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Abstract: In this paper, we propose a deep-learning-based approach to a class of multiscale problems.
The generalized multiscale finite element method (GMsFEM) has been proven successful as a
model reduction technique of flow problems in heterogeneous and high-contrast porous media.
The key ingredients of GMsFEM include mutlsicale basis functions and coarse-scale parameters,
which are obtained from solving local problems in each coarse neighborhood. Given a fixed medium,
these quantities are precomputed by solving local problems in an offline stage, and result in a
reduced-order model. However, these quantities have to be re-computed in case of varying media
(various permeability fields). The objective of our work is to use deep learning techniques to mimic
the nonlinear relation between the permeability field and the GMsFEM discretizations, and use
neural networks to perform fast computation of GMsFEM ingredients repeatedly for a class of media.
We provide numerical experiments to investigate the predictive power of neural networks and the
usefulness of the resultant multiscale model in solving channelized porous media flow problems.

Keywords: generalized multiscale finite element method; multiscale model reduction; deep learning

1. Introduction

Multiscale features widely exist in many engineering problems. For instance, in porous media
flow, the media properties typically vary over many scales and contain high contrast. Multiscale finite
element methods (MsFEM) [1–3] and generalized multiscale finite element methods (GMsFEM) [4,5]
are designed for solving multiscale problems using local model reduction techniques. In these
methods, the computational domain is partitioned into a coarse grid T H , which does not necessarily
resolve all multiscale features. We further perform a refinement of T H to obtain a fine grid T h,
which essentially resolves all multiscale features. The idea of local model reduction in these methods is
based on idenfications of local multiscale basis functions supported in coarse regions on the fine grid,
and replacement of the macroscopic equations by a coarse-scale system using a limited number of local
multiscale basis functions. As in many model reduction techniques, the computations of multiscale
basis functions, which constitute a small dimensional subspace, can be performed in an offline stage.
For a fixed medium, these multiscale basis functions are reusable for any force terms and boundary
conditions. Therefore, these methods provide substantial computational savings in the online stage,
in which a coarse-scale system is constructed and solved on the reduced-order space.
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However, difficulties arise in situations with uncertainties in the media properties in some local
regions, which are common for oil reservoirs or aquifers. One straightforward approach for quantifying
the uncertainties is to sample realizations of media properties. In such cases, it is challenging to find
an offline principal component subspace which is able to universally solve the multiscale problems
with different media properties. The computation of multiscale basis functions has to be performed in
an online procedure for each medium. Even though the multiscale basis functions are reusable for
different force terms and boundary conditions, the computational effort can grow very huge for a large
number of realizations of media properties. To this end, building a functional relationship between
the media properties and the multiscale model in an offline stage can avoid repeating expensive
computations and thus vastly reduce the computational complexity. Due to the diversity of complexity
of the media properties, the functional relationship is highly nonlinear. Modelling such a nonlinear
functional relationship typically involves high-order approximations. Therefore, it is natural to use
machine learning techniques to devise such complex models. In [6,7], the authors make use of a
Bayesian approach for learning multiscale models and incorporating essential observation data in the
presence of uncertainties.

Deep neural networks is one class of machine learning algorithm that is based on an artificial
neural network, which is composed of a relatively large number of layers of nonlinear processing
units, called neurons, for feature extraction. The neurons are connected to other neurons in the
successive layers. The information propagates from the input, through the intermediate hidden layers,
and to the output layer. In the propagation process, the output in each layer is used as input in the
consecutive layer. Each layer transforms its input data into a little more abstract feature representation.
In between layers, a nonlinear activation function is used as the nonlinear transformation on the
input, which increases the expressive power of neural networks. Recently, deep neural network
(DNN) has been successfully used to interpret complicated data sets and applied to tasks with pattern
recognition, such as image recognition, speech recognition and natural language processing [8–10].
Extensive researches have also been conducted on investigating the expression power of deep neural
networks [11–15].

Results show that neural networks can represent and approximate a large class of functions.
Recently, deep learning has been applied to model reductions and partial differential equations. In [16],
the authors studied deep convolution networks for surrogate model construction. on dynamic flow
problems in heterogeneous media. In [17], the authors studied the relationship between residual
networks (ResNet) and characteristic equations of linear transport, and proposed an interpretation
of deep neural networks by continuous flow models. In [18], the authors combined the idea of the
Ritz method and deep learning techniques to solve elliptic problems and eigenvalue problems. In [19],
a neural network has been designed to learn the physical quantities of interest as a function of random
input coefficients. The concept of using deep learning to generate a reduced-order model for a dynamic
flow has been applied to proper orthogonal decomposition (POD) global model reduction [20] and
nonlocal multi-continuum upscaling (NLMC) [21].

In this work, we propose a deep-learning-based method for fast computation of the GMsFEM
discretization. Our approach makes use of deep neural networks as a fast proxy to compute GMsFEM
discretizations for flow problems in channelized porous media with uncertainties. More specifically,
neural networks are used to express the functional relationship between the media properties and the
multiscale model. Such networks are built up in an offline stage. Sufficient sample pairs are required to
ensure the expressive power of the networks. With different realizations of media properties, one can
use the built network and avoid computations of local problems and spectral problems.

The paper is organized as follows. We start with the underlying partial differential equation that
describes the flow within a heterogeneous media and the main ingredients of GMsFEM in Section 2.
Next, in Section 3, we present the idea of using deep learning as a proxy for prediction of GMsFEM
discretizations. The networks will be precisely defined and the sampling will be explained in detail.
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In Section 4, we present numerical experiments to show the effectiveness of our presented networks on
several examples with different configurations. Finally, a conclusive discussion is provided in Section 5.

2. Preliminaries

In this paper, we are considering the flow problem in highly heterogeneous media

−div
(
κ∇u

)
= f in Ω,

u = 0 or
∂u
∂n

= 0 on ∂Ω,
(1)

where Ω is the computational domain, κ is the permeability coefficient in L∞(Ω), and f is a source
function in L2(Ω). We assume the coefficient κ is highly heterogeneous with high contrast. The classical
finite element method for solving (1) numerically is given by: find uh ∈ Vh such that

a(uh, v) =
∫

Ω
κ∇uh · ∇v dx =

∫
Ω

f v dx = ( f , v) for all v ∈ Vh, (2)

where Vh is a standard conforming finite element space over a partition Th of Ω with mesh size h.
However, with the highly heterogeneous property of coefficient κ, the mesh size h has to be

taken extremely small to capture the underlying fine-scale features of κ. This ends up with a large
computational cost. GMsFEM [4,5] serves as a model reduction technique to reduce the number of
degrees of freedom and attain both efficiency and accuracy to a considerable extent. GMsFEM has
been successfully extended to other formulations and applied to other problems. Here we provide a
brief introduction of the main ingredients of GMsFEM. For a more detailed discussion of GMsFEM
and related concepts, the reader is referred to [22–26].

In GMsFEM, we define a coarse mesh T H over the domain Ω and refine to obtain a fine mesh
T h with mesh size h � H, which is fine enough to restore the multiscale properties of the problem.
Multiscale basis functions are defined on coarse grid blocks using linear combinations of finite element
basis functions on T h, and designed to resolve the local multiscale behaviors of the exact solution.
The multiscale finite element space Vms, which is a principal component subspace of the conforming
finite space Vh with dim(Vms) � dim(Vh), is constructed by the linear span of multiscale basis
functions. The multiscale solution ums ∈ Vms is then defined by

a(ums, v) = ( f , v) for all v ∈ Vms. (3)

We consider the identification of dominant modes for solving (1) by multiscale basis functions,
including spectral basis functions and simplified basis functions, in GMsFEM. Here, we present the
details of the construction of multiscale basis functions in GMsFEM. Let Nx = {xi |1 ≤ i ≤ Nv} be the
set of nodes of the coarse mesh T H . For each coarse grid node xi ∈ Nx, the coarse neighborhood ωi is
defined by

ωi =
⋃
{Kj ∈ T H ; xi ∈ K j}, (4)

that is, the union of the coarse elements Kj ∈ T H containing the coarse grid node xi. An example of
the coarse and fine mesh, coarse blocks and a coarse neighborhood is shown in Figure 1. For each
coarse neighbourhood ωi, we construct multiscale basis functions {φωi

j }
Li
j=1 supported on ωi.

For the construction of spectral basis functions, we first construct a snapshot space V(i)
snap spanned

by local snapshot basis functions ψi,k
snap for each local coarse neighborhood ωi. The snapshot basis

function ψi,k
snap is the solution of a local problem

−div(κ∇ψi,k
snap) = 0, in ωi

ψi,k
snap = δi,k, on ∂ωi.

(5)
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Figure 1. An illustration of coarse mesh (left), a coarse neighborhood and coarse blocks (right).

The fine grid function δi,k is a function defined for all xs ∈ ∂ωi, where {xs} denote the fine degrees
of freedom on the boundary of local coarse region ωi. Specifically,

δi,k(xs) =

{
1 if s = k

0 if s 6= k.
(6)

The linear span of these harmonic extensions forms the local snapshot space V(i)
snap = spank{ψ

i,k
snap}.

One can also use randomized boundary conditions to reduce the computational cost associated with
snapshot calculations [25]. Next, a spectral problem is designed based on our analysis and used
to reduce the dimension of local multiscale space. More precisely, we seek for eigenvalues λi

m and
corresponding eigenfunctions φ

ωi
m ∈ V(i)

snap satisfying

ai(φ
ωi
m , v) = λi

msi(φ
ωi
m , v), ∀v ∈ V(i)

snap, (7)

where the bilinear forms in the spectral problem are defined as

ai(u, v) =
∫

ωi

κ∇u · ∇v,

si(u, v) =
∫

ωi

κ̃uv,
(8)

where κ̃ = ∑j κ|∇χj|2, and χj denotes the multiscale partition of the unity function. We arrange the
eigenvalues λi

m of the spectral problem (7) in ascending order, and select the first li eigenfunctions
{φωi

m }li
m=1 corresponding to the small eigenvalues as the multiscale basis functions.

An alternative way to construct the multiscale basis function is by using the idea of simplified
basis functions. This approach assumes the number of channels and position of the channelized
permeability field are known. Therefore we can obtain multiscale basis functions {φωi

m }li
m=1 using these

information and without solving the spectral problem [27].
Once the multiscale basis functions are constructed, the span of the multiscale basis functions will

form the offline space

V(i)
ms = span{φωi

m }li
m=1,

Vms = ⊕iV
(i)
ms .

(9)
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We will then seek a multlscale solution ums ∈ Vms satisfying

a(ums, v) = ( f , v) for all v ∈ Vms, (10)

which is a Galerkin projection of the (1) onto Vms, and can be written as a system of linear equations

Acuc = bc, (11)

where Ac and bc are the coarse-scale stiffness matrix and load vector. If we collect all the multiscale basis
functions and arrange the fine-scale coordinate representation in columns, we obtain the downscaling
operator R. Then the fine-scale representation of the multiscale solution is given by

ums = Ruc. (12)

3. Deep Learning for GMsFEM

In applications, there are uncertainties within some local regions of the permeability field κ in the
flow problem. Thousands of forward simulations are needed to quantify the uncertainties of the flow
solution. GMsFEM provides us with a fast solver to compute the solutions accurately and efficiently.
Considering that there is a large amount of simulation data, we are interested in developing a method
utilizing the existing offline data and reducing direct computational effort later. In this work, we aim
at using DNN to model the relationship between heterogeneous permeability coefficient κ and the
key ingredients of GMsFEM solver, i.e., coarse scale stiffness matrices and multiscale basis functions.
When the relation is built up, we can feed the network any realization of the permeability field and
obtain the corresponding GMsFEM ingredients, and further restore fine-grid GMsFEM solution of (1).
The general idea of utilizing deep learning in the GMsFEM framework is illustrated in Figure 2.

Figure 2. A flow chart in illustrating the idea of using deep learning in the generalized multiscale finite
element method (GMsFEM) framework.

Suppose that there are uncertainties for the heterogeneous coefficient in a local coarse block
K0, which we call the target block, and the permeability outside the target block remains the same.
For example, for a channelized permeability field, the position, location and the permeability values of
the channels in the target block can vary. The target block K0 is inside three coarse neighborhoods,
denoted by ω1, ω2, ω3. The union of the 3 neighborhoods, i.e.,

ω+(K0) = ω1 ∪ω2 ∪ω3, (13)

are constituted of by the target block K0 and 12 other coarse blocks, denoted by {Kl}12
l=1 A target block

and its surrounding neighborhoods are depicted in Figure 3.
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Figure 3. An illustration of a target coarse block K0 and related neighborhoods.

For a fixed permeability field κ, one can compute the multiscale basis functions φ
ωi
m (κ) defined

by (7), for i = 1, 2, 3, and the local coarse-scale stiffness matrices AKl
c (κ), defined by

[AKl
c (κ)]

i,j
m,n =

∫
Kl

κ∇φ
ωi
m (κ) · ∇φ

ωj
n (κ), (14)

for l = 0, 1, . . . , 12. We are interested in constructing the maps gm,i
B and gl

M, where

• gm,i
B maps the permeability coefficient κ to a local multiscale basis function φ

ωi
m , where i denotes

the index of the coarse block, and m denotes the index of the basis in coarse block ωi

gm,i
B : κ 7→ φ

ωi
m (κ), (15)

• gl
M maps the permeability coefficient κ to the coarse grid parameters AKl

c (l = 0, · · · , 12)

gl
M : κ 7→ AKl

c (κ). (16)

In this work, our goal is to make use of deep learning to build fast approximations of these
quantities associated with the uncertainties in the permeability field κ, which can provide fast and
accurate solutions to the heterogeneous flow problem (1).

For each realization κ, one can compute the images of κ under the local multiscale basis maps gm,i
B

and the local coarse-scale matrix maps gl
M. These forward calculations serve as training samples for

building a deep neural network for approximation of the corresponding maps, i.e.,

Nm,i
B (κ) ≈ gm,i

B (κ),

N l
M(κ) ≈ gl

M(κ).
(17)

In our networks, the permeability field κ is the input, while the multiscale basis functions φ
ωi
m

and the coarse-scale matrix AKl
c are the outputs. Once the neural networks are built, we can use the

networks to compute the multiscale basis functions and coarse-scale parameters in the associated
region for any permeability field κ. Using these local information from the neural networks together
with the global information which can be pre-computed, we can form the downscale operator R with
the multiscale basis functions, form and solve the linear system (11), and obtain the multiscale solution
by (12).
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3.1. Network Architecture

In general, an L-layer neural network N can be written in the form

N (x; θ) = σ(WLσ(· · · σ(W2σ(W1x + b1) + b2) · · · ) + bL), (18)

where θ := (W1, W2, · · · , WL, b1, b2, · · · , bL), W’s are the weight matrices and b’s are the bias vectors,
σ is the activation function, x is the input. Such a network is used to approximate the output y.
Our goal is then to find θ∗ by solving an optimization problem

θ∗ = argmin
θ

L(θ), (19)

where L(θ) is called loss function, which measures the mismatch between the image of the input x
under the the neural network N (x, y; θ) and the desired output y in a set of training samples (xj, yj).
In this paper, we use the mean-squared error metric to be our loss function

L(θ) = 1
N

N

∑
j=1
‖yj −N (xj; θ)‖2

2, (20)

where N is the number of the training samples. An illustration of a deep neural network is shown
in Figure 4.

Figure 4. An illustration of a deep neural network.

Suppose we have a set of different realizations of the permeability {κ1, κ2, · · · , κN} in the target
block. In our network, the input xj = κj ∈ Rd is a vector containing the permeability image pixels

in the target block. The output yj is an entry of the local stiffness matrix AKl
c , or the coordinate

representation of a multiscale basis function φ
ωi
m . We will make use of these sample pairs (xj, yj) to

train a deep neural network Nm,i
B (x; θ∗B) and N l

M(x; θ∗M) by minimizing the loss function with respect
to the network parameter θ, such that the trained neural networks can approximate the functions gm,i

B
and gl

M, respectively. Once the neural is constructed, for some given new permeability coefficient
κN+1, we use our trained networks to compute a fast prediction of the outputs, i.e., local multiscale
basis functions φ

ωi ,pred
m by

φ
ωi ,pred
m (κN+1) = Nm,i

B (κN+1; θ∗B) ≈ gm,i
B (κN+1) = φ

ωi
m (κN+1), (21)

and local coarse-scale stiffness matrix AKl ,pred
c by

AKl ,pred
c (κN+1) = N l

M(κN+1; θ∗M) ≈ gl
M(κN+1) = AKl

c (κN+1). (22)
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3.2. Network-Based Multiscale Solver

Once the neural networks are built, we can assemble the predicted multiscale basis functions to
obtain a prediction Rpred for the downscaling operator, and assemble the predicted local coarse-scale
stiffness matrix AKl ,pred

c in the global matrix Apred
c . Following (11) and (12), we solve the predicted

coarse-scale coefficient vector upred
c from the following linear system

Apred
c upred

c = bc, (23)

and obtain the predicted multiscale solution upred
ms by

upred
ms = Rpredupred

c . (24)

4. Numerical Results

In this section, we present some numerical results for predicting the GMsFEM ingredients and
solutions using our proposed method. We considered permeability fields κ with high-contrast channels
inside the domain Ω = (0, 1)2, which consist of uncertainties in a target cell K0. More precisely,
we considered a number of random realizations of permeability fields κ1, κ2, κ3, · · · , κN+M.
Each permeability field contained two high-conductivity channels, and the fields differ in the target
cell K0 by:

• in experiment 1, the channel configurations were all distinct, and the permeability coefficients
inside the channels were fixed in each sample (see Figure 5 for illustrations), and

• in experiment 2, the channel configurations were randomly chosen among five configurations,
and the permeability coefficients inside the channels followed a random distribution (see Figure 6
for illustrations).

In these numerical experiments, we assumed there were uncertainties in only the target block K0.
The permeability field in Ω \ K0 was fixed across all the samples.

We followed the procedures in Section 3 and generated sample pairs using GMsFEM. Local
spectral problems were solved to obtain the multiscale basis functions φ

ωi
m . In the neural network, the

permeability field x = κ was considered to be the input, while the local multiscale basis functions
y = φ

ωi
m and local coarse-scale matrices y = AKl

c were regarded as the output. These sample pairs
were divided into the training set and the learning set in a random manner. A large number N of
realizations, namely κ1, κ2, . . . , κN , were used to generate sample pairs in the training set, while the
remaining M realizations, namely, κN+1, κN+2, . . . , κN+M are used in testing the predictive power of
the trained network. We remark that, for each basis function and each local matrix, we solved an
optimization problem in minimizing the loss function defined by the sample pairs in the training set,
and build a separate deep neural network. We summarize the network architectures for training local
coarse scale stiffness matrix and multiscale basis functions as below:

• For the multiscale basis function φ
ωi
m , we built a network Nm,i

B using

– Input: vectorized permeability pixels values κ,
– Output: coefficient vector of multiscale basis φ

ωi
m (κ) on coarse neighborhood ωi,

– Loss function: mean squared error
1
N

N

∑
j=1
||φωi

m (κj)−Nm,i
B (κj; θB)||22,

– Activation function: leaky ReLu function,
– DNN structure: 10–20 hidden layers, each layer have 250–350 neurons,
– Training optimizer: Adamax.

• For the local coarse scale stiffness matrix AKl
c , we build a network N l

M using
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– Input: vectorized permeability pixels values κ,
– Output: vectorized coarse scale stiffness matrix AKl

c (κ) on the coarse block Kl ,

– Loss function: mean squared error
1
N

N

∑
j=1
||AKl

c (κj)−N l
M(κj; θM)||22,

– Activation function: ReLu function (rectifier),
– DNN structure: 10–16 hidden layers, each layer have 100–500 neurons,
– Training optimizer: Proximal Adagrad.

For simplicity, the activation functions ReLU function [28] and Leaky ReLU function were used
as they have the simplest derivatives among all nonlinear functions. The ReLU function proved to
be useful in training deep neural network architectures. The Leaky ReLU function can resolve the
vanishing gradient problem which can accelerate the training in some occasions. The optimizers
Adamax and Proximal Adagrad are stochastic gradient descent (SGD)-based methods commonly
used in neural network training [29]. In both experiments, we trained our network using Python API
Tensorflow and Keras [30].

Once a neural network was built on training, it can be used to predict the output given a new
input. The accuracy of the predictions is essential in making the network useful. In our experiments,
we used M sample pairs, which were not used in training the network, to examine the predictive
power of our network. On these sample pairs, referred to as the testing set, we compared the prediction
and the exact output and computed the mismatch in some suitable metric. Here, we summarize the
metric used in our numerical experiment. For the multiscale basis functions, we compute the relative
error in L2 and H1 norm, i.e.,

eL2(κN+j) =


∫

Ω

∣∣∣φωi
m (κN+j)− φ

ωi ,pred
m (κN+j)

∣∣∣2∫
Ω

∣∣φωi
m (κN+j)

∣∣2


1
2

,

eH1(κN+j) =


∫

Ω

∣∣∣∇φ
ωi
m (κN+j)−∇φ

ωi ,pred
m (κN+j)

∣∣∣2∫
Ω

∣∣∇φ
ωi
m (κN+j)

∣∣2


1
2

.

(25)

For the local stiffness matrices, we computed the relative error in entrywise `2, entrywise `∞ and
Frobenius norm, i.e.,

e`2(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖2

‖AKl
c (κN+j)‖2

,

e`∞(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖∞

‖AKl
c (κN+j)‖∞

,

eF(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖F

‖AKl
c (κN+j)‖F

.

(26)

A more important measure of the usefulness of the trained neural network is the predicted
multiscale solution upred

ms (κ) given by (23) and (24). We compared the predicted solution to ums defined
by (11) and (12), and computed the relative error in L2 and energy norm, i.e.,
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eL2(κN+j) =


∫

Ω

∣∣∣ums(κN+j)− upred
ms (κN+j)

∣∣∣2∫
Ω

∣∣ums(κN+j)
∣∣2


1
2

,

ea(κN+j) =


∫

Ω κj

∣∣∣∇ums(κN+j)−∇upred
ms (κN+j)

∣∣∣2∫
Ω κj

∣∣∇ums(κN+j)
∣∣2


1
2

.

(27)

4.1. Experiment 1

In this experiment, we considered curved channelized permeability fields. Each permeability
field contained a straight channel and a curved channel. The straight channel was fixed and the curved
channel struck the boundary of the target cell K0 at the same points. The curvature of the sine-shaped
channel inside K0 varied among all realizations. We generated 2000 realizations of permeability fields,
where the permeability coefficients were fixed. Samples of permeability fields are depicted in Figure 5.
Among the 2000 realizations, 1980 sample pairs were randomly chosen and used as training samples,
and the remaining 20 sample pairs were used as testing samples.

Figure 5. Samples of permeability fields in the target block K0 in experiment 1.

For each realization, we computed the local multiscale basis functions and local coarse-scale
stiffness matrix. In building the local snapshot space, we solved for harmonic extension of all the
fine-grid boundary conditions. Local multiscale basis functions were then constructed by solving the
spectral problem and multiplied the spectral basis functions with the multiscale partition of unity
functions. With the offline space constructed, we computed the coarse-scale stiffness matrix. We used
the training samples to build deep neural networks for approximating these GMsFEM quantities, and
examined the performance of the approximations on the testing set.
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Tables 1–3 record the error of the prediction by the neural networks in each testing sample and
the mean error measured in the defined metric. It can be seen that the predictions were of high
accuracy. This is vital in ensuring the predicted GMsFEM solver is useful. Table 4 records the error
of the multiscale solution in each testing sample and the mean error using our proposed method.
It can be observed that using the predicted GMsFEM solver, we obtained a good approximation of the
multiscale solution compared with the exact GMsFEM solver.

Table 1. Percentage error of multiscale basis functions φωi
1 in experiment 1.

Sample ω1 ω2 ω3

j eL2 eH1 eL2 eH1 eL2 eH1

1 0.47% 3.2% 0.40% 3.6% 0.84% 5.1%
2 0.45% 4.4% 0.39% 3.3% 1.00% 6.3%
3 0.34% 2.3% 0.40% 3.1% 0.88% 4.3%
4 0.35% 4.2% 0.43% 5.4% 0.94% 6.6%
5 0.35% 3.3% 0.37% 3.9% 0.90% 6.1%
6 0.51% 4.7% 0.92% 12.0% 2.60% 19.0%
7 0.45% 4.1% 0.38% 3.2% 1.00% 6.4%
8 0.31% 3.4% 0.43% 5.5% 1.10% 7.7%
9 0.25% 2.2% 0.46% 5.6% 1.10% 6.2%
10 0.31% 3.5% 0.42% 4.5% 1.30% 7.6%

Mean 0.38% 3.5% 0.46% 5.0% 1.17% 7.5%

Table 2. Percentage error of multiscale basis functions φωi
2 in experiment 1.

Sample ω1 ω2 ω3

j eL2 eH1 eL2 eH1 eL2 eH1

1 0.47% 4.2% 0.40% 1.4% 0.32% 1.1%
2 0.57% 3.2% 0.31% 1.4% 0.30% 1.1%
3 0.58% 2.7% 0.31% 1.4% 0.33% 1.1%
4 0.59% 3.6% 0.13% 1.3% 0.32% 1.1%
5 0.53% 4.0% 0.51% 1.6% 0.27% 1.0%
6 0.85% 4.3% 0.51% 2.1% 0.29% 1.3%
7 0.50% 2.7% 0.22% 1.5% 0.29% 1.0%
8 0.43% 4.5% 0.61% 1.9% 0.35% 1.1%
9 0.71% 2.9% 0.14% 1.4% 0.27% 1.1%
10 0.66% 4.4% 0.53% 1.8% 0.26% 1.1%

Mean 0.59% 3.6% 0.37% 1.6% 0.30% 1.1%

Table 3. Percentage error of the local stiffness matrix AK0
c in experiment 1.

Sample j e`2 eF

1 0.67% 0.84%
2 0.37% 0.37%
3 0.32% 0.38%
4 1.32% 1.29%
5 0.51% 0.59%
6 4.43% 4.28%
7 0.34% 0.38%
8 0.86% 1.04%
9 1.00% 0.97%

10 0.90% 1.08%

Mean 0.76% 0.81%
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Table 4. Percentage error of multiscale solution ums in experiment 1.

Sample j eL2 ea

1 0.31% 4.58%
2 0.30% 4.60%
3 0.30% 4.51%
4 0.27% 4.60%
5 0.29% 4.56%
6 0.47% 4.67%
7 0.39% 4.70%
8 0.30% 4.63%
9 0.35% 4.65%

10 0.31% 4.65%

Mean 0.33% 4.62%

4.2. Experiment 2

In this experiment, we considered sine-shaped channelized permeability fields. Each permeability
field contained a straight channel and a sine-shaped channel. There were altogether five channel
configurations, where the straight channel was fixed and the sine-shaped channel struck the boundary
of the target cell K0 at the same points. The curvature of the sine-shaped channel inside K0 varied
among these configurations. For each channel configuration, we generated 500 realizations of
permeability fields, where the permeability coefficients followed random distributions. Samples
of permeability fields are depicted in Figure 6. Among the 2500 realizations, 2475 sample pairs were
randomly chosen and used as training samples, and the remaining 25 sample pairs were used as
testing samples.

Figure 6. Samples of permeability fields in the target block K0 in experiment 2.

Next, for each realization, we computed the local multiscale basis functions and local coarse-scale
stiffness matrix. In building the local snapshot space, we solved for harmonic extension of
randomized fine-grid boundary conditions, so as to reduce the number of local problems to be solved.
Local multiscale basis functions were then constructed by solving the spectral problem and multiplied
the spectral basis functions with the multiscale partition of unity functions. With the offline space
constructed, we computed the coarse-scale stiffness matrix. We used the training samples to build
deep neural networks for approximating these GMsFEM quantities, and examined the performance of
the approximations on the testing set.
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Figures 7–9 show the comparison of the multiscale basis functions in two respective coarse
neighborhoods. It can be observed that the predicted multiscale basis functions were in good agreement
with the exact ones. In particular, the neural network successfully interpreted the high conductivity
regions as the support localization feature of the multiscale basis functions. Tables 5 and 6 record the
mean error of the prediction by the neural networks, measured in the defined metric. Again, it can be
seen that the prediction are of high accuracy. Table 7 records the mean error between the multiscale
solution using the neural-network-based multiscale solver and using exact GMsFEM. we obtain a
good approximation of the multiscale solution compared with the exact GMsFEM solver.

Figure 7. Exact multiscale basis functions φω1
m (left), predicted multiscale basis functions φ

ω1,pred
m

(middle) and their differences (right) in the coarse neighborhood ω1 in experiment 2. The first row and
the second row illustrate the first basis function φω1

1 and the second basis function φω1
2 , respecitvely.

Figure 8. Exact multiscale basis functions φω2
m (left), predicted multiscale basis functions φ

ω2,pred
m

(middle) and their differences (right) in the coarse neighborhood ω2 in experiment 2. The first row and
the second row illustrate the first basis function φω2

1 and the second basis function φω2
2 , respecitvely.
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Figure 9. Exact multiscale basis functions φω3
m (left), predicted multiscale basis functions φ

ω3,pred
m

(middle) and their differences (right) in the coarse neighborhood ω3 in experiment 2. The first row and
the second row illustrate the first basis function φω3

1 and the second basis function φω3
2 , respecitvely.

Table 5. Mean percentage error of multiscale basis functions φωi
m in experiment 2.

Basis ω1 ω2 ω3

m eL2 eH1 eL2 eH1 eL2 eH1

1 0.55 0.91 0.37 3.02 0.20 0.63
2 0.80 1.48 2.17 3.55 0.27 1.51

Table 6. Percentage error of the local stiffness matrix AK0
c in experiment 2.

e`2 e`∞ eF

Mean 0.75 0.72 0.80

Table 7. Percentage error of multiscale solution ums in experiment 2.

eL2 ea

Mean 0.03 0.26

5. Conclusions

In this paper, we develop a method using deep learning techniques for fast computation of
GMsFEM discretizations. Given a particular permeability field, the main ingredients of GMsFEM,
including the multiscale basis functions and coarse-scale matrices, are computed in an offline stage by
solving local problems. However, when one is interested in calculating GMsFEM discretizations for
multiple choices of permeability fields, repeatedly formulating and solving such local problems could
become computationally expensive or even infeasible. Multi-layer networks are used to represent the
nonlinear mapping from the fine-scale permeability field coefficients to the multiscale basis functions
and the coarse-scale parameters. The networks provide a direct fast approximation of the GMsFEM
ingredients in a local neighborhood for any online permeability fields, in contrast to repeatedly
formulating and solving local problems. Numerical results are presented to show the performance of
our proposed method. We see that, given sufficient samples of GMsFEM discretizations for supervised
training, deep neural networks are capable of providing reasonably close approximations of the exact
GMsFEM discretization. Moreover, the small consistency error provides good approximations of
multiscale solutions.
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