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Abstract: Techniques used to analyze exceedances over a high threshold are in great demand for
research in economics, environmental science, and other fields. The generalized Pareto distribution
(GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over
threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for
threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by
combining the method of moments and likelihood moment techniques based on the least squares
concept, in which the shape and scale parameters of the GPD can be simultaneously estimated.
To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum
of squared deviations between the theoretical GPD function and its expectation. Additionally, we
introduce a recently developed stopping rule to choose the suitable threshold above which the GPD
asymptotically fits the exceedances. Simulation studies show that the proposed approach performs
better or similar to existing approaches, in terms of bias and the mean square error, in estimating the
shape parameter. In addition, the performance of three threshold selection procedures is assessed by
estimating the value-at-risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed
method by analyzing air pollution data. In this analysis, we also provide a detailed guide regarding
threshold selection.

Keywords: generalized Pareto distribution; threshold; peaks over threshold; parameter estimation;
extreme values

1. Introduction

Currently, the appearance of rare events may have critical effects on economic and social
development. Extreme event analysis is widely used in a variety of fields, such as economics, hydrology,
engineering, and environmental studies. The most common application is modeling the risk of extreme
events and estimating their probabilities. There are two fundamental methods in extreme value theory:
the block maxima (BM) approach and the peaks-over-threshold (POT) approach [1]. Ferreira and
de Haan (2015) [1] provided details of the differences between these two methods. Under the POT
framework, the generalized Pareto distribution (GPD) is applied to fit the values exceeding a high
threshold in many applications. Due to its importance in qualifying extreme tail risk, the statistical
inference of the GPD has becoming a pressing and widely studied problem in various fields and in
particular in actuarial statistics, in which it plays a prominent role in reinsurance. More details can be
found in the excellent book by Rolski et al. (1999) [2]. For regulatory purposes, financial institutions
are interested in estimating tail measures, such as the value at risk (VaR) or expectiles [3], using the
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POT method with the GPD. However, the threshold must be appropriately selected, and the estimated
risk measures are sensitive to the GPD parameter values [4]. In view of these difficulties, threshold
selection and accuracy estimation are the most important and common challenges in such analyses.

The parameters of the GPD can be estimated by the traditional method of moments (MOM) [5],
maximum likelihood (ML) method [6], the method of probability weighted moments (PWM) [7] and the
least squares (LS) method [8]. Castilo and Hadi (1997) [9] developed the elemental percentile method
(EPM) for estimating the scale and shape parameters of the GPD. With the developments in computer
technology, the application of Bayesian methods becomes more and more popular. Arnold and Press
(1989) [10] proposed Bayesian methods to estimate parameters of the Pareto Distribution. de Zea
Bermudez and Amaral Turkman (2003) [11] provided a Bayesian procedure for the GPD parameters
and compared this with ML, PWM, and EPM. Diebolt et al. (2005) [12] utilized quasi-conjugate
distributions for parameter estimation of the GPD. Castellanos and Cabras (2007) [13] proposed a
Bayesian technique to estimate the scale and shape parameters of the GPD by using Jeffreys’ prior.
Hosking (1990) [14] introduced the concept of the L-moments as the linear combinations of the
PWM for estimating parameters of the three-parameter GPD. Wang (1997) [15] developed the higher
order L-moments (LH-moments) as a generalization of the L-moments. De Zea Bermudeza and
Kotz (2010) [16] made a review of the above-mentioned estimation methods. Rasmussen (2001) [17]
investigated generalized probability weighted moments (GPWM) as a general version of the PWM.
Then, Chen et al. (2017) [18] extended the GPWM method, to formulate what is named generalized
probability weighted moment-equations (GPWME). Deidda (2010) [19] developed a multiple threshold
method to model rainfall time series based on the GPD. The ML method may have convergence
problems and computational difficulties (see [5,6]).

To solve these problems, Zhang (2007) [20] and Castillo and Serra (2015) [21] proposed some
likelihood-based estimation approaches that are stable and computationally easy. Additionally,
Zhang and Stephens (2009) [22] and Zhang (2010) [23] provided estimators based on the likelihood
moment and Bayesian methodology. Alternatively, Song and Song (2012) [24] proposed a nonlinear
LS (NLS) method to estimate the GPD shape and scale parameters. Later, Park and Kim (2016) [4]
introduced a weighted nonlinear least squares (WNLS) method that addressed a caveat associated
with the NLS estimator. Then, Kang and Song (2017) [25] evaluated and compared some of the
above-mentioned approaches. Additional estimation approaches can be found in [26–29].

Threshold selection is critical for the accurate estimation of GPD parameters and extreme
downside risk measures. In practice, the threshold should be selected in advance. The GPD assumption
may be violated if the chosen threshold is too low. On the contrary, considerable variations may occur if
the chosen threshold is too high. Graphical diagnosis methods have been widely applied for threshold
estimation (e.g., [30–33]). Recently, Bader et al. (2018) [34] developed an automated threshold selection
approach based on the stopping rule proposed by G’Sell et al. (2016) [35]. Other selection methods are
based on the goodness-of-fit of the GPD, where the chosen threshold is the lowest level for which the
GPD adequately fits the extremes (e.g., [30,36–38]).

In practice, the distribution type of a random variable is always unknown; however, we may apply
the POT framework to only model the tail part of the dataset with the GPD under suitable conditions.
Therefore, many applications need estimation of the GPD parameters and threshold selection. In this
article, we propose a guide for the application of the GPD in the POT framework. The contributions
of the current article are as follows. First, we present two parameter estimation approaches that
minimize the sum of squared deviations between the theoretical GPD function and its expectation
for the observations over the selected threshold. To further improve the performance of the
estimation method, we combine the method proposed by Zhang (2007) [20] and the LS approach
to separately and independently estimate the GPD’s shape and scale parameters. Second, we use
three existing selection methods to find the optimal threshold and compare their performance by
many Monte Carlo simulation studies. Third, utilizing the proposed estimation methods, we conduct
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extensive simulations and use a realistic example to evaluate the performance of the proposed GPD
parameter estimator.

This paper is organized as follows. In Section 2, we obtain two new GPD parameter estimators
based on the POT framework. In Section 3, the results of the simulation studies are shown and
the proposed methods are applied to model the daily PM2.5 concentration in Beijing using data from
the China National Environment Monitoring Center. The conclusions are given in Section 4.

2. Estimation Methods

2.1. Peaks over Threshold

Let X be a random variable. The cumulative distribution function (cdf) of the GPD(ξ, µ, σ) with
shape parameter ξ, location parameter µ, and scale parameter σ, (−∞ < ξ < ∞, −∞ < µ < ∞, σ > 0)
is defined as follows [39].

Gξ,µ,σ(x) =


1−

(
1 + ξ

x− µ

σ

)−1/ξ

, ξ 6= 0

1− exp
(
− x− µ

σ

)
, ξ = 0.

(1)

For ξ > 0, the range is µ 6 x < ∞, and for ξ < 0, µ < x < µ− σ/ξ. When ξ = 0, the GPD is the
exponential distribution.

Denote the survival function of a continuous random variable X by F̄(x) = 1− F(x), 0 < x < ∞.
F(x) regularly varies for index−ξ < 0, or simply, F̄ ∈ R−ξ if the following constraint is met.

lim
x→∞

F̄(xλ)

F̄(x)
= λ−ξ , λ > 0.

Based on the famous Pickands–Balkema–de Haan theorem [39,40], for F̄ ∈ R−ξ , the excess loss
Y = X − u|X > u converges to the two-parameter GPD with ξ > 0 when a threshold u > 0 is
sufficiently large. There is a function σ(u) such that [41]

lim
u−>x0

sup
0≤y≤x0−u

|Fu(y)− Gξ,σ(u)(y)| = 0, (2)

where x0 ≤ ∞ is the right endpoint of F(x), F(x) is an arbitrary continuous distribution function when
F̄ ∈ R−ξ , and Fu(y) is the distribution function of the excess loss Y. In the following, for convenience,
we refer to σ(u) as σ.

By the conditional probability formula, the cdf of Y can be expressed as follows.

Fu(y) = P(X− u ≤ y|X > u) =
P(u < X ≤ y + u)

P(X > u)
=

F(y + u)− F(u)
1− F(u)

, y ≥ 0.

Thus, based on the relation given in (2), F(x) can be rewritten as follows.

F(x) = P(X ≤ x) (3)

= [1− F(u)]Fu(x− u) + F(u)

≈ [1− F(u)]Gξ,σ(x− u) + F(u).

Additionally, if X is a random variable distributed according to the GPD(ξ, σ), then the excess
loss Y follows GPD(ξ, σ + ξu). This property of the GPD is important and reflects the fact that Y has
the same shape parameter as X based on the “excess over threshold” operation, and only the scale
parameters vary.
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2.2. Existing Estimation Methods

In this subsection, we review some existing estimation algorithms related to our proposed method,
and these approaches are later used in a simulation study.

2.2.1. Likelihood Moment Estimation

Let x1, · · · , xn be a sample from the GPD(ξ, σ). Zhang (2007) [20] proposed the likelihood moment
(LM) method to solve the convergence problems of the ML estimation. The GPD log-likelihood
function is as follows:

l(b, ξ) = n log(b/ξ)− (ξ−1 + 1)
n

∑
i=1

log(1 + bxi),

where b = ξ/σ. The LM estimation for (ξ, b) is the solution of the following likelihood
estimation equations:

1
n

n

∑
i=1

(1 + bxi)
−1 − (1 + ξ)−1 = 0, ξ =

1
n

n

∑
i=1

log(1 + bxi). (4)

In addition, the rth moment of 1 + bX with 1− rξ > 0 is given as

E((1 + bX)r) = (1− rξ)−1,

so the moment estimation equation has the following expression:

1
n

n

∑
i=1

(1 + bxi)
r − (1− rξ)−1 = 0. (5)

Substituting ξ given in (4) into (5), Zhang constructed the following likelihood moment
estimation equation:

1
n

n

∑
i=1

(1 + bxi)
p − (1− r∗)−1 = 0, 1 + bxi > 0, (6)

where r∗ = rξ, and p = r∗n/ ∑n
i=1 log(1 + bxi) with r∗ < 1 being a constant to be given. Equation (6)

has a unique solution b̂, which is called the LM estimator of b. Then the shape and scale parameters ξ

and σ can be estimated as follows:

ξ̂ =
1
n

n

∑
i=1

log(1 + b̂xi), σ̂ = ξ̂/b̂.

2.2.2. Maximum Likelihood Estimation

Let x1, · · · , xn be a sample from the GPD(ξ, σ). Recently, Castillo and Serra (2015) [21] found a
new and efficient estimation of the maximum likelihood estimation (MLE) for the scale and shape
parameters of the GPD. Based on Equation (4), the shape parameter ξ can be regarded as a function of
k(k = σ/ξ) such that

ξ(k) =
1
n

n

∑
i=1

log(1 +
xi
k
), 1 +

xi
k

> 0. (7)

Consequently, the corresponding profile-likelihood function is given as follows.

l∗(k) = −n[log(kξ(k)) + ξ(k) + 1]. (8)
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The MLE k̂ of k is obtained by maximizing the above profile-likelihood (8), so the shape and scale
parameters can be estimated by ξ̂ = ξ(k̂) and σ̂ = ξ̂ k̂.

2.2.3. Weighted Nonlinear Least Squares Estimation

Suppose we have a sample x1, · · · , xn of size n. Without loss of generality, let x1 ≤ · · · ≤ xn.
Based on the Pickands–Balkema–de Haan theorem [39,40], with a large threshold u, the distribution
of excesses (xi − u|xi > u, i = nu + 1, · · · , n) can be approximated by the GPD under certain suitable
conditions, where nu < n is the number of observations that are less than and equal to the chosen GPD
threshold u. This condition means that the distribution is in the maximum domain of attraction [24].
Song and Song (2012) [24] pointed out most of the common continuous distributions that satisfy
this condition.

Recently, Park and Kim (2016) [4] proposed the WNLS estimator, which consists of three steps.
First, the following nonlinear objective function will be minimized with respect to (ξ, σ):

(ξ̂1, σ̂1) = arg min
(ξ,σ)

n

∑
i=nu+1

[log(1− Fn(xi))− log(1− F(xi))]
2,

where Fn(x) is an empirical distribution function (EDF). The intention of the first step is to stabilize
the shape parameter with an initial estimate. Second, using (ξ̂1, σ̂1) as the initial values, the following
nonlinear objective function will be minimized with respect to (ξ, σ):

(ξ̂2, σ̂2) = arg min
(ξ,σ)

n

∑
i=nu+1

[Fn(xi)− F(xi)]
2.

In the third step, they observed that the estimator (ξ̂2, σ̂2) can perform better by drawing into
the weight [Var(F(xi))]

−1 for F(xi). Third, with (ξ̂2, σ̂2) as the initial values, the following nonlinear
objective function will be minimized with respect to (ξ, σ):

(ξ̂3, σ̂3) = arg min
(ξ,σ)

n

∑
i=nu+1

[Var(F(xi))]
−1[Fn(xi)− F(xi)]

2.

Then, the resulting ξ̂3, σ̂3 are the final WNLS estimators of the GPD shape and scale
parameters, respectively.

2.3. The Proposed Estimation Methods

In practice, the distribution type of a random variable is always unknown. Pickands (1975) [39]
and Balkema and de Haan (1974) [40] showed that the tail distribution can be approximated by
the GPD if the distribution is in the maximum domain of attraction [24]. Therefore, when the
distribution of the sample is unknown but is in the maximum domain of attraction, we may apply
the POT method to model the tail region of the dataset over an appropriate threshold separately
using the GPD. This implies that we may choose an optimal threshold in advance, then model the
tail region of the dataset over the threshold by the GPD under the POT framework. Using many
threshold selection methods (for example [34,36]), the GPD parameters are estimated by the maximum
likelihood method first. Then, once they are estimated, the threshold u is fixed by the threshold
selection procedures, such as those in [34,36]. For the selected threshold u, we again estimate the
parameters by our methods. The intention is to further improve the performance and obtain the final
estimators of the GPD shape and scale parameters. The advantage of our estimators compared to the
existing estimators will be illustrated in a later simulation.

Suppose we have a sample x1, · · · , xn of size n. Without loss of generality, let x1 ≤ · · · ≤ xn.
For the chosen threshold u, the distribution of excesses (xi − u|xi > u, i = nu + 1, · · · , n) can be
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approximated by the GPD with ξ > 0. Here, we introduce two new estimation approaches for the
GPD by minimizing the loss function as follows. That is

n

∑
i=nu+1

[E(F(xi))− F(xi)]
2. (9)

The goal of this method is to seek parameter estimation that minimizes the residual sum of
squares between the theoretical distribution function and its expectation. One of the contributions of
this paper is that we combine the method of moments and likelihood moment techniques based on
the least squares concept under the POT framework. By these two classical estimation theories, we
propose two nonlinear methods for determining the estimators of the GPD.

2.3.1. Weighted Nonlinear Least Squares Moments Estimation

Following Zhang (2007) [20], we also denote b = ξ/σ. First, instead of minimizing
∑n

i=nu+1[log(1− Fn(xi))− log(1− F(xi))]
2 as in [4], based on the MOM concept, we find the interim

estimate (ξ̂1, b̂1) by minimizing the squared distance between E[− log(1− F(x))] and [− log(1− F(x))]
as follows:

(ξ̂1, b̂1) = arg min
(ξ,b)

n

∑
i=nu+1

{
E[− log(1− F(xi))]− [− log(1− F(xi))]

}2

(10)

= arg min
(ξ,b)

n

∑
i=nu+1

{ i

∑
j=1

1
n− j + 1

+ log[1− (1− Fn(u))Gu,ξ,b(xi)− Fn(u)]
}2

= arg min
(ξ,b)

n

∑
i=nu+1

{ i

∑
j=1

1
n− j + 1

+ log(1− F0) + log(1− Gξ,b(xi − u))
}2

,

where F(x) is given in (3), F0 ≡ Fn(u) = nu/n, and the expected value of the standard exponential
order statistic is E[− log(1− F(xi))] = ∑i

j=1(n− j + 1)−1 [29].

Furthermore, in order to improve the performance of the interim estimate (ξ̂1, b̂1), we revise
the first step optimization (10) to minimize the squared distance between E[F(x)] and F(x):
∑n

i=nu+1[E[F(xi)]− F(xi)]
2. Note that this revised step is equivalent to using the least squares regression

given by
E[F(xi)] = F(xi) + εi, i = nu + 1, · · · , n,

where εi is random variable with E(εi) = 0. Therefore, combining with the weighted least squares
regression, we choose [VarF(xi)]

−1 as the weight for each response variable F(xi). It is known that the
distribution of F(x) follows a uniform distribution in (0,1). For the order statistics xi, i = nu + 1, · · · , n,
F(xi) follows Beta(i, n + 1− i). By the numerical characteristics of the Beta distribution, the weight for

F(xi) can be expressed as ωi = [VarF(xi)]
−1 =

(n + 1)2(n + 2)
i(n + 1− i)

.

Second, instead of optimizing ∑n
i=nu+1 ωi[Fn(xi) − F(xi)]

2 given in [4], with (ξ̂1, b̂1) as the
initial values, we extend the proposed estimator to the weighted version by minimizing the
following equation:
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(ξ̂2, b̂2) = arg min
(ξ,b)

n

∑
i=nu+1

ωi

{
E[F(xi)]− F(xi)

}2

(11)

= arg min
(ξ,b)

n

∑
i=nu+1

ωi

{
i

n + 1
− (1− F0)Gξ,b(xi − u)− F0

}2

= arg min
(ξ,b)

n

∑
i=nu+1

ωi(1− F0)
2

{
i/(n + 1)− F0

1− F0
− Gξ,b(xi − u)

}2

= arg min
(ξ,b)

n

∑
i=nu+1

ωi

{
i/(n + 1)− F0

1− F0
− Gξ,b(xi − u)

}2

.

We will name (ξ̂2, b̂2) as the weighted nonlinear least squares moments (WNLSM) estimator
under the POT framework. One advantage of the WNLSM over the unweighted version is that the
weighted estimator is more stable because with increasing i when i ≥ n/2, the weight ωi becomes
increasingly larger. This relation implies that larger observations play a greater role in parameter
estimation than smaller values.

2.3.2. Weighted Nonlinear Least Squares Likelihood Moments Estimation

Based on the likelihood function, the shape parameter ξ can be written as the function ξ(b) of b
given in (7), as follows.

ξ(b) =
1

n− nu

n

∑
i=nu+1

log(1 + b(xi − u)), 1 + b(xi − u) > 0. (12)

By replacing ξ in our proposed two-step optimizations (10) and (11) with ξ(b) given in (12), these
two minimizations become one-dimensional equations for b as follows:

b∗1 = arg min
b

n

∑
i=nu+1

{
E[− log(1− F(xi))]− [− log(1− F(xi))]

}2

(13)

= arg min
b

n

∑
i=nu+1

{ i

∑
j=1

1
n− j + 1

+ log(1− F0) + log(1− Gξ(b),b(xi − u))
}2

.

In the following second step, we also add the weights ωi to further improve results from the first
optimization step (13). With b∗1 as the initial value, our proposed estimator for b is

b∗2 = arg min
b

n

∑
i=nu+1

ωi

{
E[F(xi)]− F(xi)

}2

(14)

= arg min
b

n

∑
i=nu+1

ωi

{
i/(n + 1)− F0

1− F0
− Gξ(b),b(xi − u)

}2

.

We will name b∗2 as the likelihood WNLSM (WNLLSM for short) estimator under the POT
framework, and ξ can be estimated by ξ∗ = (n− nu)−1 ∑n

i=nu+1 log(1 + b∗2(xi − u)). Compared to (10)
and (11), steps (13) and (14) are advantageous in that the term involving ξ has been eliminated. Thus,
b can be separately estimated, independent of ξ, making this method more efficient.
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3. Simulation Studies

In Section 3.1, for a GPD sample, we estimate the GPD parameters using alternative estimators
and demonstrate that the proposed WNLLSM estimator performs best for the shape parameter in
most cases. In Section 3.2, we estimate the VaR at quantile levels from 95% to 99% to study the
performance of three threshold selection methods under various parametric mixture distributions.
Last, we used daily Beijing PM2.5 (particulate matter with a diameter less than 2.5 µm) data to illustrate
the utility of the proposed methods in detail and identify important knowledge for air pollution.

3.1. Simulation Study of the Parameter Estimation

In this section, extensive simulation studies are conducted to investigate the estimation of ξ

and b. In the remainder of this article, we denote the proposed methods as WNLSM and WNLLSM.
The methods presented for comparison are denoted as WNLS [4], L-moments [14], GPWME [18],
Zhang [20], and MLE [21]. The R software code for the proposed WNLSM and WNLLSM methods can
be seen in Appendix A.

All evaluations are based on the empirical bias and mean square error (MSE) estimated from
100,000 simulations. The simulations are conducted as follows.

1. Generate i.i.d observations following the GPD(ξ, σ). We discuss the results for three different
pairs of parameters under the GPD: (ξ, σ) = (0.5, 1), (1, 10), and (2, 1).

2. Use four methods to estimate (ξ, b), where b = ξ/σ.
3. Repeat the above steps 100,000 times to compute the bias and MSE of estimators ξ and b.

The full simulation results for 3 different sample sizes are given in Table 1. The smallest values of
MSE and bias are highlighted in bold format. Specifically, for the shape parameter ξ, in terms of both
MSE and bias, the proposed WNLLSM and WNLSM yielded the best performance. The Zhang, MLE,
and GPWME are about average. For b, Zhang and WNLS performed better in most cases. As shown in
Table 1, all methods displayed acceptable performance when the shape parameter ξ was less than 1.
However, the L-moments method was the worst when the shape parameter ξ ≥ 1.

Table 1. Parameter estimation of the generalized Pareto distribution (GPD).

n Methods
MSE Bias

ξ b ξ b

GPD(0.5, 1)

50

Zhang 0.002 9.4× 10−5 −0.044 −0.010
MLE 0.002 8.2× 10−5 −0.047 −0.009

L-moments 0.009 0.005 −0.094 −0.070
GPWME 0.001 4.5× 10−5 −0.037 0.007
WNLS 0.010 0.001 −0.100 −0.035

WNLSM 4.4× 10−4 0.010 0.021 0.100
WNLLSM 1.9× 10−6 0.005 −0.001 0.068

100

Zhang 4.8× 10−4 2.0× 10−5 −0.022 −0.004
MLE 5.2× 10−4 2.0× 10−5 −0.023 −0.005

L-moments 0.004 0.002 −0.060 −0.048
GPWME 3.4× 10−4 1.2× 10−5 0.018 0.003
WNLS 0.003 8.3× 10−4 −0.059 −0.029

WNLSM 4.1× 10−5 0.002 0.006 0.042
WNLLSM 6.1× 10−6 8.8× 10−4 −0.002 0.030

200

Zhang 1.2× 10−4 6.5× 10−6 −0.011 −0.003
MLE 1.3× 10−4 6.5× 10−6 −0.011 −0.003

L-moments 0.001 0.001 −0.038 −0.032
GPWME 8.6× 10−5 2.2× 10−6 −0.009 0.001
WNLS 9.7× 10−4 3.0× 10−4 −0.031 −0.017

WNLSM 3.3× 10−6 3.3× 10−4 0.002 0.018
WNLLSM 3.3× 10−6 1.8× 10−4 −0.002 0.013
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Table 1. Cont.

n Methods
MSE Bias

ξ b ξ b

GPD(1, 10)

50

Zhang 0.002 1.6× 10−9 −0.052 4.0× 10−5

MLE 0.002 4.0× 10−6 −0.043 0.002
L-moments 0.100 0.002 −0.316 −0.047

GPWME 0.002 1.8× 10−6 −0.045 0.001
WNLS 0.014 5.3× 10−6 −0.120 −0.002

WNLSM 0.001 2.3× 10−4 0.027 0.015
WNLLSM 1.4× 10−5 1.1× 10−4 0.004 0.011

100

Zhang 6.6× 10−4 6.6× 10−9 −0.026 8.1× 10−5

MLE 4.2× 10−4 1.2× 10−6 −0.021 0.001
L-moments 0.069 0.002 −0.263 −0.043

GPWME 4.6× 10−4 6.7× 10−7 −0.022 8.2× 10−4

WNLS 0.004 4.1× 10−6 −0.066 −0.002
WNLSM 1.1× 10−4 4.5× 10−5 0.011 0.007

WNLLSM 7.3× 10−6 2.5× 10−5 −0.003 0.005

200

Zhang 1.7× 10−4 6.2× 10−10 −0.013 2.5× 10−5

MLE 1.2× 10−4 2.1× 10−7 −0.011 4.6× 10−4

L-moments 0.049 0.002 −0.222 −0.039
GPWME 1.3× 10−4 9.3× 10−8 −0.012 3.0× 10−4

WNLS 0.001 2.8× 10−6 −0.037 −0.002
WNLSM 5.9× 10−6 8.0× 10−6 0.002 0.003

WNLLSM 7.9× 10−6 4.8× 10−6 −0.003 0.002

GPD(2, 1)

50

Zhang 0.005 0.003 −0.069 0.058
MLE 0.002 0.010 −0.045 0.099

L-moments 1.212 3.252 −1.101 −1.803
GPWME 0.003 0.003 −0.059 0.051
WNLS 0.027 4.3× 10−4 −0.165 0.021

WNLSM 0.002 0.087 0.041 0.296
WNLLSM 1.7× 10−5 0.054 −0.004 0.232

100

Zhang 0.001 8.0× 10−4 −0.033 0.028
MLE 4.3× 10−4 0.002 −0.021 0.046

L-moments 1.127 3.387 −1.062 −1.840
GPWME 7.8× 10−4 5.6× 10−4 −0.028 0.024
WNLS 0.008 7.8× 10−5 −0.089 −0.009

WNLSM 2.7× 10−4 0.016 0.016 0.126
WNLLSM 8.5× 10−6 0.011 −0.003 0.102

200

Zhang 2.7× 10−4 2.1× 10−4 −0.016 0.014
MLE 1.1× 10−4 5.2× 10−4 −0.010 0.022

L-moments 1.076 3.486 −1.037 −1.867
GPWME 2.0× 10−4 1.5× 10−4 −0.014 0.012
WNLS 0.002 1.4× 10−4 −0.048 −0.012

WNLSM 3.7× 10−5 0.003 0.006 0.058
WNLLSM 5.0× 10−6 0.002 −0.002 0.048

Among the two parameters, ξ determines the tail thickness of the GPD because 1/ξ is the tail
index [4]. Parameter ξ characterizes the shape of the GPD, especially the shape of the tail, which is
significant for fitting the extreme values. Table 1 only shows the performance of estimating ξ and b
when the shape parameter ξ takes a certain value. To comprehensively evaluate the performance of
different estimation methods, another simulation was conducted to evaluate the absolute bias (Abias)
and MSE with respect to the shape parameter in a given range. In this simulation study, we vary ξ

from 0 to 5. Figures 1 and 2 display the results for µ = 0, σ = 1, and sample size n = 100 based on
1000 repetitions. Figure 1 shows that for ξ, the WNLLSM method is the best estimator, followed by
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WNLSM, Zhang, and WNLS. In Figure 2, for b, Zhang and WNLS are the best estimators, followed by
WNLLSM and WNLSM.

Figure 1. Absolute bias (Abias) and MSE of ξ for four estimators when µ = 0 and σ = 1.

Figure 2. Abias and MSE of b for four estimators when µ = 0 and σ = 1.

3.2. Simulation Study of the Threshold Selection

Suppose that we have a sample x1, · · · , xn of size n. Without loss of generality, let x1 ≤ · · · ≤ xn.
If we know the sample follows the GPD, it is unnecessary to search for the GPD threshold. While if the
distribution of the sample is unknown but is in the maximum domain of attraction, we may apply
the POT method to model the exceedances by the GPD. First, we can obtain the maximum likelihood
estimations for the parameters of the GPD. Then, once they are estimated, the threshold can be fixed
by many methods. Among them, we propose three existing procedures to find a proper threshold, as
outlined below.

Method 1. ForwardStop [34]:

(a) Fix ui = xi, where i ranges from 1 to m (m < n), and m is a fixed positive integer.
(b) Test Hi

0 proposed by [36], and compute the corresponding p-values pi.
(c) Compute cutoff k̂ such that

k̂ = max
{

k ∈ {1, · · · , m} : −1
k

k

∑
i=1

log(1− pi) ≤ α

}
, (15)
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where α is a significance level. In this case, the selected threshold is uk̂.

Method 2. Raw Up [34]:

Begin with the order statistics xi where i = 1, and continue with i = i + 1 until the threshold
u∗i = xi accepts that the data above the u∗i follows the GPD.

Method 3. Raw Down [34]:

Begin with order statistics xi where i = n, and continue with i = i− 1 until the threshold u′i = xi
rejects that the data above the u′i follows the GPD.

Now we turn to studying the performance of threshold selection by estimating the VaR of the
GPD, denoted by

VaRp = u0 +
σ

ξ

[(
1− F0

1− p

)ξ

− 1
]

,

for a given threshold u0, where F0 is the ratio of the observations less than and equal to u0. VaRp

presents the 100p quantile to qualify tail risk in several fields, with p close to 1.
We compare the performance of the ForwardStop method with two competing methods,

Raw Up and Raw Down [34], in terms of tail risk measures VaR. Consider a sequence of order
candidate thresholds. Raw Up begins at the first threshold and chooses the lowest threshold as the
optimal threshold until the GPD fits the exceedances over this threshold. In contrast, Raw Down starts
from the last threshold and select the biggest one until the GPD assumption is rejected.

The simulation samples are generated from a mixture distribution of the Weibull and GPD.
A similar construction to that in [34], the mixture distribution can be obtained by defining the
following hazard function

h(x) := η

(
x− u

ε

)
h1(x) +

[
1− η

(
x− u

ε

)]
h2(x),

where ε > 0 is the length of the transition period, h1(x) = κβ−κxκ−1 is the hazard function of the
Weibull distribution with parameters (κ, β), and h2(x) = (σ+ ξ(x− u))−1, x ≥ u is the hazard function
of the GPD(u, σ, ξ). The transition function defined as in [34] is

η(x) =


1, x ≤ 0,

2x3 − 3x2 + 1, 0 < x < 1,
0, x ≥ 1.

This ensures that h(x) becomes a continuous hazard function. Therefore, the mixture distribution
function F on [0, ∞) of the random samples generating mechanism is

F(x) = 1− exp
(
−
∫ x

0
h(y)dy

)
.

For x ≤ u, the mixture distribution is the Weibull distribution. Denote F1 by the probability of
data being less than and equal to u, so F1 = F(u) and 1− F1 means the probability of the data being
greater than u. Consequently,

F1 = 1− exp
(
−
∫ u

0
h1(x)dx

)
= 1− exp

(
−
(

u
β

)κ)
.
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Then u can be expressed as

u = β[− log(1− F1)]
1/κ . (16)

For x ≥ u+ ε, the mixture distribution is the GPD. Based on the construction mechanism, the GPD
tail starts from u + ε. Therefore, u + ε is the real threshold for the GPD, but not u. 1− F0 implies the
probability of exceedances over the real threshold. We can find the relation between F0 and F1 given as

1− F0

1− F1
= 1− Gξ,u,σ(u + ε)⇒ 1− F1 = (1− F0)

(
1 + ξ

ε

σ

)1/ξ

.

By substituting 1− F1 into (16), we can find the restriction between the threshold u, the transition
interval length ε, and the Weibull and GPD parameters:

u = β{− log[(1− F0)(1 + ξε/σ)1/ξ ]}1/κ .

Consider two parameter pairs for computing the VaR under ε = 0.5, F0 = 0.5, Weibull:
(κ, β) = (0.45, 1), GPD: (σ, ξ) = (1, 0.1) with u = 0.029629 and (σ, ξ) = (1, 0.4) with u = 0.040921.
Conduct 1000 simulations with sample size 200. For each sample, we estimate VaR 95%, 98%, and 99%
quantiles of the mixture distribution. The optimal threshold can be selected by applying the R package
“eva” [42]. The simulation results can be seen in Table 2.

Table 2. Value at risk (VaR) estimation under the mixture distribution.

α Method
MSE Bias

VaR 95% VaR 98% VaR 99% VaR 95% VaR 98% VaR 99%

Mixture distribution based on the GPD(1,0.1) with u = 0.029629

0.01
ForwardStop 0.331 0.688 1.199 −0.035 0.118 0.349
Raw Up 0.335 0.740 1.338 −0.028 0.216 0.567
Raw Down 0.368 0.620 1.018 −0.042 −0.034 0.031

0.05
ForwardStop 0.328 0.617 1.009 −0.036 0.004 0.087
Raw Up 0.329 0.664 1.136 −0.039 0.100 0.310
Raw Down 0.387 0.598 0.912 −0.034 −0.133 −0.203

0.1
ForwardStop 0.331 0.595 0.955 −0.034 −0.043 −0.015
Raw Up 0.327 0.634 1.053 −0.040 0.050 0.195
Raw Down 0.390 0.601 0.906 −0.030 −0.143 −0.232

Mixture distribution based on the GPD(1, 0.4) with u = 0.040921

0.01
ForwardStop 0.816 2.380 5.043 0.083 0.897 2.354
Raw Up 0.840 2.573 5.594 0.127 1.183 3.045
Raw Down 0.840 1.972 3.926 −0.006 0.096 0.446

0.05
ForwardStop 0.782 2.117 4.346 0.031 0.469 1.311
Raw Up 0.816 2.383 5.086 0.072 0.839 2.220
Raw Down 0.882 1.813 3.420 −0.038 −0.218 −0.279

0.1
ForwardStop 0.780 1.983 4.001 0.005 0.252 0.807
Raw Up 0.795 2.265 4.761 0.048 0.669 1.810
Raw Down 0.889 1.812 3.465 −0.042 −0.251 −0.324

In term of the MSE and bias, overall we see in Table 2 that ForwardStop forms a more stable and
less sensitive rule under all conditions. In addition, ForwardStop and Raw Down procedures perform
better in most cases.



Mathematics 2019, 7, 406 13 of 18

3.3. Application

In this section, we illustrate the utility of the proposed method by analyzing environmental data.
Beijing’s daily PM2.5 records were collected from the China National Environment Monitoring Center.
The data contained 361 observations from 1 September 2016 to 28 February 2017 and 1 September
2017 to 28 February 2018. We only considered the data from autumn and winter because air pollution
is more serious in these seasons in Beijing. The statistical analysis started with threshold selection,
followed by obtaining the exceedances, and finally, parameter estimation. The details are listed below.

1. Use Raw Up, Raw Down, and ForwardStop rules to select the appropriate thresholds u∗, u′i, and
uk̂, respectively.

2. Obtain exceedances above the chosen threshold.
3. Based on the exceedances, obtain parameter estimations of ξ and σ by different methods.

Table 3 displays the results of threshold selection and parameter and VaR estimations for the
real example. In estimation, we can find F0 = 11.4% by Raw Up and ForwardStop rules and F0 = 93.9%
by Raw Down. The predicted results can serve as references for environmental agencies and
Beijing residents.

Table 3. Threshold selection and estimation results using Beijing’s daily PM2.5 data.

Threshold Method ξ̂ σ̂
VaR

97% 98% 99%

u∗ = uk̂ = 10

Zhang 0.041 63.4 240.5 270.3 322.5
WNLS 0.063 61.4 241.5 272.7 327.8

WNLSM 0.061 62.6 245.6 277.2 333.1
WNLLSM 0.053 62.7 242.5 273.2 327.3

u′i = 188

Zhang −0.108 82.5 244.3 274.6 323.4
WNLS −0.035 71.3 237.9 265.9 312.9

WNLSM 0.058 79.2 245.3 279.2 338.9
WNLLSM 6.9× 10−7 74.6 240.9 271.2 322.9

Combining the strengths of the three different threshold selection approaches, the potential
thresholds are 10 and 188. For u = 10 and 188, Figure 3 displays the EDF and the estimated
theoretical distribution function with corresponding parameter estimators, which are shown in Table 3.
Comparison plots of the EDF and theoretical distribution function are displayed in Figure 3a for u = 10
and Figure 3b for u = 188, which obtained very similar results. A careful comparison of these two
figures reveals that the threshold u = 10 fits the data better for the GPD, especially the extreme tail,
which is an important index in POT analysis.
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Figure 3. The GPD fitting plots for Beijing’s daily PM2.5 data.

4. Conclusions

We propose two GPD-based modeling approaches for exceedances under the POT framework.
Our new methods are adapted from the recent WNLS estimator of Park and Kim (2016), which is based
on the nonlinear weighted optimization of the residual squares between the distribution function and
the EDF. Combining the concepts of the weighted nonlinear least squares method, the MOM, and the
likelihood moments technique, we introduce the WNLSM and WNLLSM methods, which minimize
the sum of squared deviations between the theoretical distribution function and its expectation.
Our proposed methods are stable and provide analytical solutions. The results of extensive simulation
studies demonstrate that the performance of the new estimators is highly competitive with other
methods in estimating the shape parameter ξ. We also investigate the performance of the threshold
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selection methods ForwardStop rule, Raw Up, and Raw Down. The simulation results show that there
is not always a winner in all conditions. ForwardStop and Raw Down perform relatively better than
the Raw Up procedure in most cases. However, ForwardStop is more stable to other two competing
threshold selection tests. In practice, our estimations and the existing threshold selection methods
are applied to daily PM2.5 data from Beijing, and the new methods produce satisfactory results in
the environmental data analysis. In summary, our estimation methods are specifically designed for
extreme data under the POT framework and are computationally efficient and straightforward.
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Appendix A

A selected R software code is attached in the Appendix for reasons of space. More complete codes
can be requested from the authors.

# to es t imate the weighted nonl inear l e a s t squares moments (WNLSM) of a
sample X by GPD( xi , mu, sigma ) . For~the GPD, threshold u i s equal to zero .
sum_i <− func t ion ( i ) sum( 1 /( n−seq ( i ) + 1 ) )
WNLSM1 <− func t ion ( beta1 ) {
sum2 <− 0
f o r ( i in ( nu0 + 1 ) : n )
{ sum2 <− sum2 + ( sum_i ( i )+ log (1−F0)− log (1+ beta1 [ 2 ] ∗ ( x [ i ]−u ) ) / beta1 [ 1 ]
)^2 } # equation ( 1 0 )
sum2 }
#WNLSM1 searches f o r the i n i t i a l WNLSM est imator (\ hat ( x i_1 ) ,\ hat ( b_1 ) ) ,
#where beta1 =( xi , b ) , b= x i /sigma .

WNLSM <− func t ion ( beta1 ) {
sum2 <− 0
f o r ( i in ( nu0 + 1 ) : n )
{ sum2 <− sum2 + ( ( n+1)^2∗ (n+2)/( i ∗ ( n−i + 1 ) ) ) ∗ ( ( i−n−1)/((n+1)∗(1−F0 ) )
+(1+ beta1 [ 2 ] ∗ ( x [ i ]−u))^(−1/ beta1 [ 1 ] ) ) ^ 2 } # equation ( 1 1 )
sum2 }
#WNLSM searches f o r the f i n a l WNLSM est imator (\ hat ( x i_2 ) ,\ hat ( b_2 ) ) .

# to es t imate the weighted nonl inear l e a s t squares l i k e l i h o o d moments
(WNLLSM) of a sample X by GPD( xi , mu, sigma ) .
WNLLSM1 <− func t ion ( b ) {
sum1 <− mean( log (1+b∗z ) ) # z i s the excess l o s s X−u|X>u and sum1= x i ( b )
# given in equation ( 4 )
sum2 <− 0
f o r ( i in ( nu0 + 1 ) : n ) {
sum2 <− sum2 + ( sum_i ( i )+ log (1−F0)− log (1+b∗ ( x [ i ]−u ) ) / sum1) ^2 }
# equation ( 1 3 )
sum2 }
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#WNLLSM1 searches f o r the i n i t i a l WNLLSM est imator (\ hat ( x i_1 ) ,\ hat ( b_1 ) ) .

WNLLSM <− func t ion ( b ) {
sum1 <− mean( log (1+b∗z ) ) # x i ( b )
sum2 <− 0
f o r ( i in ( nu0 + 1 ) : n ) {
sum2 <− sum2 + ( ( n+1)^2∗ (n+2)/( i ∗ ( n−i + 1 ) ) ) ∗ ( ( i−n−1)/((n+1)∗(1−F0 ) )
+(1+b∗ ( x [ i ]−u))^(−1/sum1 ) ) ^ 2 } # equation ( 1 4 )
sum2 }
#WNLLSM searches f o r the f i n a l WNLLSM est imator (\ hat ( x i_2 ) ,\ hat ( b_2 ) ) .

# Real data used in S e c t io n ~3.3

7, 11, 18, 80, 27, 17, 41, 20, 17, 15, 32, 31, 86, 101, 69, 133, 41, 22, 10, 18, 63, 99, 121, 111, 162, 58, 24, 13, 51,
97, 165, 183, 120, 33, 55, 72, 39, 11, 31, 87, 116, 77, 150, 241, 190, 119, 59, 117, 225, 94, 42, 14, 26, 60, 96, 43,
30, 10, 23, 43, 8, 40, 99, 182, 242, 179, 71, 39, 34, 148, 130, 77, 74, 93, 42, 62, 97, 114, 188, 123, 52, 9, 7, 17,
67, 153, 254, 56, 58, 96, 89, 27, 92, 191, 246, 49, 75, 120, 91, 21, 46, 159, 219, 56, 24, 25, 101, 184, 219, 214,
365, 393, 93, 31, 117, 145, 45, 35, 57, 54, 201, 280, 430, 161, 290, 344, 224, 194, 165, 36, 32, 23, 56, 39, 7, 18,
51, 92, 132, 37, 45, 21, 25, 23, 32, 85, 171, 159, 60, 337, 39, 24, 75, 30, 80, 154, 247, 12, 12, 75, 32, 6, 6, 42,
104, 79, 176, 232, 107, 20, 83, 97, 10, 60, 76, 16, 25, 10, 27, 64, 14, 134, 109, 55, 87, 39, 14, 42, 106, 78, 90, 19,
19, 70, 86, 58, 87, 10, 21, 12, 12, 55, 24, 46, 59, 75, 48, 26, 9, 40, 107, 73, 12, 15, 53, 67, 109, 126, 29, 5, 10, 19,
35, 14, 46, 38, 68, 67, 53, 93, 75, 37, 34, 66, 106, 149,166, 47, 7, 17, 56, 63, 50, 7, 33, 98, 151, 86, 18, 50, 9, 16,
53, 26, 9, 14, 55, 24, 34, 86, 101, 119, 7, 6, 18, 39, 10, 67, 39, 12, 22, 67, 144, 52, 5, 22, 23, 8, 20, 33, 6, 5, 12,
31, 70, 35, 7, 24, 13, 34, 21, 51, 36, 30, 14, 28, 22, 75, 105, 172, 116, 29, 35, 27, 10, 14, 30, 14, 37, 12, 6, 5, 10,
55, 98, 136, 29, 45, 43, 56, 80, 30, 35, 23, 8, 15, 8, 24, 78, 13, 8, 10, 19, 30, 7, 7, 17, 6, 41, 32, 48, 41, 9, 8, 10,
55, 14, 37, 75, 78, 113, 140, 47, 32, 15, 20, 30, 54, 120, 169, 92
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