before being applied, the memes are evolved by means of
the PSO_MEME evolution scheme described in Section 2.2.4. If the meme application leads to a fitness
improvement, the new candidate solution obtained replaces both the personal best that the particle
current position. Finally, the global best is updated accordingly.
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Algorithm 1 CoMPSO Pseudo-Code.

1: procedure COMPSO

2: t← 0

3: P← INITIALIZE_PARTICLES()

4: f (P)← EVALUATE_FITNESS()

5: M← INITIALIZE_MEMES()

6: while termination criterion is not met do
7: t← t + 1

8: if DIV_CONTROL() then
9: DIV_RESTORE()

10: end if
11: for all pi ∈ P do
12: v(p)

i,t ← UPDATE_VELOCITY(v(p)
i,t−1, x(p)

i,t−1, b(p)
i,t−1, g(p)

t−1)

13: x(p)
i,t ← UPDATE_POSITION(x(p)

i,t−1, v(p)
i,t )

14: f (x(p)
i,t )← EVALUATE_FITNESS(x(p)

i,t )

15: b(p)
i,t ← UPDATE_PERSONAL_BEST(b(p)

i,t−1, x(p)
i,t )

16: end for
17: g(p)

t ← UPDATE_GLOBAL_BEST()

18: if LOCAL_SEARCH(γ, φ) then
19: for all pi ∈ P do
20: PSO_MEME(mi)

21: mi(pi)

22: end for
23: end if
24: PSO_MEME(mg)

25: mg(pg)

26: g(p)
t ← UPDATE_GLOBAL_BEST()

27: end while
28: return getBestSolution

29: end procedure

2.2.2. Diversity Control

A diversity control mechanism has been introduced in order to avoid stagnation or premature
convergence to local optima. When premature convergence is detected, a subset of particles whose
positions will be reinitialized is selected. The method consists of two main components: a diversity
measure δ and a diversity restore mechanism invoked when the population diversity becomes too low
according to measure δ.

The diversity measure is computed on the fitness values of the particle population according to

δ(Pt)← std( f (Pt)) (3)

where std( f (Pt)) represents the standard deviation of the fitness values of particle population P
at time t. It should be noted that, although genotypic distances between particles seem to be in
principle more appropriate than fitness values, it has been experimentally observed that the use of
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these latter indicators provides a good diversity measure with the additional property of a more
efficient computation (this is due to the fact that the computation is performed on R and not on Rd).

The diversity δ(P0) of the initial random population P0 is employed to compute the threshold
value τ = 0.2 · δ(P0) used in the routine DIV_CONTROL in order to recognize population convergence
or stagnation. This threshold value is computed basing on the unbiased particle population at time 0
since it is the only one generated in a pure random way.

Therefore, at each iteration, in the case that δ(Pt) < τ, the DIV_RESTORE procedure is invoked.
This routine randomly restarts the positions of the worst fit 50% of the population. Only the current
positions of particles are restarted, while velocities and personal best values are kept unchanged.

2.2.3. Meme Representation

The local search operators adopted in CoMPSO are a generalization of the random walk (RW)
technique [41–43]. RW is an iterative and stochastic local optimization method. Let yt be the candidate
(local) minimum at the t-th iteration. Then the new value yt+1 is computed according to

yt+1 ←
{

yt + wtzt if f (xt + wtzt) < f (xt)

yt otherwise
(4)

where wt is a scalar step-length, and zt is a unit-length random vector. The step length wt is initialized
to a given value w0 and is halved at the end of every iteration in the case that the fitness has not been
improved. The process is repeated until a given number q of iterations is reached.

In our generalization, other than the previously described parameters w0 and q, two other
parameters are introduced: the ramification factor b and the number of chosen successors k (with k ≤ b).
Briefly, the idea is to expand RW in a (b-k-bounded) breadth search conversely from the pure depth-first
style of the original RW. Initially, k copies of the starting (or seed) point of RW are generated. Then b new
points are generated from the current k ones following Rule (4). Therefore, from these b intermediate
points, the k-fittest ones are chosen as next-iteration current points, and the process is iterated until the
deepness parameter q is reached.

Using this local search scheme, a generic meme is represented by means of the following four
parameters: a real value w0 and the three integers b, k, and q. Furthermore, for each parameter, a range
of admissible values has been experimentally established: w0 ∈ [0.5, 4], b ∈ [1, 8] ∩N, k ∈ [1, b] ∩N,
and q ∈ [4, 16] ∩N.

2.2.4. Meme Evolution

As introduced in the previous section, a meme is represented in the hybrid (continuous/discrete)
meme space by the 4-ple m = (w0, b, k, q). Meme PSO evolution proceeds asynchronously with respect
to particle evolution, this is due to the fact that memes are evolved only before they are applied and
according to probability γ and frequency φ described above.

Memes, like particles, at each iteration t, are characterized by a position x(m)
i,t ,

i.e., the representation of the meme in the meme space, a velocity v(m)
i,t (only for the continuous

component), a personal best position b(m)
i,t , and a global best meme g(m)

t . Two alternative functions
have been considered as meme fitness f (m): (1) the “absolute” fitness f of the particle pi associated to
meme mi, and (2) the fitness improvement ∆ f realized with the application of the meme mi to particle
pi. Some preliminary experiments have shown that the two approaches do not significantly differ.

Memes are evolved by a classical PSO scheme modified to manage the meme vectors composed
by hybrid continuous/discrete components. The PSO_MEME scheme distinguishes the evolution of
continuous components (according to Update Rules (1) and (2)) and that of discrete components where
a probabilistic technique, presented in the next subsection, is applied. For the sake of completeness,
PSO_MEME pseudo-code is reported in Algorithm 2.
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Algorithm 2 Meme Evolution Pseudo-Code

1: procedure PSO_MEME(mi)

2: for each continuous dimension j do
3: v(m)

i,j ← UPDATE_CONTINUOUS_VELOCITY(v(m)
i,j , x(m)

i,j , b(m)
i,j , g(m)

j )

4: x(m)
i,j ← UPDATE_CONTINUOUS_POSITION(x(m)

i,j , v(m)
i,j )

5: end for
6: for each discrete dimension j do
7: x(m)

i,j ← UPDATE_DISCRETE_POSITION(x(m)
i,j , b(m)

i,j , g(m)
j )

8: end for
9: f (m)(mi)← EVALUATE_MEME_FITNESS(mi, pi)

10: b(m)
i ← UPDATE_MEME_PERSONAL_BEST(b(m)

i , x(m)
i )

11: g(m) ← UPDATE_MEME_GLOBAL_BEST(g(m), x(m)
i )

12: end procedure

2.2.5. Meme PSO for Discrete Domains

The meme discrete components are managed using a probabilistic technique that, by exploiting
the total order of the integer domains here considered, simulates the classical PSO dynamics for
continuous domains.

For each meme and for each discrete component domain Dj = {dj,1, . . . , dj,r}, an appropriate
probability distribution PDj over the values of Dj is built, then the new position xj for component j is
computed according to a randomized roulette wheel tournament among values in Dj and by using
probabilities PDj .

As described in the following, the probability distribution is set in a way that simulates the
properties of the classical continuous PSO [44].

Probability Distribution on Discrete Components Let dx, db, dg ∈ Dj represents the values:
the current meme position, the meme personal best position, and the global best meme position
for component j of the meme encoding, then the distribution Dj is defined as a mixture of four discrete
probability distributions:

1. a uniform distribution that assigns probability 1/|Dj| (where |Dj| is the cardinality of Dj) to every
value di ∈ Dj,

2. a triangular distribution centered in dx,
3. a triangular distribution centered in db, and
4. a triangular distribution centered in dg.

Each triangular distribution is determined by the center value dk, an amplification factor α > 1
and a width 2 · λ + 1. The probability of dk is amplified by the factor α, i.e., the previous probability
PDj(dk) is multiplied by α, while the 2 · λ values of domain Dj located around dk, i.e., dk−λ, . . . , dk−1
and dk+1, . . . , dk+λ, are amplified by a smoothing factor β = α

λ+1 · |λ + 1− s|, where s is the distance
of the value from the center dk. Moreover, it should be noted that the probabilities of each triangular
distribution are normalized in order to sum up to 1.

The amplification factor α are set by using the PSO parameters; that is 1 + ω for the center dx,
1 + ϕ1 for db, and 1 + ϕ2 for dg.

Discrete position update. The new position of a discrete component xj is computed by a random
roulette wheel tournament that uses the probability distribution above.

The technique for discrete components based on probability distribution values can be interpreted
as initially considering all the values as equally probable, except for dx, db, and dg, whereas the
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amplification factors based on classical PSO parameters ω, ϕ1, ϕ2 confer a greater probability. Moreover,
the smoothness factors, βs, also amplify the probabilities of centers neighbors, i.e., values close to
the centers.

In other words, amplification and smoothing factors implement, for the discrete components,
the probabilistic counterparts of the typical behavior of PSO velocity, i.e., the tendency to remain in the
current position (inertia) and the tendency to move toward a personal and global best (cognitive and
social dynamics). It should be noted that a similar idea is present in [45].

3. Experiments

The performances of CoMPSO have been evaluated on the set of five benchmark functions
reported in Table 1. Those functions differ from each other for the properties of modality,
symmetry around the optimum, and regularity.

In each run of CoMPSO, termination conditions have been defined for convergence and maximum
computational resources. An execution is regarded convergent if f (x)− f (xopt) < ε. On the other hand,
the execution has been considered terminated unsuccessfully if the number of function evaluations
(NFES) exceeds the allowed cap of 100,000. The dimensionalities, feasible ranges, and ε values, used for
each benchmark, are also reported in Table 1.

Table 1. Benchmark functions.

f Dim. Range ε

f1(x) = ∑d
i=1 x2

i 30 [−100, 100]30 10−2

f2(x) = ∑d
i=1 x2

i /4000−∏d
i=1 cos(xi/

√
i) + 1 30 [−600, 600]30 10−1

f3(x) = 0.5 +
{

sin2(
√

x2
1 + x2

2)− 0.5
}

/
{
(1 + 0.001(x2

1 + x2
2))

2} 2 [−100, 100]2 10−5

f4(x) = −20 exp
{
−0.2

√
1
d ∑d

i=1 x2
i

}
− exp

{
1
d ∑d

i=1 cos(2πxi)
}
+ 20 + e

30 [−32, 32]30 10−3

f5(x) = ∑d
i=1

{
0.15 · (zi − 0.05sgn(zi)

2) · hi if |xi − zi| ≤ 0.05
hi · x2

i otherwise
4 [−1000, 1000]4 10−7

Following the setup of [20], three different swarm sizes have been considered, namely 15,
30, and 60. The other parameters were set by using the PSO standard values suggested in [46],
i.e., ω = 0.7298, ϕ1 = ϕ2 = 1.49618. The domain ranges defining the meme space were b, k ∈ [1, 8]∩N,
q ∈ [1, 16] ∩N, and w ∈ [0.5, 4], while an amplification width λ = 4 was used for the evolution of
the memes’ discrete features. Furthermore, meme application probability and frequency were set to
γ = 0.2 and φ = 5.

For each swarm size configuration, a series of 50 executions was held in order to generate more
confidence in the statistical results. In each execution series, the success rate SR (i.e., the number of
convergent executions above the total number of executions), the average NFES of all convergent
executions C, and the quality measure Qm = Cavg/SR introduced in [47] are recorded.

All these previously described performance indexes are reported in Table 2 for CoMPSO,
classical PSO (CPSO), and static memetic PSO (SMPSO), i.e., PSO endowed with an RW local search
operator but without meme evolution [20], which is the only comparable memetic PSO algorithm in
the literature. The best quality measure in every line of Table 2 is provided in bold.
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Table 2. Experimental results.

f n CoMPSO CPSO SMPSO

SR C Qm SR C Qm SR C Qm

f1

15 1.00 14,324 14,324 0.00 - - 0.00 - -
30 1.00 12,226 12,226 1.00 11,235 11,235 0.50 37,409 74,818
60 1.00 14,254 14,254 1.00 12,680 12,680 1.00 19,395 19,395

f2

15 0.00 - - 0.00 - - 0.00 - -
30 0.96 12,306 12,819 0.50 8655 17,310 0.58 12,807 22,081
60 1.00 15,497 15,497 1.00 11,480 11,480 0.70 15,785 22,550

f3

15 1.00 14,697 14,697 0.28 5475 19,553 0.83 6671 8037
30 1.00 24,433 24,433 0.64 10,935 17,086 1.00 27,247 27,247
60 1.00 15,672 15,672 0.70 29,580 42,257 1.00 22,993 22,993

f4

15 1.00 45,184 45,184 0.00 - - 1.00 57,385 57,385
30 1.00 41,077 41,077 0.00 - - 1.00 43,673 43,673
60 1.00 47,610 47,610 0.06 49,350 822,500 1.00 38,137 38,137

f5

15 1.00 2348 2348 1.00 1642 1642 0.98 2660 2714
30 1.00 3279 3279 1.00 2560 2560 1.00 3938 3938
60 1.00 5206 5206 1.00 4220 4220 1.00 5285 5285

These results clearly show that the CoMPSO approach greatly improves the success rate of CPSO
and SMPSO. In particular, it must be noted that CoMPSO converges almost everywhere, and it has
a remarkable worst case convergence probability of 96%. On the other hand, CPSO, in some cases,
fails to converge at all when a small swarm size is employed. Finally, the CoMPSO convergence
speed is comparable to that of the SMPSO, although, as expected, in the more simple cases, i.e., f1 and
f5, the convergence speed of CoMPSO is worse than that of CPSO, which is likely due to the NFES
overhead introduced by local search operators.

Figures 1a,b and 2a–c plot the CoMPSO convergence graph with respect to the different swarm
sizes adopted. These graphs show that CoMPSO appears quite monotonic with respect to swarm size
and that a low number of particles seems to be generally preferable.

(a) f1 Convergence Graph (b) f2 Convergence Graph

Figure 1. (a,b) CoMPSO convergence graphs for f1 and f2.
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(a) f3 Convergence Graph (b) f4 Convergence Graph

(c) f5 Convergence Graph

Figure 2. (a–c) CoMPSO convergence graphs for f3, f4, and f5.

Finally, a measure of meme convergence is shown in Figure 3, which shows the evolution of meme
standard deviation (meme STD) on benchmark f4. Meme convergence is fast in the early stage and,
as expected, remains fairly constant, with only small adaptations, during the rest of the computation.
The meme convergence curve, together with the quality measures and the success rates, show the
effectiveness of CoMPSO and its ability to adapt its local refinement behavior to the landscape of the
problem at hand.

Figure 3. Memes Convergence Graph.

4. Discussion

In this paper, a coevolving memetic PSO (CoMPSO), characterized by two co-evolving populations
of particles and memes, has been presented. The main contribution of this work is represented by
the meme evolution technique that allows one to enhance the effectiveness of the PSO approach.
Memetic algorithms (MAs) have recently received great attention as effective meta-heuristics to
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improve general evolutionary algorithm (EA) schemes by combining EAs with local search procedures
and have demonstrated to be a very effective method for performance improvement. However, to the
best of our knowledge, this is the first work where a memetic PSO algorithm with meme co-evolution
has been proposed. Since memes have been described using one real and three integer parameters,
a probabilistic PSO evolution technique for the discrete components in the meme representation has
been designed. This technique is inspired from our previous work [45] and preserves typical PSO
behavior of cognitive, social, and momentum dynamics.

The algorithm has been tested on some standard benchmark problems, and the results presented
here show that CoMPSO outperforms the success rates of both classical PSO and static memetic
PSO [20], although its convergence speed is affected by the overhead due to the local search
applications. The effectiveness of the method relies on the ability to dynamically adapt the local
search operators, i.e., the memes, to the problem landscape at hand. While experiments have been
held on a limited set of standard benchmarks, the goal of demonstrating the feasibility of the approach
i.e., providing the adaptivity of memes during searches in PSO, and improving the previous results
can be considered achieved.

Future and ongoing works have been designed on different perspectives: from an experimental
point of view, we are currently holding systematic experiments on larger sets of benchmarks, and we
are planning experiments with hybrid continuous/discrete problems [48]; from the theoretical
model point of view, we are investigating different models and synchronization mechanisms for
the meme operators, we are also currently designing a self-regulatory mechanism for the CoMPSO
parameters and investigating its applications to different classes of problems, such as multiobjective
and multimodal problems [49].
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