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Abstract: Vaccines are not administered on a continuous basis, but injections are practically
introduced at discrete times often separated by an important number of time units, and this differs
depending on the nature of the epidemic and its associated vaccine. In addition, especially when
it comes to vaccination, most optimization approaches in the literature and those that have been
subject to epidemic models have focused on treating problems that led to continuous vaccination
schedules but their applicability remains debatable. In search of a more realistic methodology to
resolve this issue, a control modeling design, where the control can be characterized analytically and
then optimized, can definitely help to find an optimal regimen of pulsed vaccinations. Therefore,
we propose a susceptible-infected-removed (SIR) hybrid epidemic model with impulse vaccination
control and a compartment that represents the number of vaccinated individuals supposed to not
acquire sufficient immunity to become permanently recovered due to the short-term effect of vaccines.
A basic reproduction number, when the control is defined as a constant parameter, is calculated. Since
we also need to find the optimal values of this impulse control when it is defined as a function of
time, we start by stating a general form of an impulse version of Pontryagin’s maximum principle
that can be adapted to our case, and then we apply it to our model. Finally, we provide our numerical
simulations that are obtained via an impulse progressive-regressive iterative scheme with fixed
intervals between impulse times (theoretical example of an impulse at each week), and we conclude
with a discussion of our results.

Keywords: epidemic model; impulsive differential system; vaccination; optimal impulse control;
impulse two-point boundary value problem

1. Introduction

In 1998, Shulgin et al. [1], highlighted the potential of pulse vaccination strategy in eradicating
some epidemics at relatively low values of vaccination compared to conventional strategies as
theoretically proven also in [2]. A theoretical examination of these results has been published after
in [3]. In the first mentioned reference and more recently in paper of Yang and Xiao in [4], the authors
discussed the effectiveness and importance of such vaccination regimes by referring to many theoretical
and applicable results in the literature, namely the work of De Quadros et al. [5] in case of poliomyelitis,
and work of Albert Bruce Sabin in [6] in cases of measles.

In 2001, Brauer et al. in [7], referred to the pulse vaccination suggested in [1–3] as a novel
theoretical way to avoid recurring outbreaks of an epidemic. After the promising results presented in
these references, many researchers showed more interest in the study of the complexity of epidemic
models that involved this type of control measures, as in work of Alberto d’Onofrio in [8] where it
was numerically observed through the use of SEIR model that pulse vaccination program is slightly
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more efficient than the traditional continuous one, Zhou and Liu in [9] with similar results in case
of SIS model, Zeng and Chen in [10] where it is understood that SIRS model becomes much more
complex under such vaccination policies while these authors concluded the same with Sun in [11] in
case of SIR model. Extended studies with other different modeling frameworks have been published
after, as in work of Gakkhar and Negi in [12] where the authors studied the complexity of SIRS
system with non-monotonic incidence rate, Zhang and Teng in [13,14] where the two references
results both indicated that a large pulse vaccination rate will help to eradicate the disease using
SEIRS and SIRVS systems respectively, Li and Cui in [15] who compared between results of constant
and pulse vaccination based on a comparison between pulse interval and a critical value of pulsing
period, Zhao and Meng in [16] that treated the application of pulse vaccination to vertically transmitted
diseases as considered earlier in other references as in [17,18], Pei et al. in [19] where it had been showed
that the quarantine measure helps in eradicating the disease with similar conclusions as in [13,14]
but through a delayed SEIQR model, Qiao et al. in [20] exhibiting the potential of pulse vaccination
strategy in eliminating viral infectious diseases, see also other interesting literature in [21–24].

There have been intensive research papers about optimal vaccination strategies obtained through
optimal control methods for many diseases prevention, see ref. [25] in case of dengue, ref. [26] for
Influenza, refs. [27,28] for malaria, ref. [29] for Hepatitis B, ref. [30] for Ebola, ref. [31] for cholera.
In these papers, the control is considered to be a continuous function in time, while the optimal control
problem is resolved using classical theorems of sufficient and necessary conditions of optimality
stated in [32,33] respectively. The optimization subject to such epidemic models, has mostly aimed
to minimize the control policy cost associated with vaccination; however, as far as we know, there
have been no studies that tried to resolve this problem in case of pulses with clearest and simplest
methodology for better practicability. This means there is a need for a numerical method that applies
exactly most findings of the theoretical calculus related to the necessary conditions of optimality with
possibly clear analytical formulation of the sought optimal impulse control and without the help of any
type of gradient methods. In 1978, Balquière provided in [34], an impulsive version for these optimality
conditions, but there is still a lack in research for larger interpretation of these results, especially in the
numerical part. Here, we try to develop an algorithm that will simplify more the resolution of these
problems, often referred to as optimal impulsive control problems [35]. Further results about existence
of solutions to these problems, have been discussed in [36,37].

We consider an optimal control problem subject to a state system that involves a finite number
of impulse times in which an impulse control function is applied. More concretely, the control will
represent the vaccination ratio as a variable in function of time and that is applied to a proportion
susceptible to infection, while its optimal values will be sought at each time of vaccine application for
better management of the pulse vaccination strategy.

To reach our purpose, we consider a susceptible-infected-removed (SIR) epidemic model with
an additional compartment to represent the number of the vaccinated population. The proposed
model is in the form of a differential system which contains a parameter that characterizes an impulse
vaccination strategy followed for preventing the spread of an epidemic.

Since not every vaccine is necessarily 100% effective as explained in [38], we choose to study
dynamics of the considered population in this case. Then, an optimal impulse control strategy is
suggested for this model using an impulse version of Pontryagin’s maximum principle. Finally,
impulse progressive-regressive iterative schemes are used for finding the results.

2. Epidemic Control Model With Short-Term Immunity

2.1. Model Description in Continuous-Time Case and with Constant Control

In this part, we consider an epidemic control model where the vaccination strategy is described
using a constant control parameter with the hypothesis that the used vaccines have a limited effect on
people who receive it.
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We need first to define the following four compartments

Ṡ: the number of people susceptible to infection or who are not yet infected,
V̇: the number of susceptible people who are temporary vaccinated so they cannot move to the

removed class due to the limited effect of vaccine [38–40],
İ: the number of infected people who are capable of spreading the epidemic to those in the

susceptible and temporary controlled categories,
Ṙ: the number of removed people from the epidemic.

For all t belonging to an interval [0, T] and when the vaccination policy is only presented by a
constant parameter of control θ, the model takes the form of the following differential system

Ṡ(t) = Π(t)− βS(t)I(t)− aθS(t)− µS(t)
V̇(t) = aθS(t)− bβV(t)I(t)− µV(t)
İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

(1)

with initial conditions S(0) = S0 > 0, V(0) = V0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0 and where
Π(t) = µN(t) with N(t) = S(t) + V(t) + I(t) + R(t), giving the newborn people.

aθ (0 ≤ a ≤ 1) is the fraction of controlled people with ”a” modeling the reduced chances of a
susceptible individual to be controlled.

Also, β = κ
N(t) with κ the infection transmission rate, µ is the natural death rate, bβ (0 ≤ b ≤ 1) is

the infection transmission rate even in the presence of θ with ”b” modeling the reduced chances of a
temporary controlled individual to be infected, and γ is the recovery rate.

The population size N is constant because Ṅ(t) = Ṡ(t) + V̇(t) + İ(t) + Ṙ(t) = 0, hence,
Π(t) = Π = µN0 knowing that N(0) = N0.

We note that θ = 0 will denote no vaccination and θ = 1 will denote the use of vaccination with
an initial number of susceptible people S(0).

In [38], the authors devised a discrete-time version of (1) under the reason that in epidemics,
data are collected at discrete times, while in [39,40], the model has been limited to its following
continuous-time version

Ṡ(t) = Π(t)− βS(t)I(t)− aθ(t)S(t)− µS(t)
V̇(t) = aθ(t)S(t)− bβV(t)I(t)− µV(t)
İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

(2)

However, since vaccinations are often neither given continuously, nor at daily or very close
discrete times, an impulse version of such models, seems more realistic. This leads us to think about
devising an epidemic model that takes into account such considerations while providing theoretical
and numerical steps for the resolution of an impulse optimal control problem.

Let first present the model (1) when there is use of pulse vaccinations.

2.2. Model Formulation in Impulsive Case with Control Function

Let t1, t2, ..., tn be the times the vaccinations are applied. n is their total number.
Since our goal in this paper is to find the optimal values of pulse vaccination rate θ at ti i = 1, ..., n,

then, we start with converting the continuous-time control θ(t) into the discrete summation
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∑n
i=1 δ(t− ti)θ(ti). The continuous-time model in (2) becomes defined by the following system with

impulse vaccinations

Ṡ(t) = Π− βS(t)I(t)− a
n

∑
i=1

δ(t− ti)θ(ti)S(t)− µS(t)

V̇(t) = a
n

∑
i=1

δ(t− ti)θ(t)S(t)− bβV(t)I(t)− µV(t)

İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

(3)

where δ(t− ti) is a type of Dirac-delta function and each term of the summation above realizes the
following property

δ(t− ti)θ(ti) =

{
θ(ti) if t = ti
0 if t 6= ti

(4)

In fact, the summation ∑n
i=1 δ(t − ti)θ(ti) in (3) can be considered to be a sum of weighted

Kronecker-delta functions as the term (4) is a shifted delta function with a specified weight. More
generally, the summation as defined here, refers to a bounded discrete signal and the delta function is
defined in this case by

δ(t− ti) =

{
1 if t = ti

0 if t 6= ti
or δ(t) =

{
1 if t = 0

0 if t 6= 0
(5)

while an integral form refers to real continuous-time case and the delta function is defined as

δ(t) =

{
+∞ if t = 0
0 if t 6= 0

(6)

with the famous properties
∫ +∞
−∞ δ(t)dt = 1,

∫ +∞
−∞ θ(t)δ(t)dt = θ(0) and

∫ +∞
−∞ θ(t − α)δ(t) = θ(α),

α ∈ R, but this is not the case here.
Finally, and contrary to the form of control in (2), θ(t) will be defined as the whole sequence in

one single function ∑n
i=1 δ(t− ti)θ(ti) and when seeking its optimal values, we will need the values

of θ(ti).
Thus, we understand the following conditions.
If t 6= ti ∀i, then the system (3) is changed to

Ṡ(t) = Π− βS(t)I(t)− µS(t)
V̇(t) = −bβV(t)I(t)− µV(t)
İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

(7)

and if t = ti ∀i, then we can obtain the following equations
S(t+i ) = S(ti)− aθ(ti)S(ti)

V(t+i ) = V(ti) + aθ(ti)S(ti)

I(t+i ) = I(ti)

R(t+i ) = R(ti)

(8)

where ti representing the vaccination time and θ(ti) the impulse control at this time, while
S(ti) = S(t−i ), V(ti) = V(t−i ), I(ti) = I(t−i ) and R(ti) = R(t−i ) are defined as the old numbers
of susceptible, vaccinated, infected, and removed people respectively, while S(t+i ), V(t+i ), I(t+i )
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and R(t+i ) defining these same numbers just after ti. Thus, (8) means we have abandoned the old
vaccination and used a new vaccination for the number of susceptible people S(ti).

Before the presentation of our optimal control approach, let provide first a result about the stability
of these systems when the control parameter is still defined as a constant rate.

3. Basic Reproduction Number

In system (7) and (8), since the three first equations are independent of the last equation, the study
of stability can be reduced and done for the following system

Ṡ(t) = Π− βS(t)I(t)− µS(t)

V̇(t) = −bβV(t)I(t)− µV(t)

İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)

S(t+i ) = S(ti)− aθS(ti)

V(t+i ) = V(ti) + aθS(ti)

I(t+i ) = I(ti)

(9)

which has a unique and piecewise continuous solution in (ti, ti+1] [41,42].
If there is no infection, i.e., I(0+) then I(t) ≡ 0, t ≥ 0, and system (9) becomes

Ṡ(t) = Π− µS(t)
V̇(t) = −µV(t)
S(t+i ) = S(ti)− aθS(ti)

V(t+i ) = V(ti) + aθS(ti)

(10)

whose solution on (0, h] with h, the time between two consecutive impulse vaccinations, is{
S(t) = N0 + (S̃0 − N0)e−µt

V(t) = Ṽ0e−µt (11)

with S̃0 = S(0+) and Ṽ0 = V(0+).
In fact, the first equation in (10) implies that Ṡ(t) = µN0 − µS(t) = µ(N0 − S(t)) as noted earlier

in the definition of Π in Section 2. By passage to the integral with letting just µ in the right-hand side,
we obtain, − ln(N0 − S(t)) = µt + c, then, N0 − S(t) = ce−µt, which gives S(t) = N0 − ce−µt. At S̃0,
we have S̃0 = N0 − c, then, c = N0 − S̃0 and by replacing it in S(t), we obtain the result. As for the
second equation, this is simpler after integration and we can find that constant c is equal to Ṽ0.

Let S(h+) = S(0+) and V(h+) = V(0+), we can solve S̃0, Ṽ0 and find a unique positive periodic
solution (S̃(t), Ṽ(t)) of system (10).{

S̃(t) = N0 + (S̃0 − N0)e−µ(t−ti), t ∈ (ti, ti+1]

Ṽ(t) = Ṽ0e−µ(t−ti), t ∈ (ti, ti+1]
(12)

where 
S̃0 =

N0(1− aθ)(1− e−µh)

1− (1− aθ)e−µh

Ṽ0 =
aθ(N0 + (S̃0 − N0)e−µh

(1− e−µh)

(13)

Then, we find the basic reproduction number associated with system (9) as

RI
0 =

1
h

∫ h

0

β(S̃(t) + bṼ(t))
µ + γ

dt (14)
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Based on similar results in [43–47], we announce the following theorem

Theorem 1. The disease free periodic solution (S̃(t), Ṽ(t), 0) is globally asymptotically stable if RI
0 < 1

and the disease is permanent if RI
0 > 1 meaning the existence of a positive constant δ > 0 such that any

solution (S(t), V(t), I(t)) of system (9) with initial values S(0+) ≥ 0, V(0+) ≥ 0, I(0+) ≥ 0 satisfies
limt→∞ inf I(t) ≥ δ

This theorem shows that system (9) exhibits similar threshold dynamics to the continuous-time
case treated in [39].

4. Optimal Impulse Control Approach

4.1. Theoretical Framework

In this part of paper, we define our objective by determining the optimal values of the impulse
control θ(ti) that minimizes a given criterion, but before this, we present hereafter the theoretical steps
for reaching this goal.

With a combination of results in [48,49], we try here to derive an analogous necessary conditions
of optimality that will be associated with our particular form of the impulsive system (3) which does
not contain any continuous-time control as usually taken into consideration in general theoretical
formulation in the literature, but only an impulse control here.

We start then first by presenting a general formulation of our optimal control problem that can be
adapted to the form (7) and (8) as follows

max
n,ti ,θ(ti)

∫ T

0
F(t, x(t)) +

n

∑
i=1

G(x(t−i , θ(ti), ti)) + φ(x(T+)) (15)

subject to

ẋ(t) = f (t, x(t)), t 6∈ {t1, ..., tn}

x(t+i )− x(t−i ) = g(x(t−i , θ(ti), ti)), i ∈ {1, ..., n}

x ∈ RN , θ(ti) ∈ Θ, x(0−) = x0, ti ∈ [0, T]

where x is the state variable, a piecewise continuous function of time, and θ(ti) is the impulse control
variable. n is the number of pulses, ti is the instant of the ith pulse and t−i , t+i are the instants just before
and after the impulse, (i.e., x(t−i ), x(t+i ) represent the first and second limit sides of x respectively).
The final time is noted T > 0 while T+ is the instant that comes just after T.

The system gain is given by F(t, x(t)), G(x(t−i , θ(ti), ti)) is the gain function associated with the
ith pulse, and φ(x(T+)) is the final cost function associated with the system just after T.

Finally, f (t, x(t)) is the continuous change of the state variable through time between pulses
points and g(x(t−i , θ(ti), ti)) is the function that represents the instantaneous or finite change of the
state variable when there is a pulse.

We admit that Θ is a bounded convex control set, and we impose that F, f , g and G are
continuously differentiable functions in x on RN and in θ(ti) on Θ, φ(x(T+)) is continuously
differentiable in x(T+) on Rn,and that g and G are continuous on t. Finally, when there is no pulse,
i.e., θ(ti) = 0, we assume that g(x(t), 0, t) = 0 for all x and t.
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As we have defined the general formulation of our objective that can be associated with the
form of impulsive system (3), we follow similar steps as in [50–52] to obtain the following theorem
which states the necessary conditions of optimality associated with our special case of optimal impulse
control problem (15).

Theorem 2. Let (x∗(t), n, t∗1 , ..., t∗k , θ∗(t1), ..., θ∗(tk)) be optimal solutions of the maximization problem (15),
then there exists an adjoint variable such that the following conditions are satisfied

λ̇(t) = −∂H
∂x

(t, x∗(t), λ(t)). (16)

In the points of pulses, we have

H I(ti, x∗(t), θ∗(ti)) ≥ H I(ti, x(ti), θ) ∀θ ∈ Θ (17)

λ(t∗+i )− λ(t∗−i ) = −∂H I

∂x
(t∗i , x∗(t∗−i ), θ∗(ti), λ(t∗+i )) (18)

Proof. In [34], the author developed a maximum principle theorem for necessary conditions of
optimality to resolve the problem (15) but with a continuous-time control function in the state equation
when t 6= ti. Here, since we have no continuous-time control in system (7), we proceed in our
generalized form as follows.

First, we consider the Hamiltonian function defined by

H(t, x(t), λ(t)) = F(t, x(t)) + λ(t)T f (t, x(t))

and the impulse Hamiltonian function defined by

H I(t, x(t), θ(ti)) = G(t, x(t), θ(ti)) + λ(t+)g(t, x(t), θ(ti))

where λ(t) represents the adjoint state variable.
Please note that (16) is equivalent to the existence of the adjoint system in the classical

continuous-time version of maximum principle [33]. As for (17) and (18), it is directly obtained
from results in [34] and the only difference here in (17) is that the sign ≤ is replaced by ≥ because (15)
is presented as a maximization problem. An analogous condition for the Hamiltonian H is necessary if
the state equation also includes a continuous-time control, otherwise, the only sought optimal control
here is the impulse one that intervenes when t = ti. In this remark, a function H(t, x∗(t), λ(t)) still
has a meaning because instead of defining an optimal trajectory x∗ for both continuous and impulse
controls, x∗ will be just associated now to θ∗ only. This also implies that another condition may involve
both classical and impulse Hamiltonian functions H and H I and which can be defined by

H(ti, x∗(t+i ), λ(t+i )) +
∂H I

∂t
(ti, x∗(t+i ), θ∗(t+i ))

= H(ti, x∗(ti), λ(ti)) +
∂H I

∂t
(ti, x∗(ti), θ∗(ti)) (19)

Since we will deal with an autonomous system, the condition (19) is reduced to

H(ti, x∗(t+i ), λ(t+i )) = H(ti, x∗(ti), λ(ti))

and it means that H is continuous at all times where θ∗ is applied [49].
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4.2. Optimal Impulse Control Problem

The most evident objective in epidemic control as defined for models in [38,39], concerns the
minimization of the number of infected people while minimizing the cost of vaccination. Thus, for our
case, we choose to define our objective function to be minimized as

J(θ) =
∫ T

0
AI(t)dt +

n

∑
i=1

B
2

θ2(ti) (20)

In other words, we are seeking an optimal control θ∗ such that

J(θ∗) = min{J(θ)/θ ∈ Θ} (21)

subject to 

Ṡ(t) = Π− βS(t)I(t)− a
n

∑
i=1

δ(t− ti)θ(ti)S(t)− µS(t)

V̇(t) = a
n

∑
i=1

δ(t− ti)θ(t)S(t)− bβV(t)I(t)− µV(t)

İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)
S0, V0, I0, R0 given
0 ≤ θ(t) ≤ 1

(22)

Or, our optimal pulse control problem can be stated as follows

min
θ∈Θ

{∫ T

0
AI(t)dt +

n

∑
i=1

B
2

θ2(ti)

}
subject to
Ṡ(t) = Π− βS(t)I(t)− µS(t)
V̇(t) = −bβV(t)I(t)− µV(t)
İ(t) = β(S(t) + bV(t))I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

when t 6= ti

and
S(t+i ) = S(ti)− aθ(ti)S(ti)

V(t+i ) = V(ti) + aθ(ti)S(ti)

I(t+i ) = I(ti)

R(t+i ) = R(ti)

when t = ti
S0, V0, I0, R0 given
0 ≤ θ(t) ≤ 1

To resolve problem (22), we follow these steps.
First, we construct the Hamiltonian H without control as the function defined as

H(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))

= AI(t) + λ1(t)(Π− βS(t)I(t)− µS(t))− λ2(t)(bβV(t)I(t) + µV(t))

+λ3(t)(β(S(t) + bV(t))I(t)− γI(t)− µI(t)) + λ4(t)(γI(t)− µR(t)) (23)
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and second, we construct the impulse Hamiltonian function Hp defined as

Hp(S(t), V(t), I(t), R(t), θ(t)) =
B
2

θ2(t)− aλ1(t+)θ(t)S(t) + aλ2(t+)θ(t)S(t) (24)

We prefer the notation Hp to H I just to avoid any ambiguity especially when we will need the
derivative of this function with respect to function of infection I.

We can announce the impulse maximum principle as follows.

Theorem 3. Given an impulse optimal control θ∗(ti), i = 1, ..., n where ti > ti−1 > 0 and which
minimizes (20) along with the optimal trajectories S∗, V∗, I∗ and R∗ associated with the differential system
in (22), then there exist adjoint variables λk, k = 1, 2, 3, 4 as notations of λk(t) and which satisfy for t 6= ti the
following adjoint differential system

λ̇1(t) = λ1(t)(βI∗(t) + µ)− βλ3(t)I∗(t)

λ̇2(t) = λ2(t)(bβI∗(t) + µ)− bλ3(t)βI∗(t)

λ̇3(t) = −A + λ1(t)βS∗(t) + bλ2(t)βV∗(t)− λ3(t)(β(S∗(t) + bV∗(t))− µ− γ)− λ4(t)γ

λ̇4(t) = λ4(t)µ

(25)

with the transversality conditions λk(T) = 0, k = 1, 2, 3, 4 and we have,
λ1(ti) = λ1(t+i )− aλ1(t+i )θ(ti) + aλ2(t+i )θ(ti)

λ2(ti) = λ2(t+i )
λ3(ti) = λ3(t+i )
λ4(ti) = λ4(t+i )

(26)

Furthermore, we have

θ∗(ti) = min

(
max

(
0,

aS∗(ti)(λ1(t+i )− λ2(t+i ))
B

)
, 1

)
(27)

Proof. We have the Hamiltonian function H is defined in (23) as

H(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))
= AI(t) + λ1(t)(Π− βS(t)I(t)− λS(t))− λ2(t)(bβV(t)I(t) + λV(t))
+λ3(t)(β(S(t) + bV(t))I(t)− γI(t)− λI(t)) + λ4(t)(γI(t)− λR(t))

(28)

Then, using the impulse version of Pontryagin’s maximum principle in [48], then we have,
for t 6= ti

λ̇1(t) = −∂H
∂S

(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))

= λ1(t)(βI∗(t) + µ)− βλ3(t)I∗(t)

λ̇2(t) = −∂H
∂V

(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))

= λ2(t)(bβI∗(t) + µ)− bλ3(t)βI∗(t)

λ̇3(t) = −∂H
∂I

(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))

= −A + λ1(t)βS∗(t) + bλ2(t)βV∗(t)− λ3(t)(β(S∗(t) + bV∗(t))− µ− γ)− λ4(t)γ

λ̇4(t) = −∂H
∂R

(S(t), V(t), I(t), R(t), λ1(t), λ2(t), λ3(t))

= λ4(t)µ
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while the transversality conditions defined as minus the derivative of the final gain function with
respect to the state variables S, CS, I, and R. Since the final gain function in (20) does not contain any
term of these variables, then λk(T) = 0, k = 1, 2, 3, 4.

Since the impulse Hamiltonian function Hp is defined in (24) as

Hp(S, V, I, R, θ) =
B
2

θ2 − aλ1(t+)θS + aλ2(t+)θS

Then, we have also at t = ti
λ1(ti) = λ1(t+i ) + Hp

S (S, V, I, R, θ) = λ1(t+i )− aλ1(t+i )θ(ti) + aλ2(t+i )θ(ti)

λ2(ti) = λ2(t+i ) + Hp
V(S, V, I, R, θ) = λ2(t+i )

λ3(ti) = λ3(t+i ) + Hp
I (S, V, I, R, θ) = λ3(t+i )

λ4(ti) = λ4(t+i ) + Hp
R(S, V, I, R, θ) = λ4(t+i )

The optimality condition at θ = θ∗ implies that
∂Hp

∂θ(ti)
= 0.

Then, after setting S = S∗, we have

Bθ(ti)− aS(ti)λ1(t+i ) + aS(ti)λ2(t+i ) = 0⇒ θ(ti) =
aS(ti)(λ1(t+i )− λ2(t+i ))

B
.

By using the bounds of control defined in (22) and similar detailed calculus as in [38,39], we obtain
the following characterization

θ∗(ti) = min

(
max

(
0,

aS∗(ti)(λ1(t+i )− λ2(t+i ))
B

)
, 1

)

5. Numerical Results

As mentioned in introduction, we aim in this numerical part, to propose a numerical method that
applies exactly the findings of the last theorem. Since all necessary conditions of optimality along with
the characterization of the optimal control, are all found explicitly in this theorem, we do not need any
type of gradient method.

In fact, the four steps of numerical calculus associated with the resolution of our impulse optimal
control problem (22)–(25), are described in Algorithm 1.

Figures 1 and 2 depict SVIR dynamics in the absence and presence of control. As for Figure 3,
we exhibit the recommended pulses.

When we talk about the case when there is no vaccination strategy, we mean that we deal with
the following continuous-time SIR differential equation

Ṡ(t) = Π− βS(t)I(t)− µS(t)
İ(t) = βS(t)I(t)− γI(t)− µI(t)
Ṙ(t) = γI(t)− µR(t)

(29)

for all time t ∈ [0, T], and this system clearly describes the continuous spread of the epidemic in a
population without any control intervention. The behaviors of S(t), I(t) and R(t) for all time t ∈ [0, T]
in this case, are presented with the blue curves in the three figures below. As for the case when we
follow an impulse vaccination strategy subject to (22), the behaviors of S∗(t), I∗(t) and R∗(t) for all
time t ∈ [0, T], are presented with the red curves.
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Algorithm 1: Resolution steps of the two-point boundary value optimal control problem (22)–(25)
Step 0:

Guess an initial estimation to θ.
Step 1:

Use the initial condition S(0), V(0), I(0) and R(0) and the stocked values by θ.
Find the optimal states S∗, V∗, I∗ and R∗ which iterate forward in (23) in the two cases when t 6= ti

and when t = ti. A progressive fourth order Runge-Kutta scheme is incorporated for finding the state
solutions from 0 to a fixed number of iterations m.

Step 2:
Use the stocked values by θ and the transversality conditions (26).
Find the adjoint variables λk for k = 1, 2, 3, 4 which iterate backward in (25) when t 6= ti and

in (26) when t = ti. A regressive fourth order Runge-Kutta scheme is incorporated for finding the
costate solutions from m to 0.

Step 3:
Update the control using new S, V, I, R and λk for k = 1, 2, 3, 4 in the characterization of θ∗ as

presented in(27)
Step 4:

Test the convergence based on the forward-backward sweep method criterion. If the values of the
sought variables in this iteration and the final iteration are sufficiently small, check out the recent
values as solutions. If the values are not small, go back to Step 1.

From most epidemiological data we have revised until now, especially in the case of controllable
epidemics that appeared at specific seasons, we concluded that it is preferable to avoid parameters
values that can lead to claiming the occurrence of an exponential increase of infection and deny the
exponential decrease that just comes after the infection reaches its maximal peak, we also prefer
to not analyze the advantage of our approach on fractions, but instead on numbers of individuals.
The parameters values that will be considered here, may certainly help to understand this phenomenon.
In fact, there was always an urgent control measure which aimed to prevent the spread of epidemics
with the best available resources. The problem as mentioned in [7], is that we cannot be sure that the
infection will not appear again since in practice, it is nearly impossible to vaccinate most susceptible
individuals of a population because not all people would come to be vaccinated and not all vaccinations
are successful [7,38–40]. In the same context, El Kihal et al. discussed other possible reasons such as
the constraint of limited resources as in [38] or infodemics as in [53]. Thus, a better way to avoid the
recurrence of a disease outbreaks, is to follow a control strategy based on pulsed vaccinations.

From Figure 1a, we can observe that the susceptible number S decreases exponentially towards
37 individuals and this is mostly due to infection plus natural death as it can be understood from the
first equation in (29). In fact, the number of infectives I in Figure 2a increases exponentially towards
an important number of more than 54 individuals in during the first week and decreases thereafter to
just 25 individuals in the sixth week because of the natural death and natural recovery as it can also be
deduced from second equation of (29), but this also may be due to another type of control intervention
missed here but not sufficient as infection remains important and needs to be controlled.

In Figure 1a, the optimal state S∗ decreases rapidly towards 38 individuals in the first week and
this value is smaller than the one taken by S because of the optimal impulse control intervention.
However, once we go more forward in time, the effect of control becomes negligible and this causes a
slight increase of S∗ between 10 and 12 days, and then an simultaneous increase of the function I∗ in
Figure 2a in the same period to 57 individuals in the first week but decreases again to 27 people and
this implies to some small increases of S∗ compared to S, and we remark once there is a vaccination
interruption just after the time of impulse, I∗ does a slight jump again and again causing repeated
small decreases of S∗. Simultaneously, the number of removed people R in Figure 1b increases to
57 people before the third week because of the natural recovery or any effect of other missed control
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policy in removing the infectives, while R∗ reaches a value that is higher than this number with a
maximal peak equaling to 62 in the third week.

From Figure 3, we can show that vaccination is recommended in all weeks except on the third
time of impulsion. The optimal values of controls take the value 1 as maximal peak in these weeks
while it is zero in week 3. In fact, as we can observe from Figures 1b and 2a, since R and I functions
do not oscillate during days that are < 14 and > 28 but they increase and decrease in this period
respectively, then, there is no need to introduce any control in the third week.

The main result we can recapitulate from these first three figures is that all S∗, R∗ and I∗ oscillated
in all times of pulsed vaccinations, and once a vaccination is stopped, the infection goes up again in
repeatedly increases with differentiated peaks, and respectively, the level of recovery goes down many
times. As for V∗ in Figure 2b, it is very small because of the small values S∗ has taken in most times
of vaccination.
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week 3
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in Fig 3.

Figure 1. Case (a): Number of susceptible people in the absence and presence of control. Case (b):
Number of removed people in the absence and presence of control. Parameters values: Π = µN0, a = 1,
b = 0.1, β = 0.003, µ = 0.05, γ = 0.1. Initial conditions: S(0) = 89, V(0) = 0, I(0) = 40, R(0) = 0.
Severity weights constants: A = 0.1 and B = 1.
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Figure 2. Case (a): Number of infected people in the absence and presence of control. Case (b): Number
of vaccinated people in the presence of control. Same parameters values, initial conditions, and severity
weights as in Figure 1.
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Figure 3. Value of the sought optimal controls.

6. Discussion and Conclusions

The introduction of a continuous-time control in system (29) as done in [39], would seem less
important than the use of an impulse control when it comes to subject of vaccination since we know
that vaccines are injected on a discrete basis. In fact, with an optimal impulse control strategy, we may
succeed to obtain a reduction in the number of infected people (resp. an augmentation in the number of
removed people) without following a control policy at all continuous-time t. From Figure 4, we remark
there are no oscillations in the curves of I and R functions since there is no interruption in the control
along [0, T]. Although less realistic, the continuous-time control also shows a positive effect on shape
of R (resp. on shape of I) as the recovery has stabilized (resp. the infection has decreased) to small
values a little before than the cases in Figures 1b and 2a. However, vaccination managers would
surely choose recommendations of Figure 4 since the main goal of the minimization problem (21)
with respect to the definition in (20) has been reached in similar way with even many vaccination rest
periods, and this also meets the conclusions of [8,9] that impulses are slightly better than administrating
vaccines continuously. This is to say there is no need to have an optimal control in its maximal bound
suggested overall t as observed in Figure 4. Talking about the bound 1 as maximal suggested value
for the control either in Figure 4 or Figure 3, we mention this is due to the number of infected people
that despite the decrease, its minimal value is still around 40. Thus, we try to resolve and discuss this
problem in the two following figures.
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Figure 4. Infection and recovery behavior in presence of continuous-time control as in (2), with a = 0.5,
b = 10−5 and β = 0.03.

In Figures 5 and 6, we discuss the behaviors of I(t) function and the recommended impulse
controls when the infection transmission rate β varies. In Figure 5, when β = 0.002, we can observe that
the number of infected people decreases now to 20 individuals as minimal value, and simultaneously,
the value of the optimal impulse control in the last week is reduced to 0.75. As for the case when
β = 0.001, I(t) decreases to only 5 individuals while the value of the optimal control takes only 0.14 in
the last week. In the last case of the same figure, we could now say that infection could be eradicated
as long as we move forward in time since I(t) is equal to approximately zero in the 49th day even no
impulse control is suggested in this time but only a value of 0.55 in the previous week is sufficient,
without forgetting the ones values of other controls in the first weeks.



Mathematics 2019, 7, 420 16 of 21

0 10 20 30 40 50
20

25

30

35

40

45

time (in days)

I(
t)

 β=0.002

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time (in days)

θ
*

0 10 20 30 40 50
0

10

20

30

40

β=0.001

time (in days)

I(
t)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time (in days)

θ
*

0 10 20 30 40 50
0

10

20

30

40

 β=0.0005

time (in days)

I(
t)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time (in days)

θ
*

Figure 5. Infection and impulse optimal controls for different values of β. The other parameters are the
same as in Figure 1.

As we wonder whether there is a possibility to avoid more impulses for lesser costs, we found in
Figure 6 that by affecting smaller values to β than in the previous figure, this may be achieved. In fact,
when β = 0.00006, the infection reaches the zero value in the 35th day while there is no suggested
control in the last and sixth weeks with negligible value of the control in week 5 and very small value
in week 4, and with the value 1 as maximal peak in the first week only and the value 0.64 in the second
one. Similar results are obtained when β = 0.00004 with some reduction of 0.1 and 0.2 in the two first
weeks, respectively. As for the last case, when β = 0.00001, the two first impulse optimal controls
take only 0.22 and 0.08 with no recommendations for other weeks. Thus, we deduce that the more the
infection transmission rate is important, the fewer impulse controls are required to introduce and the
infection reaches the zero value in minimal time.
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Figure 6. Infection and impulse optimal controls for different values of β. The other parameters are the
same as in Figure 1.

In Figure 7, we discuss the behaviors of I(t) function and the suggested impulse controls when
the recovery rate γ varies. When γ = 0.2, the infection decreases towards the zero value after only
20 days with the requirement of only two impulse controls taking the values 1 and 0.5 as maximal
peaks in the two first weeks, respectively. Now, when γ = 0.3, the infection lasts only 14 days and
disappears with the introduction of only two impulse controls taking the values 0.48 and 0.07 in weeks
1 and 2, respectively. In the last case, when γ = 0.4, the infection is eradicated after only 11 days with
the effect of only one control in the first week and that takes a very small rate of 0.15 while a second
control appears negligible in week 2. Thus, we deduce that the more the recovery rate is important,
the fewer impulse controls are recommended while I(t) function may reach 0 even before the second
week of intervention.
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Figure 7. Infection and impulse optimal controls for different values of γ and β = 0.0003. The other
parameters are the same as in Figure 1.

From all the results exhibited in the last three figures with different values of γ and β, we can
now agree with the conclusions of [13,14,19] that large pulse vaccination rate will help to eradicate
the disease, but this remains correct only if the transmission rate is not very important since in the
example of Figure 1, despite the distinguishable decrease of infection with respect to the case without
control, the number of infection remains important even if the optimal control in Figure 4 takes its
maximal bound.

Finally, the optimal control strategy subject to our SVIR hybrid epidemic model, showed
promising results when applied for first time in this form to the problem of pulsed vaccinations.
Such optimization approaches can be extended to other applications with better description of
policies that are not followed on continuous basis but rather introduced just between fixed time
intervals. In future work, the potential of this impulse control strategy may also be discussed in case
we focus more on most promiscuous individuals only, as deduced through targeted immunization
approach suggested in [54]. Another interesting work that can meet the idea of impulse vaccination,
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is in [55] where the authors found that the influential nodes are not vaccinated on continuous basis but
just repeatedly.
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