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Abstract: In this paper, we consider a resolvent operator which depends on the composition of
two mappings with ⊕ operation. We prove some of the properties of the resolvent operator, that is,
that it is single-valued as well as Lipschitz-type-continuous. An existence and convergence result is
proven for a generalized implicit set-valued variational inclusion problem with⊕ operation. Some special
cases of a generalized implicit set-valued variational inclusion problem with ⊕ operation are discussed.
An example is constructed to illustrate some of the concepts used in this paper.
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1. Introduction

Because of applications in optimization problems, mathematical programming, equilibrium problems,
engineering, economics and operation research etc., suitable progress has been achieved in both theory and
application of various types of variational inequalities (inclusions) and their generalizations. After careful
observation, it was noticed that the projection method and its variant forms cannot be applied for solving
variational inclusions. This fact motivated researchers to use techniques based on resolvent operators.
The resolvent operator and its variant forms represent an important tool for finding the approximate
solutions of variational inclusions. The main idea in this technique is to establish the equivalence between
the variational inclusions and the fixed point problems using the concept of resolvent. For more details,
we refer to [1–20] and the references therein.

⊕ operation, that is, XOR-operation is a binary operation and behaves like the ADD operation:
It takes two arguments and produces one result. This operation is commutative, associative, and
self-inverse. In Boolean algebra, it is the same as addition modulo(2). XOR represents the inequality
function, i.e., the output is true if the inputs are not alike; otherwise, the output is false. It is interesting to
note that if we take the XOR of any number with 1, then we get the complement of the number, and if we
take XOR with 0, then we get the same number. XOR terminology is used to generate pseudo-random
numbers, to detect error in digital communication, inside CPU it helps in addition operation, etc.
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Li and his co-authors [21–23] first used the ⊕ operation for solving some classes of variational
inclusions and after that, Ahmad and his co-authors [24–26] also solved some generalized variational
inclusions with ⊕ operation.

In this paper, we consider a resolvent operator with ⊕ operation involving composition of
two mappings. We proved some properties of the resolvent operator. An iterative algorithm was
constructed to solved a generalized implicit set-valued variational inclusion problem with ⊕ operation in
real ordered positive Hilbert spaces. An existence and convergence result was proven for a generalized
implicit set-valued inclusion problem with ⊕ operation. Some special cases are discussed and an example
is given in support of some of the concepts used in this work.

2. Preliminaries

Let C be a cone with partial ordering “≤”. An ordered Hilbert space with norm ‖ · ‖ and inner product
〈·, ·〉 is called positive if 0 ≤ x and 0 ≤ y, then 0 ≤ 〈x, y〉 holds. Throughout the paper,Hp is assumed to
be a real ordered positive Hilbert space. We denote 2Hp (respectively, C∗(Hp)) as the family of nonempty
(respectively, compact) subsets ofHp, and d is the metric induced by the norm and D(., .) is the Hausdörff
metric on C∗(Hp).

Now, we illustrate some known concepts and results which are needed to prove the main result.
The following concepts and results can be found in [20–27].

Definition 1. A nonempty closed convex subset C ofHp is said to be a cone if:

(i) for any x ∈ C and any λ > 0, λx ∈ C;
(ii) if x ∈ C and −x ∈ C, then x = 0.

Definition 2. Let C be the cone, then:

(i) C is called a normal cone if there exists a constant λN > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ λN‖y‖,
for all x, y ∈ Hp;

(ii) for any x, y ∈ Hp, x ≤ y if and only if y− x ∈ C;
(iii) x and y are said to be comparative to each other if either x ≤ y or y ≤ x holds and is denoted by x ∝ y.

Definition 3. For any x, y ∈ Hp, lub{x, y} denotes the least upper bound and glb{x, y} denotes the greatest lower
bound of the set {x, y}. Suppose lub{x, y} and glb{x, y} exist, then some binary operations are given below:

(i) x ∨ y = lub{x, y};
(ii) x ∧ y = glb{x, y};
(iii) x⊕ y = (x− y) ∨ (y− x);
(iv) x� y = (x− y) ∧ (y− x).

The operations ∨,∧, ⊕, and � are called OR, AND, XOR, and XNOR operations, respectively.

Lemma 1. If x ∝ y, then lub{x, y} and glb{x, y} exist such that x− y ∝ y− x and 0 ≤ (x− y) ∨ (y− x).

Lemma 2. For any natural number n, x ∝ yn and yn → y∗ as n→ ∞, then x ∝ y∗.

Proposition 1. Let ⊕ be an XOR operation and � be an XNOR operation. Then the following relations hold for all
x, y, u, v, w ∈ Hp and α, β, λ ∈ R:

(i) x� x = 0, x� y = y� x = −(x⊕ y) = −(y⊕ x);
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0;
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(iii) (λx)⊕ (λy) = |λ|(x⊕ y);
(iv) 0 ≤ x⊕ y, if x ∝ y;
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y;
(vi) (x + y)� (u + v) ≥ (x� u) + (y� v);
(vii) (x + y)� (u + v) ≥ (x� v) + (y� u);
(viii) if x, y and w are comparative to each other, then (x⊕ y) ≤ (x⊕ w) + (w⊕ y);
(ix) αx⊕ βx = |α− β|x = (α⊕ β)x, if x ∝ 0.

Proposition 2. Let C be a normal cone in Hp with constant λN , then for each x, y ∈ Hp, the following
relations hold:

(i) ‖0⊕ 0‖ = ‖0‖ = 0;
(ii) ‖x ∨ y‖ ≤ ‖x‖ ∨ ‖y‖ ≤ ‖x‖+ ‖y‖;
(iii) ‖x⊕ y‖ ≤ ‖x− y‖ ≤ λN‖x⊕ y‖;
(iv) if x ∝ y, then ‖x⊕ y‖ = ‖x− y‖.

Definition 4. Let F : Hp → Hp be a single-valued mapping, then:

(i) F is said to be comparison mapping, if for each x, y ∈ Hp, x ∝ y then F(x) ∝ F(y), x ∝ F(x) and y ∝ F(y);
(ii) F is said to be strongly comparison mapping, if F is a comparison mapping and F(x) ∝ F(y) if and only if

x ∝ y, for all x, y ∈ Hp.

Definition 5. A single-valued mapping F : Hp → Hp is said to be β-ordered compression mapping if F is a
comparison mapping and:

F(x)⊕ F(y) ≤ β(x⊕ y), for 0 < β < 1.

Definition 6. Let M : Hp → 2Hp be a set-valued mapping. Then:

(i) M is said to be a comparison mapping if for any vx ∈ M(x), x ∝ vx, and if x ∝ y, then for vx ∈ M(x) and
vy ∈ M(y), vx ∝ vy, for all x, y ∈ Hp.

(ii) A comparison mapping M is said to be α-non-ordinary difference mapping if:

(vx ⊕ vy)⊕ α(x⊕ y) = 0 holds, f or all x, y ∈ Hp, vx ∈ M(x) andvy ∈ M(y);

(iii) A comparison mapping M is said to be θ-ordered rectangular if there exists a constant θ > 0 such that:

〈vx � vy,−(x⊕ y)〉 ≥ θ‖x⊕ y‖2 holds, f or all x, y ∈ Hp, there exists vx ∈ M(x)andvy ∈ M(y).

Definition 7. A set-valued mapping M : Hp → 2Hp is said to be λ-XOR-ordered strongly monotone compression
mapping if x ∝ y, then there exists a constant λ > 0 such that:

λ(vx ⊕ vy) ≥ x⊕ y, for all x, y ∈ Hp, vx ∈ M(x), vy ∈ M(y).

Definition 8. A set-valued mapping T : Hp → C∗(Hp) is said to be D-Lipschitz continuous if for all x, y ∈ Hp,
x ∝ y, there exists a constant λT > 0 such that:

D(T(x), T(y)) ≤ λT‖x⊕ y‖.

Definition 9. A single-valued mapping F : Hp → Hp is said to be Lipschitz-type-continuous if there exists
a constant δ > 0 such that:

‖F(x)⊕ F(y)‖ ≤ δ‖x⊕ y‖, for all x, y ∈ Hp.
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Let H, F : Hp → Hp be the single-valued mappings, we consider the composition of H and F as:

(H ◦ F)(x) = H(F(x)), for all x ∈ Hp.

Definition 10. Let H, F : Hp → Hp be the single-valued mappings such that H ◦ F is strongly comparison
and β-ordered compression mapping. Then, a set-valued comparison mapping M : Hp → 2Hp is said to be
(α, λ)-XOR-NODSM if M is an α-non-ordinary difference mapping and λ-XOR-ordered strongly monotone
compression mapping and [(H ◦ F)⊕ λM](Hp) = Hp, for α, β, λ > 0.

Definition 11. Let H, F : Hp → Hp be the single-valued mapping such that H ◦ F is strongly comparison and
β-ordered compression mapping. Suppose that the set-valued mapping M : Hp → 2Hp is (α, λ)-XOR-NODSM
mapping. We define the resolvent operator J H,F

λ,M : Hp → Hp by:

J H,F
λ,M (x) = [(H ◦ F)⊕ λM]−1(x), for all x ∈ Hp and α, λ > 0. (1)

Now, we present some properties of the resolvent operator defined by (1).

Proposition 3. Let H, F : Hp → Hp be the single-valued mappings such that (H ◦ F) is β-ordered compression
mapping and M : Hp → 2Hp is the set-valued θ-ordered rectangular mapping with λθ > β. Then, the resolvent
operator J H,F

λ,M : Hp → Hp is single-valued.

Proof. For any given u ∈ Hp and λ > 0, let x, y ∈ [(H ◦ F)⊕ λM]−1(u). Then:

vx =
1
λ
(u⊕ (H ◦ F)(x)) =

1
λ
(u⊕ H(F(x))) ∈ M(x),

and:
vy =

1
λ
(u⊕ (H ◦ F)(y)) =

1
λ
(u⊕ (H ◦ F)(y)) ∈ M(y).

Using (i) and (ii) of Proposition 1, we obtain:

vx � vy =
1
λ
(u⊕ H(F(x)))� 1

λ
(u⊕ H(F(y)))

=
1
λ
[(u⊕ H(F(x)))� (u⊕ H(F(y)))]

= − 1
λ
[(u⊕ H(F(x)))⊕ (u⊕ H(F(y)))]

= − 1
λ
[(u⊕ u)⊕ (H(F(x))⊕ H(F(y)))]

= − 1
λ
[0⊕ (H(F(x))⊕ H(F(y)))]

≤ − 1
λ
[H(F(x))⊕ H(F(y))].

Thus, we have:

vx � vy ≤ −
1
λ
[H(F(x))⊕ H(F(y))]. (2)
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Since M is θ-ordered rectangular mapping, (H ◦ F) is β-ordered compression mapping and using (2),
we have:

θ‖x⊕ y‖2 ≤ 〈vx � vy,−(x⊕ y)〉

≤ 〈− 1
λ
[H(F(x))⊕ H(F(y))],−(x⊕ y)〉

≤ 1
λ
〈(H ◦ F)(x)⊕ (H ◦ F)(y), x⊕ y〉

≤ 1
λ
〈β(x⊕ y), x⊕ y〉

=
β

λ
‖x⊕ y‖2,

i.e., (
θ − β

λ

)
‖x⊕ y‖2 ≤ 0, for λθ > β,

which shows that:
‖x⊕ y‖ = 0, which implies x⊕ y = 0.

Therefore x = y, i.e., the resolvent operator J H,F
λ,M is single-valued, for λθ > β.

Proposition 4. Let M : Hp → 2Hp be (α, λ)-XOR-NODSM set-valued mapping with respect to J H,F
λ,M . Let H, F :

Hp → Hp be the single-valued mappings such that (H ◦ F) is strongly comparison mapping with respect to J H,F
λ,M .

Then the resolvent operator J H,F
λ,M : Hp → Hp is a comparison mapping.

Proof. Since M is (α, λ)-XOR-NODSM set-valued mapping with respect to J H,F
λ,M , i.e., M is α-non-ordinary

difference as well as λ-XOR-ordered strongly monotone compression mapping with respect to J H,F
λ,M .

For any x, y ∈ Hp, let x ∝ y and:

v∗x =
1
λ
(x⊕ (H ◦ F)(J H,F

λ,M (x))) =
1
λ
(x⊕ H(F(J H,F

λ,M (x)))) ∈ M(J H,F
λ,M (x)), (3)

and:
v∗y =

1
λ
(y⊕ (H ◦ F)(J H,F

λ,M (y)) =
1
λ
(y⊕ H(F(J H,F

λ,M (y)))) ∈ M(J H,F
λ,M (y)). (4)

Since M is λ-XOR-ordered strongly monotone compression mapping and using (3) and (4), we have:

(x⊕ y) ≤ λ(v∗x ⊕ v∗y)

(x⊕ y) ≤
(

x⊕ H(F(J H,F
λ,M (x)))

)
⊕
(

y⊕ H(F(J H,F
λ,M (y)))

)
(x⊕ y) ≤ (x⊕ y)⊕

(
H(F(J H,F

λ,M (x)))⊕ H(F(J H,F
λ,M (y)))

)
0 ≤ H(F(J H,F

λ,M (x)))⊕ H(F(J H,F
λ,M (y)))

0 ≤
[

H(F(J H,F
λ,M (x)))− H(F(J H,F

λ,M (y)))
]

∨
[

H(F(J H,F
λ,M (y)))− H(F(J H,F

λ,M (x)))
]
,
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which implies either:

0 ≤
[

H(F(J H,F
λ,M (x)))− H(F(J H,F

λ,M (y)))
]

or

0 ≤
[

H(F(J H,F
λ,M (y)))− H(F(J H,F

λ,M (x)))
]
.

Thus, in both cases, we have:

(H ◦ F)(J H,F
λ,M (x)) ∝ (H ◦ F)(J H,F

λ,M (y)).

Since (H ◦ F) is strongly comparison mapping with respect to J H,F
λ,M , thus, we have J H,F

λ,M (x) ∝

J H,F
λ,M (y), i.e., the resolvent operator J H,F

λ,M is a comparison mapping.

Proposition 5. If all the mappings and conditions are the same as those stated in Proposition 3, then the following
condition holds: ∥∥∥J H,F

λ,M (x)⊕J H,F
λ,M (y)

∥∥∥ ≤ 1
(λθ − β)

‖x⊕ y‖, for λθ > β and α, β, λ > 0,

i.e., the resolvent operator J H,F
λ,M is Lipschitz-type-continuous mapping.

Proof. Let x, y ∈ Hp, and:

v∗x =
1
λ
(x⊕ (H ◦ F)(J H,F

λ,M (x))) =
1
λ
(x⊕ H(F(J H,F

λ,M (x)))) ∈ M(J H,F
λ,M (x)), (5)

and:
v∗y =

1
λ
(y⊕ (H ◦ F)(J H,F

λ,M (y)) =
1
λ
(y⊕ H(F(J H,F

λ,M (y)))) ∈ M(J H,F
λ,M (y)). (6)

Since (H ◦ F) is β-ordered compression mapping and using (5) and (6), we have

v∗x ⊕ v∗y =
1
λ

[(
x⊕ H(F(J H,F

λ,M (x)))
)
⊕
(

y⊕ H(F(J H,F
λ,M (y)))

)]
=

1
λ

[
(x⊕ y)⊕

(
H(F(J H,F

λ,M (x)))⊕ H(F(J H,F
λ,M (y)))

)]
(7)

≤ 1
λ
[(x⊕ y)⊕ β(J H,F

λ,M (x)⊕J H,F
λ,M (y))].

Since M is θ-ordered rectangular mapping and using (7), for any:

J H,F
λ,M (x) ∈ M(J H,F

λ,M (x)) and J H,F
λ,M (y) ∈ M(J H,F

λ,M (y)), we have:
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θ‖J H,F
λ,M (x)⊕J H,F

λ,M (y)‖2 ≤
〈

v∗x � v∗y ,−(J H,F
λ,M (x)⊕J H,F

λ,M (y))
〉

≤
〈

v∗x ⊕ v∗y , (J H,F
λ,M (x)⊕J H,F

λ,M (y))
〉

≤ 1
λ

[〈
(x⊕ y)⊕ β(J H,F

λ,M (x)⊕J H,F
λ,M (y)),J H,F

λ,M (x)

⊕J H,F
λ,M (y)

〉]
≤ 1

λ

[∥∥∥(x⊕ y)⊕ β(J H,F
λ,M (x)

⊕J H,F
λ,M (y))

∥∥∥ ∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥].

Using (iii) of Proposition 2, we have:

θ‖J H,F
λ,M (x)⊕J H,F

λ,M (y)‖2 ≤ 1
λ

[∥∥∥(x⊕ y)⊕ β(J H,F
λ,M (x)

⊕J H,F
λ,M (y))

∥∥∥ ∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥]

≤ 1
λ

[∥∥∥(x⊕ y)−
(

β(J H,F
λ,M (x)

⊕J H,F
λ,M (y))

)∥∥∥ ∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥]

≤ 1
λ

[
‖x⊕ y‖

∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥]

+
β

λ

∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥2

.

It follows that: ∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥ ≤ 1

(λθ − β)
‖x⊕ y‖, for λθ > β.

This completes the proof.

In support of Proposition 3–5, we have the following example.

Example 1. LetHp = [0, ∞) with the usual inner product and norm, and let C = [0, 1] be a normal cone in [0, ∞).
Let H : Hp → Hp and F : Hp → Hp be the mappings defined by:

H(x) =
x
3
+ 1, and F(x) =

x
2

, ∀ x ∈ [0.∞).
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Let x, y ∈ Hp, x ∝ y, then we calculate:

(H ◦ F)(x)⊕ (H ◦ F)(y) = H(F(x))⊕ H(F(y))

=
( F(x)

3
+ 1
)
⊕
( F(y)

3
+ 1
)

=
( x

6
+ 1
)
⊕
(y

6
+ 1
)

=
(( x

6
+ 1
)
−
(y

6
+ 1
))
∨
((y

6
+ 1
)
−
( x

6
+ 1
))

=
( x

6
− y

6

)
∨
(y

6
− x

6

)
=

1
6
(
(x− y) ∨ (y− x)

)
=

1
6
(x⊕ y)

≤ 1
5
(x⊕ y),

i.e.,

(H ◦ F)(x)⊕ (H ◦ F)(y) ≤ 1
5
(x⊕ y), ∀ x, y ∈ [0, ∞).

Hence, H ◦ F is 1
5 -ordered compression mapping.

Suppose that M : Hp → 2Hp is a the set-valued mapping defined by:

M(x) = {x + 1}, ∀ x ∈ [0, ∞).

It can be easily verified that M is a comparison mapping, 1-XOR-ordered strongly monotone comparison
mapping, and 1-non-ordinary difference mapping.

Let vx = x + 1 ∈ M(x) and vy = y + 1 ∈ M(y), then we evaluate:

〈vx � vy,−(x⊕ y)〉 = 〈vx ⊕ vy, x⊕ y〉
= 〈(x + 1)⊕ (y + 1), x⊕ y〉
= 〈x⊕ y, x⊕ y〉
= ‖x⊕ y‖2

≥ 1
2
‖x⊕ y‖2,

i.e.,

〈vx � vy,−(x⊕ y)〉 ≥ 1
2
‖x⊕ y‖2, ∀ x, y ∈ [0, ∞).

Thus, M is a 1
2 -ordered rectangular comparison mapping. Further, it is clear that for λ = 1, [(H ◦ F)⊕

λM][0, ∞) = [0, ∞). Hence, M is an (1, 1)-XOR-NODSM set-valued mapping.
The resolvent operator defined by (1) is given by:

J H,F
λ,M (x) =

6x
5

, ∀ x ∈ [0, ∞). (8)

It is easy to check that the resolvent operator defined above is a comparison and single-valued mapping.



Mathematics 2019, 7, 421 9 of 14

Further: ∥∥∥J H,F
λ,M (x)⊕J H,F

λ,M (y)
∥∥∥ =

∥∥∥6x
5
⊕ 6y

5

∥∥∥
=

6
5
‖x⊕ y‖

≤ 10
3
‖x⊕ y‖,

i.e.,

‖J H,F
λ,M (x)⊕J H,F

λ,M (y)‖ ≤ 10
3
‖x⊕ y‖, ∀ x, y ∈ [0, ∞).

That is, the resolvent operator J H,F
λ,M is 10

3 -Lipschitz-type-continuous.

3. Formulation of The Problem and Existence of Solution

Let Hp be a real positive Hilbert space. Let A, B, C : Hp → C∗(Hp) and M : Hp → 2Hp be the
set-valued mappings and let G : Hp ×Hp ×Hp → Hp be a single-valued mapping. Then, we consider
the following problem:

Find x ∈ Hp, w ∈ A(x), u ∈ B(x) and v ∈ C(x) such that:

0 ∈ G(w, u, v)⊕M(x). (9)

We call the problem in Equation (9) a generalized implicit set-valued variational inclusion problem
with ⊕ operation.

(i) If C ≡ 0 and G(w, u, v) = G(w, v), then problem (9) coincides with the problem studied by Ahmad
et al. [1].

(ii) If B, C ≡ 0 and A is single-valued such that G(w, u, v) = A(x), then problem (9) reduces to the
problem studied by Ahmad et al. [7].

(iii) If G ≡ 0, then problem (9) becomes the problem studied by Li [22].

It is clear that for suitable choices of operators involved in the formulation of problem (9), one can
obtain many related problems.

The following Lemma is a fixed point formulation of the problem in Equation (9).

Lemma 3. The generalized implicit set-valued variational inclusion problem involving⊕ operation (9) has a solution
x ∈ Hp, w ∈ A(x), u ∈ B(x), v ∈ C(x) if and only if it satisfies the following equation:

x = J H,F
λ,M [λG(w, u, v)⊕ (H ◦ F)(x)], (10)

where λ > 0 is a constant.

Proof. Using the definition of the resolvent operator J H,F
λ,M , and Equation (10), we get:

x = J H,F
λ,M [λG(w, u, v)⊕ (H ◦ F)(x)]

= [(H ◦ F)⊕ λM]−1[λG(w, u, v)⊕ (H ◦ F)(x)],

(H ◦ F)⊕ λM(x) = λG(w, u, v)⊕ (H ◦ F)(x),

which implies that 0 ∈ G(w, u, v)⊕M(x), the required generalized implicit set-valued variational
inclusion problem with ⊕ operation (9).
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Conversely, suppose that generalized implicit set-valued variational inclusion problem with ⊕
operation (9) is satisfied, that is, x ∈ Hp, w ∈ A(x), u ∈ B(x) and v ∈ C(x) such that:

0 ∈ G(w, u, v)⊕M(x),

which shows that:

G(w, u, v) = M(x),

λG(w, u, v) = λM(x),

λG(w, u, v)⊕ (H ◦ F)(x) = (H ◦ F)(x)⊕ λM(x),

λG(w, u, v)⊕ (H ◦ F)(x) = [(H ◦ F)⊕ λM](x),

x = [(H ◦ F)⊕ λM]−1[λG(w, u, v)⊕ (H ◦ F)(x)]

x = J H,F
λ,M [λG(w, u, v)⊕ (H ◦ F)(x)]

Thus, Equation (10) is satisfied.

Based on Lemma 3, we establish the following iterative algorithm to obtain the solution of the
problem in Equation (9).

Iterative Algorithm 1. For any given x0 ∈ Hp, choose w0 ∈ A(x0), u0 ∈ B(x0), v0 ∈ C(x0) and using (10), let:

x1 = (1− α)x0 + αJ H,F
λ,M [λG(w0, u0, v0)⊕ (H ◦ F)(x0)].

Since w0 ∈ A(x0), u0 ∈ B(x0), v0 ∈ C(x0), by the Nadler’s theorem [28], there exists w1 ∈ A(x1),
u1 ∈ B(x1), v1 ∈ C(x1), and using Proposition 2, we have:

‖w0 ⊕ w1‖ ≤ ‖w0 − w1‖ ≤ (1 + 1)D(A(x0), A(x1))

‖u0 ⊕ u1‖ ≤ ‖u0 − u1‖ ≤ (1 + 1)D(B(x0), B(x1))

‖v0 ⊕ v1‖ ≤ ‖v0 − v1‖ ≤ (1 + 1)D(C(x0), C(x1)),

where D is the Hausdorff metric on C∗(Hp). Let:

x2 = (1− α)x1 + αJ H,F
λ,M [λG(w1, u1, v1)⊕ (H ◦ F)(x1)].

Again by Nadler’s theorem [28], there exist w2 ∈ F(x2), u2 ∈ B(x2), v2 ∈ C(x2) such that:

‖w1 ⊕ w2‖ ≤ ‖w1 − w2‖ ≤ (1 + 2−1)D(A(x1), A(x2)),

‖u1 ⊕ u2‖ ≤ ‖u1 − u2‖ ≤ (1 + 2−1)D(B(x1), B(x2)),

‖v1 ⊕ v2‖ ≤ ‖v1 − v2‖ ≤ (1 + 2−1)D(C(x1), C(x2)).

Continuing the above procedure inductively, we have the following scheme:

xn+1 = (1− α)xn + αJ H,F
λ,M [λG(wn, un, vn)⊕ (H ◦ F)(xn)].
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Since wn+1 ∈ A(xn+1), un+1 ∈ B(xn+1), vn+1 ∈ C(xn+1), such that:

‖wn ⊕ wn+1‖ ≤ ‖wn − wn+1‖ ≤ (1 + (n + 1)−1)D(A(xn), A(xn+1)),

‖un ⊕ un+1‖ ≤ ‖un − un+1‖ ≤ (1 + (n + 1)−1)D(B(xn), B(xn+1)),

‖vn ⊕ vn+1‖ ≤ ‖vn − vn+1‖ ≤ (1 + (n + 1)−1)D(C(xn), C(xn+1)).

where α ∈ [0, 1], n = 0, 1, 2, · · · .

Theorem 1. Let C ⊂ Hp be a normal cone with constant λN , H, F : Hp → Hp and G : Hp ×Hp ×Hp → Hp

be the single-valued mappings such that (H ◦ F) be strongly comparison, β-ordered compression mapping, G is
β1-ordered compression mapping in the first argument, β2-ordered compression mapping in the second argument, and
β3-ordered compression mapping in the third argument. Let A, B, C : Hp → C∗(Hp) be the set-valued mappings
such that A is λA-D-Lipschitz-continuous, B is λB-D-Lipschitz-continuous, and C is λC-D-Lipschitz-continuous.
Suppose that M : Hp → 2Hp is (α, λ)- XOR-NODSM set-valued mapping with respect to J H,F

λ,M and θ-ordered
rectangular mapping with λθ > β. If xn+1 ∝ xn, n = 0, 1, 2, .... and the following condition is satisfied:

| λ | [β1λA + β2λB + β3λC] + β <
1− λN(1− α)

λNαθ
′ , (11)

where θ
′
= 1

λθ−β and λθ > β; β1, β2, β3, λA, λB, λC, λN , α, θ, β all are positive constants.Then, the generalized
implicit set-valued variational inclusion problem with ⊕ operation (9) has a solution x ∈ Hp, w ∈ A(x), u ∈
B(x), and v ∈ C(x). Moreover, the iterative sequences {xn}, {wn}{un}, and {vn} generated by Algorithm 1
converge strongly to x, w, u, and v, the solution of generalized implicit set-valued variational inclusions problem
with ⊕ operation (9).

Proof. By Algorithm 1 and Proposition 1, we have:

0 ≤ xn+1 ⊕ xn

=
[
(1− α)xn + α

(
J H,F

λ,M [λ G(wn, un, vn)⊕ (H ◦ F)(xn)]
)]

⊕
[
(1− α)xn−1 + α

(
J H,F

λ,M [λ G(wn−1, un−1, vn−1)⊕ (H ◦ F)(xn−1)]
)]

(12)

= (1− α)(xn ⊕ xn−1) + α
(
J H,F

λ,M (λ G(wn, un, vn)⊕ (H ◦ F)(xn))

⊕J H,F
λ,M (λ G(wn−1, un−1, vn−1)⊕ (H ◦ F)(xn−1))

)
.

Using Proposition 2 and Lipschitz-type-continuity of the resolvent operators (1) and (12), we have:

‖xn+1 ⊕ xn‖ ≤ λN

∥∥∥(1− α)(xn ⊕ xn−1) + α
[
J H,F

λ,M (λ G(wn, un, vn)⊕ (H ◦ F)(xn))

⊕J H,F
λ,M (λ G(wn−1, un−1, vn−1)⊕ (H ◦ F)(xn−1))

]∥∥∥
≤ λN‖(1− α)(xn ⊕ xn−1)‖+ λNαθ

′‖(λ G(wn, un, vn)⊕ (H ◦ F)(xn))

⊕(λ G(wn − 1, un − 1, vn − 1)⊕ (H ◦ F)(xn−1))‖
≤ λN(1− α)‖xn ⊕ xn−1‖+ λNαθ

′‖(λ G(wn, un, vn)⊕ λ G(wn−1, un−1, vn−1)− ((H ◦ F)(xn)

⊕(H ◦ F)(xn−1))‖
≤ λN(1− α)‖xn ⊕ xn−1‖+ λNαθ

′ |λ |‖G(wn, un, vn)⊕ λ G(wn−1, un−1, vn−1)‖
+λNαθ

′‖(H ◦ F)(xn)⊕ (H ◦ F)(xn−1)‖,

(13)
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where θ
′
= 1

λθ−β .
Since G is β1-compression mapping in the first argument, β2-compression mapping in the second

argument, and β3-compression mapping in third argument, A is λA-D-Lipschitz-continuous, B is
λB-D-Lipschitz-continuous, and C is λC-D-Lipschitz-continuous, using Algorithm 1, we have:

‖G(wn, un, vn)⊕ G(wn−1, un−1, vn−1)‖ = ‖G(wn, un, vn)⊕ G(wn−1, un, vn)⊕ G(wn−1, un, vn)

⊕G(wn−1, un−1, vn)⊕ G(wn−1, un−1, vn)

⊕G(wn−1, un−1, vn−1)‖
≤ β1‖wn ⊕ wn−1‖+ β2‖un ⊕ un−1‖+ β3‖vn ⊕ vn−1‖
≤ β1‖wn − wn−1‖+ β2‖un − un−1‖+ β3‖vn − vn−1‖
≤ β1(1 + n−1)D(A(xn), A(xn−1)) + β2(1 + n−1)D(B(xn), B(xn−1))

+β3(1 + n−1)D(C(xn), C(xn−1))

≤ β1(1 + n−1)λA‖xn − xn−1‖+ β2(1 + n−1)λB‖xn − xn−1‖
+β3(1 + n−1)λC‖xn − xn − 1‖

= (β1λA + β2λB + β3λC)(1 + n−1)‖xn − xn−1‖.

(14)

As (H ◦ F) is β-ordered compression mapping, we have:

‖(H ◦ F)(xn)⊕ (H ◦ F)(xn−1)‖ ≤ β‖xn ⊕ xn−1‖. (15)

Using Equations (14) and (15), (13) becomes:

‖xn+1 ⊕ xn‖ ≤ λN(1− α)‖xn ⊕ xn−1‖+ λNαθ
′ |λ|[(β1λA + β2λB + β3λC)(1 + 1/n)]‖xn − xn−1‖

+λNαθ
′
β‖xn ⊕ xn−1‖

= λN(1− α)‖xn − xn−1‖+ λNαθ
′ |λ|[(β1λA + β2λB + β3λC)(1 + 1/n)]‖xn − xn−1‖

+λNαθ
′
β‖xn − xn−1‖

= ∂(Pn)‖xn − xn−1‖.

(16)

As xn+1 ∝ xn, n = 0, 1, 2, · · · , we have:

‖xn+1 − xn‖ ≤ ∂(Pn)‖xn − xn−1‖,

where ∂(Pn) = λN(1− α) + λNαθ
′ |λ|[(β1λA + β2λB + β3λC)(1 + 1/n)] + λNαθ

′
β.

Let ∂(P) = λN(1− α) + λNαθ
′ |λ|[β1λA + β2λB + β3λC] + λNαθ

′
β.

We know that ∂(Pn) → ∂(P) as n → ∞. It follows from condition (11) that 0 < ∂(p) < 1, and
consequently, {xn} is a cauchy sequence inHp and sinceHp is complete, there exists an x ∈ Hp such that
xn → x, as n→ ∞. From Algorithm 1, we have:

‖wn ⊕ wn+1‖ ≤ ‖wn − wn+1‖
≤ (1 + (n + 1)−1)D(A(xn), A(xn+1))

≤ (1 + (n + 1)−1)λF‖xn − xn−1‖. (17)

‖un ⊕ un+1‖ ≤ ‖un − un+1‖
≤ (1 + (n + 1)−1)D(B(xn), B(xn+1))

≤ (1 + (n + 1)−1)λB‖xn − xn−1‖. (18)

and ‖vn ⊕ vn+1‖ ≤ ‖vn − vn+1‖
≤ (1 + (n + 1)−1)D(C(xn), C(xn+1))

≤ (1 + (n + 1)−1)λC‖xn − xn−1‖. (19)
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It is clear from Euqations (17)–(19) that {wn}, {un}, and {vn} are also cauchy sequences in Hp.
Let wn → w, un → u and vn → v, as n→ ∞. In view of Lemma 3, we conclude that (x, w, u, v), such that
x ∈ Hp, w ∈ A(x), u ∈ B(x) and v ∈ C(x) is a solution of a generalized implicit set-valued variational
inclusion problem with ⊕ operation (9). Now, we show that with w ∈ A(x), we have:

d(w, A(x)) ≤ ‖w⊕ wn‖+ d(wn, A(x))

≤ ‖w− wn‖+ ‖wn ⊕ A(x)‖
≤ ‖w− wn‖+D(A(xn), A(x))

≤ ‖w− wn‖+ λA‖xn − x‖ → 0, as n→ ∞,

which implies that d(w, A(x)) = 0, and since A(x) ∈ C∗(Hp), it follows that w ∈ A(x). Similarly, we can
show that u ∈ B(x) and v ∈ C(x), respectively. This complete the proof.

4. Conclusions

In this paper, we considered a generalized implicit set-valued variational inclusion problem with
⊕ operation, which includes many previously studied problems in ordered spaces as special cases.
A resolvent operator which involves composition of two mappings was considered, and we proved some
properties of it. An existence and convergence result was proven for our problem in real ordered positive
Hilbert spaces.

We remark that our results may be generalized further in higher dimensional spaces.
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