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Abstract: The Delta robots are widely used in packaging, sorting, precision positioning, and other
fields. Motion accuracy is an important indicator for evaluating robot performance. However, due to
the existence of mechanism errors, the motion accuracy of the robot will be reduced. Therefore, how
to reduce motion errors and improve accuracy are important issues for robots. The purpose of the
present study is to analyze the motion error and propose an error compensation scheme to improve
the motion accuracy of the robot. Firstly, the kinematic model of the robot is established by the D-H
matrix transformation method. An error model considering dimension error, the error of revolute
joint clearance, driving error, and the error of spherical joint clearance is established. Additionally,
the influence of different errors on the motion accuracy is analyzed. Secondly, an error compensation
strategy of controlling the driving angle is proposed. The analysis of error compensation is carried
out by a numerical example. Comparing the results before and after compensation, it is known that
the robot can move along the desired position, so the notion error of the robot is compensated, which
proves that this method is effective for improving the motion accuracy of the robot.
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1. Introduction

Compared with serial robots, parallel robots have the advantages of large carrying capacity,
good motion performance, fast moving speed, etc. [1–4]. Delta parallel robots [5] are widely used in
assembly detection, packaging, precision positioning, and other fields. People’s demand for accuracy
in parallel robots is also increasing. Motion accuracy is an important index to evaluate the quality of
mechanisms [6,7]. However, due to the existence of the mechanism errors, the end effector of the robot
will produce certain motion error, which will reduce the motion accuracy of the mechanism. Therefore,
how to compensate the error and improve motion accuracy of the robot has become an important
research issue.

Aimed at the motion accuracy of robots, Xu established the error model and performed a kinematic
reliability and sensitivity analysis of the modified Delta robot. However, the influence of the clearance
error is not considered in the paper, and the error compensation method is not further proposed [8].
Bai et al. deals with kinematic calibration of the Delta robot using distance measurements. A linearized
compensator for real-time error compensation is designed in the paper. The experimental results show
that the method can improve the positioning accuracy of the robot [9]. Zhou et al. established the
coordinate system of the robot and took into account the errors introduced by the joint parameters of the
robot, established the pose error model of the robot, and proposed a precision compensation method
for industrial robots based on spatial interpolation [10,11]. Peng proposed a method of controlling the
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driving angle to compensate the error of the robot. A new type of trajectory planning and positioning
error compensation interface for the serial robot was developed [12]. The results showed that the
compensation effect of positioning error was good, which provides an effective method for improving
the positioning accuracy of robots. Vischer and Clavel proposed a method of error calibration and
established the parametric model of the Delta robot by the vector method. The kinematics calibration
of the robot is carried out by implicit calibration and semi-parametric calibration. The kinematic
error of the robot is reduced and the kinematic precision is improved by calibration [13]. Wang [14]
proposed a robot manipulator calibration method using a camera-based measurement system and
a neural network algorithm. A neural network model is utilized to approximate the error surface.
A significant improvement in accuracy is obtained by the proposed techniques in comparison with
traditional bilinear analytical methods.

Among the existing literature, a great deal of research has focused on the dimension errors of the
components, while few studies considered the clearance errors. Since parallel mechanisms are used
in high-speed situations, the error of joint clearance will reduce the kinematic accuracy and motion
stability of mechanisms, so the influence of the clearance error should be considered. In addition, robot
accuracy compensation can be divided into two methods according to different control methods: one
is to increase the end feedback detection and achieve full closed-loop control [15,16]. This method
usually uses the embedded control method to integrate the laser tracker, robot, and control computer to
quickly and instantaneously feedback the pose of the robot, thereby improving the positioning accuracy.
The other method is to improve the absolute positioning accuracy by calibration. These methods have
a certain compensation effect, but require higher experimental conditions.

The purpose of the present study is to analyze the motion error and propose an error compensation
strategy to improve the motion accuracy of the robot. Firstly, the kinematic model of the robot is
established by the D-H matrix transformation method. An error model considering dimension
error, the error of revolute joint clearance, driving error, and the error of spherical joint clearance is
established. And the influence of different errors on the motion accuracy is analyzed. Secondly, this
paper intends to apply the method of controlling the driving angle to the Delta parallel robot. An error
compensation strategy is proposed. Then the error compensation analysis of the robot is carried out
and the effectiveness of the strategy is verified by numerical examples.

2. The Coordinate System of the Delta Parallel Mechanism

The structural model of the Delta parallel robot is shown in Figure 1, and the kinematic chain of
the Delta parallel robot is shown in Figure 2.
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Figure 1. The structural model of the robot.
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Figure 2. Motion diagram of the kinematic chain.

The global coordinate system O–XYZ is located at the center point of the fixed platform at point
O. The X axis points to the OA1, the Y axis is perpendicular to the platform surface, and the negative
direction of the Y axis is the gravity direction of the moving platform.

The position of the rotating pair on the fixed platform and the moving platform is arranged in a
triangle, of which the circumradius is respectively r1 and r2. The length of the driving arm AiBi is a,
and the length of the parallelogram mechanism (the driven arm BiCi) is c. The length of PN of the
mechanism is d (PN is the distance between the center point P of the moving platform and the origin
N of the local coordinate system). αi is the angle between the OAi and the global coordinate X axis,
which is shown in the diagram. When the corresponding kinematic chain i is 1, 2, 3, αi is 0

◦

, 120
◦

, and
240

◦

, respectively. The input angle (driving angle) is θi1, θ4, θ5, and the rotation angle of driven arm is
θi2. The swing angle of driven arm is θi3. Point N is the origin of (xyz)6 in the local coordinate system.
Point T is the working position.

3. Modeling of Mechanism Position Error

According to the structural characteristics of the delta parallel robot, it can be seen that the sources
of the position error of the mechanism are mainly in the following categories:

(1) Dimension error;
(2) The error of revolute joint clearance;
(3) Driving error; and
(4) The error of spherical joint clearance.

3.1. Considering Dimension Error

According to the homogeneous transformation rule, we can get the homogeneous transformation
matrix between local coordinate systems, as shown in Table 1.

M(x, r1) =


1 0 0 r1

0 1 0 0
0 0 1 0
0 0 0 1

 (1)
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R(y,αi) =


cosαi 0 sinαi 0

0 1 0 0
− sinαi 0 cosαi 0

0 0 0 1

 (2)

Table 1. Homogeneous transformation matrix between local coordinate systems.

Local Coordinate System Variable θi Homogeneous Transformation Matrix

(xyz)1 θi1
OT1 = R(y,αi)M(x, r1)R(z,−θi1)

(xyz)2 θi2
1T2 = R(x, a)M(z,θi1)R(z,−θi2)

(xyz)3 θi3
2T3 = R(y,θi3)

(xyz)4 None 3T4 = M(x, c)R(y,−θi3)R(z,θi2)
(xyz)5 θ4

4T5 = M(x,−r2)R(y,−αi)R(y,θ4)
(xyz)6 θ5

5T6 = M(y,−d)R(x,θ5)

Note: M(x, r1) represents a homogeneous transformation matrix that translates r1 unit vectors along the x-axis of
the local coordinate system. R(y,αi) represents the homogeneous transformation matrix that rotates the αi angle
around the y-axis of the local coordinate system. For instance, the expressions of M(x, r1) and R(y,αi) are as follows.
The rest are similar and the same is available.

Therefore, the homogeneous transformation matrix OT6 of the coordinate system (xyz)6 relative
to the global coordinate system (XYZ)O can be expressed in two ways as follows:

OT6 =
6∏

k=1

k−1Tk

=


cosθ4 sinθ5 sinθ4 cosθ5 sinθ4

0 cosθ5 − sinθ5

− sinθ4 sinθ5 cosθ4 cosθ5 cosθ4

0 0 0

a cosαi cosθi1 + c(cosαi cosθi2 cosθi3 − sinαi sinθi3) + (r1 − r2) cosαi
−d− c sinθi2 cosθi3 − a sinθi1

−a sinαi cosθi1 − c(cosαi sinθi3 + sinαi cosθi2 cosθi3) + (r2 − r1) sinαi
1


,

(3)

Let Equation (3) be transformed as follows:
R(y,αi)

−1OT6R(x,θ5)
−1M(y,−d)−1R(y,θ4)

−1R(y,−αi)
−1. The converted matrix is denoted as T.

We can obtain:

T =


1 0 0 x cosαi − z sinαi
0 1 0 d + y
0 0 1 x sinαi + z cosαi
0 0 0 1

, (4)

T =


1 0 0 r1 − r2 + c cosθi2 cosθi3 + a cosθi1
0 1 0 −c sinθi2 cosθi3 − a sinθi1
0 0 1 −c sinθi3
0 0 0 1

. (5)

From Equations (4) and (5), we can obtain:

x = −c sinθi3 sinαi + r1 cosαi − r2 cosαi
+a cosθi1 cosαi + c cosθi2 cosθi3 cosαi

y = −a sinθi1 − c sinθi2 cosθi3 − d
z = −c sinθi3 cosαi − r1 sinαi + r2 sinαi
−a cosθi1 sinαi − c cosθi2 cosθi3 sinαi

. (6)



Mathematics 2019, 7, 411 5 of 14

Equation (6) is the relationship between the end output position and the structural parameters in
the ideal case. In fact, the parameters of each structure have certain deviations due to the influence of
various factors.

The Taylor series expansion is carried out at each parameter of Equation (6). The expression is
obtained as follows: 

∆xo =
3∑

i=1
(cosαi∆ri1 − cosαi∆ri2 + cosθi1 cosαi∆ai

+(cosθi2 cosθi3 cosαi − sinθi3 sinαi)∆ci
+(−ri1 sinαi + ri2 sinαi − ai cosθi1 sinαi
−ci cosθi2 cosθi3 sinαi − ci sinθi3 cosαi)∆αi)

∆yo = −
3∑

i=1
(sinθi1∆ai + sinθi2 cosθi3∆ci) − ∆d

∆zo =
3∑

i=1
(− sinαi∆ri1 + sinαi∆ri2 − cosθi1 sinαi∆ai

−(cosθi2 cosθi3 sinαi + sinθi3 cosαi)∆ci
+(−ri1 cosαi + ri2 cosαi − ai cosθi1 cosαi
−ci cosθi2 cosθi3 cosαi + ci sinθi3 sinαi)∆αi)

. (7)

The relation between the input error and the output error of the mechanism is obtained from
Equation (7).

According to the above equation, the error sources are ∆ri1, ∆ri2, ∆ai, ∆ci, ∆αi, etc. Moreover,
there are also errors in revolute joints, driving errors, and errors in spherical joints.

3.2. Considering the Error of Revolute Joint Clearance

The existence of clearances in these joints is inevitable due to machining tolerances, wear, and
material deformation. The revolute joint of the Delta robot is composed of a sleeve hole and a shaft.
The error of the revolute joint is the difference between the radii of the two components, that is,
the clearance error is the radial error of the revolute joint. Therefore, the planar model is used to
describe the clearance of the revolute joint, as shown in Figure 3.
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The error circle is the circle with a radius of Rei. From the model of revolute joint, we can obtain:

Rei = R1 −R2, (8)

where R1 and R2 are radii of the sleeve hole and the shaft.
This paper only considers the clearance error between the revolute joint of the platform and the

driving arm. According to the effective length theory [17], the clearance error Rei of the revolute joint
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is equivalent to the change in length of the driving arm ∆a. Namely, Rei = ∆a. Therefore, the error
caused by the revolute joint is as follows:

∆xR =
3∑

i=1
cosθi1 cosαiRei

∆yR = −
3∑

i=1
sinθi1Rei

∆zR = −
3∑

i=1
cosθi1 sinαiRei

. (9)

3.3. Considering Driving Error

The input angle θi1 is the driving angle of the mechanism at any moment. The first-order Taylor
series expansion of the Equation (6) at θi1. Therefore, the error caused by driving error is as follows:

∆xD =
3∑

i=1
−a sinθi1 cosαi∆θi1

∆yD =
3∑

i=1
−a cosθi1∆θi1

∆zD =
3∑

i=1
a sinθi1 sinαi∆θi1

. (10)

3.4. Considering the Error of Spherical Joint Clearance

The structure of spherical joint is composed of spherical shell and sphere. The structure of the
spherical joint is shown in Figure 4. When the robot works, the sphere moves in the spherical shell,
and the motion model at this time is a spatial model. Ideally, the spherical center of the sphere is
located at point O. Since the clearance is inevitable, the spherical center is actually located at point
O′. In this case, the distance between the center of the sphere and the origin is the clearance of the
spherical joint.
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The error of the spherical joint affects the output error of the Delta parallel robot. The spherical
joint constrains the translational freedom in three directions, while it does not limit the rotational
degree of freedom. Therefore, the error caused by the clearance between the spherical joint is only three
translational errors [18]. Namely, the errors in the x, y, and z directions are ∆x, ∆y, ∆z, respectively.

When the clearance error of the spherical joint is ρ, the angle between the projection in the xy plane
of ρ and the x axis is α, and the angle between the clearance direction and the z axis is β. The errors of
the spherical joint in the x, y, and z directions are as follows:
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∆xQ = ρ sin β cosα
∆yQ = ρ sin β sinα
∆zQ = ρ cos β

. (11)

According to the structural diagram of the Delta parallel mechanism, it is known that the clearance
ρ of spherical joint is equivalent to the change in length of the parallelogram mechanism (driven arm)
rod ∆c. Namely, ρ = ∆c.Therefore, the position error of the end effector caused by the spherical joint is
equivalent to the output error considering ∆c. Thus, it can be obtained:

∆xQ =
3∑

i=1
(cosθi2 cosθi3 cosαi − sinθi3 sinαi)ρ

∆yQ = −
3∑

i=1
sinθi2 cosθi3ρ

∆zQ = −
3∑

i=1
(cosθi2 cosθi3 sinαi + sinθi3 cosαi)ρ

. (12)

From the above analysis, the total position error of the end effector in the x, y and z directions is
the superposition of the four kinds of errors above at any time. Thus, it can be obtained:

∆q = ∆qO + ∆qR + ∆qD + ∆qQ =
n∑

i=1

Kqsi∆si, q = x, y, z. (13)

In Equation (13), Kqsi is the error transfer coefficient of ∆si.
The value of Kqsi is usually determined by the posture and structural parameters of the mechanism

together. The value of Kqsi can quantitatively reflect the degree of the influence of error ∆si on the
motion accuracy of the robot.

4. Error Compensation Strategy

4.1. Error Synthesis of the Robot

Since the influence of each error source is independent with each other, the total error of the end
effector is the sum of the error values caused by the error sources. According to Equation (13), the total
error caused in x, y, and z direction is ∆x,∆y, and ∆z, respectively. Based on the error model of the
mechanism, the positioning error of the end effector can be obtained, which provides a data basis for
error compensation.

In addition, because errors such as ∆ri1, ∆ri2, ∆ai, ∆ci, ∆αi, Rei, ρ belong to structural errors, they
are mainly produced by the process of manufacturing and assembly, etc. These errors are unavoidable,
and the cost of improving motion accuracy by controlling these errors is too high and the effect is not
obvious. Therefore, the total error caused by each error source is equivalent to the angle of the driving
arm, and the error compensation is realized by controlling the driving angle, then the motion accuracy
of the robot is improved.

4.2. Error Compensation Principle

The schematic diagram of error compensation is shown in Figure 5, where P is the desired position.
When the end effector of the robot reaches the desired position P, the theoretical value of driving

angle θi1 can be calculated by the inverse kinematic equation. The calculation process of the driving
angle θi1 is as follows:

From Equations (4) and (5), it is known that:
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T =


1 0 0 x cosαi − z sinαi
0 1 0 d + y
0 0 1 x sinαi + z cosαi
0 0 0 1

, T =


1 0 0 r1 − r2 + c cosθi2 cosθi3 + a cosθi1
0 1 0 −c sinθi2 cosθi3 − a sinθi1
0 0 1 −c sinθi3
0 0 0 1

.
Setting tx = x cosαi − z sinαi, ty = d + y, tz = x sinαi + z cosαi, we can obtain:

θi1 = 2arctan

−ti1 ±
√

t2i1 − 4ti2ti0

2ti2

,
where:

ti2 = b0
2
− k0

2
− a2
− ty

2
− 2ak0,

ti1 = −4aty,ti0 = b0
2
− k0

2
− a2
− ty

2 + 2ak0,b0 = c cosθi3, k0 = tx − r1 + r2

Thus, the driving angle θi1 is obtained by the inverse equation of the robot.
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However, due to various error factors of the mechanism, there are differences between the actual
kinematic parameters and theoretical values. Therefore, there are deviations between the actual
trajectory and the theoretical trajectory of the robot. Therefore, when the driving angle θi1 obtained by
the inverse solution is used to drive the robot, the deviation between the actual position and the desired
position is the position error of the robot. The position error is denoted as ∆P. In three directions,
∆P can be calculated from Equation (13). Thus, when no error compensation is performed, the actual
position of the robot is P + ∆P.

In order to compensate for the positioning error of the robot due to the parameter errors, the desired
position P is replaced by the position P − ∆P by biasing a numerical value −∆P,that is, the inverse
solution is calculated with P− ∆P instead of P, and then the driving angle θi1

′ of the inverse solution
is used to drive the robot. Then the motion error ∆P′ caused by the mechanism errors and the bias
−∆P will cancel out, If the first compensation does not reach the predetermined accuracy, the second
compensation can be made on the basis of the first compensation. The actual position of the robot
will be closer to the desired position P. The compensation is completed until the desired accuracy is
achieved. The results of the first compensation provide the data basis for the second compensation.
This is the principle of error compensation for the mechanism.

5. Numerical Example

The structure parameters of the Delta parallel mechanism are as follows: r1 = 200 mm, r2 = 200 mm,
a = 200 mm, c = 400 mm, α1 = 0

◦

, α2 = 120
◦

, α3 = 240
◦

, β = 0
◦

. The trajectory of the center
point of the mechanism end actuator is as follows: x = 30 sin(120

◦

t) (mm), y = −500 − 20t(mm),
z = −30 cos(120

◦

t) + 30 (mm), and the exercise time is 3 s. The position error of the mechanism is
related to the following error sources: ∆ri1, ∆ri2, ∆ai, ∆ci, ∆αi, ∆θi1, Rei, ρ. The original input errors of
the mechanism is shown in Table 2.
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According to the error expressions, the error transfer coefficient of the error sources can be
obtained. For instance, The error transfer coefficient of length error of the driving arm ∆ai and the
driving angle ∆θi1 in x, y, and z direction is shown in Figures 6 and 7.

Table 2. Numerical values of input errors.

Original Input Errors(i = 1,2,3) Numerical Value

Dimension error of the fixed platform ∆ri1/mm 0.02
Dimension error of the moving platform ∆ri2/mm 0.02

Length error of the driving arm ∆ai/mm 0.02
Length error of the driven arm ∆ci/mm 0.02

Installation error ∆αi/rad 0.02
Driving error ∆θi1/rad 0.02

The error of revolute joint clearance Rei/mm 0.02
The error of spherical joint clearance ρ/mm 0.02
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Similarly, the error transfer coefficient graphs of other error sources can be obtained, but are
omitted here.

According to the simulation results, it can be seen that the error transfer coefficient of the driving
angle ∆θi1 is obviously larger than that of other error sources. Driving error is the main factor
affecting the position error of the mechanism. The influence of driving error on motion accuracy of the
mechanism is decisive, so it should be strictly controlled. The effect of the other mechanism errors on
motion accuracy is small, moreover, the effect on the motion error is compensatory.

The total error in x, y, and z directions varies with time as follows:
From the given values of the original input errors in Table 2 and the results of the previous analysis,

the total errors in three directions can be obtained from Equation (13), which is shown in Figure 8.
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Figure 8. The total error in x, y, and z directions.

The data and curves of the errors in three directions are interpolated and fitted respectively,
and the fitting equations of the errors in each direction can be obtained.

It can be seen from the curves of actual errors over time that the curves in the three directions
conform to the compound expression of trigonometric function and polynomial function. Setting the
corresponding parameter value, through interpolation calculation and analysis, the fitting error curve
equation in the x direction is ∆x = −2.22(x− 0.25)(x− 2.75) .

The fitting error curve equation in the y direction is ∆y = t− 9.35.
The fitting error curve equation in the z direction is ∆z = −1.5 sin( 2π

3 t + π
18 ) + 0.1t2 + 0.03.

Compared with the actual error curve, the fitting curve of the error equation is basically consistent
with the actual error curve, so the error fitting equation can basically reflect the variation of the
actual error.
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The actual trajectory equation of robot end effector is:
x′ = x− ∆x
y′ = y− ∆y
z′ = z− ∆z

. (14)

The driving angle θi1 is obtained by the inverse equation of the motion of the robot. Thus,
the change of the driving angle with time before and after compensation is shown in Figure 9.
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From Figure 9, the change of the driving angle θi1 of the driving arm before and after compensation
is consistent with time. Compared with the values of Figure 9, the initial and final values of the
driving angle before compensation are 40.5◦, 59.8◦, and the initial and final values of the driving angle
after compensation are 38◦ and 57.4◦, respectively. Therefore, the compensation value of the driving
angle is 40.5◦ − 38◦ + 1.1◦ = 3.6◦. Thus, the initial value of the steering angle of the control arm is
40.5◦ − 3.6◦ = 36.9◦. From the obtained result, the rotation angle of the driving arm is brought to the
set requirement by controlling the movement of the motor.

When the mechanism is driven by the driving angle after compensation, the displacement curves
in x, y, and z direction before and after compensation are shown in Figure 10. The displacement data
are shown in Appendix A.

The motion trajectory in space of the end effector before and after the compensation is shown in
Figure 11.

From the Figures 10 and 11, comparing with the results before and after compensation, it can
be seen that the motion trajectory after compensation is close to the desired position of the robot.
The robot can move along the desired position, so that the error compensation of the robot is realized.
It is proved that this method is effective and provides theoretical reference for the error compensation.
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6. Conclusions

This paper establishes the kinematic model and the error mathematical model of the Delta robot
and analyzes the influence of four main error sources on the position error of the mechanism. From the
data analysis, it can be seen that the error transfer coefficient of the driving angle is obviously larger
than that of other error sources. Driving error is the main factor affecting the position error of the
mechanism. Moreover, an error compensation strategy of controlling the driving angle is proposed.



Mathematics 2019, 7, 411 13 of 14

The analysis of error compensation is carried out by a numerical example. Comparing the results
before and after compensation, it is known that the robot can move along the desired position, so the
error compensation and control of the robot is realized, which proves that this method is effective for
improving the motion accuracy of the robot. It provides an effective method for improving the motion
accuracy of robots. However, the method of controlling the driving angle needs to be explored further.
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Appendix A

The displacement data in three directions in three cases.

In x Direction (mm) In y Direction (mm) In z Direction (mm)

Before
compensation

After
compensation

Ideal
displacement

Before
compensation

After
compensation

Ideal
displacement

Before
compensation

After
compensation

Ideal
displacement

−1.5263 0 0 −509.35 −499.8110 −500 −0.2305 0 0
5.3549 6.1959 6.2374 −511.25 −501.8099 −502 0.1247 1.0296 0.6556
11.919 12.0423 12.2021 −513.15 −503.8089 −504 1.7888 3.3249 2.5936
17.9055 17.2838 17.6336 −515.05 −505.8078 −506 4.6895 6.7856 5.7295
23.0769 21.6912 22.2943 −516.95 −507.8067 −508 8.7000 11.2604 9.9261
27.2295 25.0719 25.9808 −518.85 −509.8056 −510 13.6455 16.5537 15.0000
30.2022 27.2782 28.5317 −520.75 −511.8045 −512 19.3101 22.4343 20.7295
31.8836 28.2136 29.8357 −522.65 −513.8034 −514 25.4468 28.6451 26.8641
32.2166 27.8373 29.8357 −524.55 −515.8023 −516 31.7880 34.9147 33.1359
31.2012 26.1657 28.5317 −526.45 −517.8012 −518 38.0571 40.9690 39.2705
28.8945 23.2719 25.9808 −528.35 −519.8001 −520 43.9809 46.5435 45.0000
25.4079 19.2823 22.2943 −530.25 −521.7990 −522 49.3014 51.3944 50.0739
20.9025 14.3713 17.6336 −532.15 −523.7979 −524 53.7870 55.3099 54.2705
15.5820 8.7536 12.2021 −534.05 −525.7968 −526 57.2425 58.1188 57.4064
9.6839 2.6746 6.2374 −535.95 −527.7958 −528 59.5181 59.6983 59.3444
3.4688 −3.6000 0 −537.85 −529.7947 −530 60.5155 59.9794 60.0000
−2.7908 −9.7958 −6.2374 −539.75 −531.7937 −532 60.1923 58.9498 59.3444
−8.8221 −15.6423 −12.2021 −541.65 −533.7927 −534 58.5642 56.6545 57.4064
−14.3646 −20.8837 −17.6336 −543.55 −535.7917 −536 55.7035 53.1938 54.2705
−19.1808 −25.2911 −22.2943 −545.45 −537.7908 −538 51.7370 48.7190 50.0739
−23.0670 −28.6718 −25.9808 −547.35 −539.7898 −540 46.8395 43.4256 45.0000
−25.8621 −30.8781 −28.5317 −549.25 −541.7889 −542 41.2269 37.5450 39.2705
−27.4547 −31.8135 −29.8357 −551.15 −543.7879 −544 35.1462 31.3343 33.1359
−27.7877 −31.4372 −29.8357 −553.05 −545.7870 −546 28.8650 25.0647 26.8641
−26.8611 −29.7656 −28.5317 −554.95 −547.7860 −548 22.6599 19.0104 20.7295
−24.7320 −26.8718 −25.9808 −556.85 −549.7851 −550 16.8041 13.4360 15.0000
−21.5118 −22.8822 −22.2943 −558.75 −551.7841 −552 11.5556 8.5850 9.9261
−17.3616 −17.9712 −17.6336 −560.65 −553.7831 −554 7.1460 4.6695 5.7295
−12.4851 −12.3535 −12.2021 −562.55 −555.7821 −556 3.7705 1.8606 2.5936
−7.1198 −6.2745 −6.2374 −564.45 −557.7812 −558 1.5789 0.2811 0.6556
−1.5263 0 0 −566.35 −559.7801 −560 0.6695 0 0
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