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Abstract: The Skew-Reflected-Gompertz (SRG) distribution, introduced by Hosseinzadeh et al.
(J. Comput. Appl. Math. (2019) 349, 132–141), produces two-piece asymmetric behavior of the
Gompertz (GZ) distribution, which extends the positive to a whole dominion by an extra parameter.
The SRG distribution also permits a better fit than its well-known classical competitors, namely the
skew-normal and epsilon-skew-normal distributions, for data with a high presence of skewness. In this
paper, we study information quantifiers such as Shannon and Rényi entropies, and Kullback–Leibler
divergence in terms of exact expressions of GZ information measures. We find the asymptotic test
useful to compare two SRG-distributed samples. Finally, as a real-world data example, we apply these
results to South Pacific sea surface temperature records.

Keywords: Skew-Reflected-Gompertz distribution; Gompertz distribution; entropy; Kullback–Leibler
divergence; sea surface temperature

1. Introduction

The Skew-Reflected-Gompertz (SRG) distribution was recently introduced by [1] and corresponds
to an extension of the Gompertz distribution [2], named after Benjamin Gompertz (1779–1865).
It extends the positive dominion R+ to the whole of R by an extra parameter, ε, −1 < ε < 1,
and produces two-piece asymmetric behavior of Gompertz (GZ) density. The SRG distribution has
as particular cases the Reflected-GZ and GZ distributions, when ε → 1 and ε → −1, respectively.
The SRG distribution family can also represent a suitable competitor against the skew-normal (SN, [3])
and epsilon-skew-normal (ESN, [4]) distributions as a way to fit asymmetrical datasets. Indeed,
refs. [5,6] dealt with the frequentist and Bayesian inferences of ESN distribution. Contributions by [1]
provided probability density function (pdf), cumulative distribution function (cdf), quantile function,
moment-generating function (MGF), stochastic representation, the Expectation-Maximization (EM)
algorithm for SRG parameter estimates and the Fisher information matrix (FIM).

Moreover, several recent investigations confirmed the usefulness of entropic quantifiers in the
study of asymmetric distributions [3,7,8] and their applications to topics such as thermal wake [9],
marine fish biology [3,8], sea surface temperature (SST), relative humidity measured in the Atlantic
Ocean [10], and more. We build on the study of [3], which developed hypothesis testing for normality,
i.e., if the shape parameter is close to zero. They considered the Kullback–Leibler (KL) divergence in
terms of moments and cumulants of the modified SN distribution. Posteriorly, we consider a real-world
data set of the anchovy condition factor for testing the shape parameter to decide if a food deficit
produced by environmental conditions such as El Niño exists [11].
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This work arose from a motivation to tackle the problem of determining the adequate pdf
of SST [9,10]. Indeed, probabilistic modelling of SST is key for accurate predictions [9]. Therefore,
we propose that the SRG model based on two-piece distributions could be more suitable for interpreting
annual bimodal and asymmetric SST data. We also considered the existent results of Shannon and
Rényi entropies, and KL divergence for GZ distributions for developed entropic quantifiers for SRG
distributions. Posteriorly, we considered SST along the South Pacific and Chilean coasts from 2012 to
2014 to illustrate our results. Specifically, we introduced hypothesis testing developed by [12] for the
SRG distribution, which is useful to compare two data sets with bimodal and asymmetric behavior
such as SST.

2. The Skew-Reflected-Gompertz Distribution

The Gompertz (GZ, [2]) distribution is a continuous probability distribution with the following pdf

f (x|σ, η) =
η

σ
e

x
σ e−η(e

x
σ −1), x ≥ 0, (1)

where σ > 0 and η > 0 are the scale and shape parameters, respectively, and are denoted by
X ∼ GZ(σ, η). The mean and variance of X are

E(X) = σeηEi(−η), (2)

Var(X) = σ2eητ,

respectively; where Ei(z) =
∫ ∞
−z

e−u

u du, τ = −2ηF(−η) + γ2 + π2

6 + 2γ log η + (log η)2 − eη [Ei(−η)]2,
γ = 0.5772156649 is the Euler constant and

F(z) =
+∞

∑
k=0

zk

k!(k + 1)3 .

The SRG distribution is an extension of the GZ proposed by [1]. If Y follows, the SRG distribution
is denoted by Y ∼ SRG(µ, σ, η, ε) and has pdf

g(y|µ, σ, η, ε) =


1
2 f
(

µ−y
1+ε

∣∣∣σ, η
)

, y ≤ µ,
1
2 f
(

y−µ
1−ε

∣∣∣σ, η
)

, y > µ,
(3)

where µ ∈ R is the location parameter and ε ∈ (−1, 1) is the slant parameter. Note that SRG is
the GZ distribution when µ = 0 and ε → −1, GZ distribution with negative support when ε → 1,
and Reflected-GZ distribution when ε = 0. Also, the Reflected-GZ distribution corresponds to a
particular case of a more general class of two-piece asymmetric distributions proposed by [13,14].
The mean, variance and MGF of Y are

E(Y) = µ− 2εσeηEi(−η),

Var(Y) = σ2{τeη + 2(1− ε2)e2η [Ei(−η)]2},

MY(t) =
1
2

ηeη+µt[(1− ε)z−σt(η) + (1 + ε)zσt(η)], (4)

respectively; where zs(z) =
∫ ∞

1 vs+1e−vzdv. Jafari et al. [15] provide the MGF of X using expansion
series. However, (4) is considered a clearer expression that depends only on integral zs(z). See Section 4.1
for some details of the MLE EM-based algorithm related to SRG parameters.

According to [1], the SRG distribution can be re-parametrized in terms of GZ and Reflected-GZ
distributions as

g(y|µ, σ+, σ−, η) = p1 f (µ− y|σ+, η)I(−∞,µ](y) + p2 f (y− µ|σ−, η)I(µ,+∞)(y), (5)
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where σ± = σ(1± ε), p1 + p2 = 1, and p1 = σ+/(σ+ + σ−) = (1 + ε)/2. Let Y = (Y1, . . . , Yn)> be an
i.i.d sample from the SRG distribution with parameters (µ, σ±, η) and latent vectors Z = (Z1, . . . , Zn),
thus (5) can be equivalently represented as (−1)j(Yi − µ)|Zij = 1 ∼ GZ(σ±, η), i = 1, . . . , n, j = 1, 2,
where Zi = (Zi1, Zi2)

> ∼ Mult(1, p1, p2) is a multinomial vector, P(Zi1 = zi1, Zi2 = zi2) = pzi1
1 pzi2

2 ,
zij = {0, 1}, and zi1 + zi2 = 1. Given that P(Zi1 = 1) = P(Zi1 = 1, Zik = 0; ∀j 6= k), the complete
log-likelihood function is

`(µ, σ+, σ−, η|Y, Z) = −n log(2σ) + n(η + log η)

+
n

∑
i=1

[
zi1

(
µ− yi

σ+
− ηe

µ−yi
σ+

)
+ zi2

(
yi − µ

σ−
− ηe

yi−µ
σ−

)]
. (6)

Conditional expectations of latent variables Zi are given by

ẑi1 = E[Zi1|µ̂, σ̂+, σ̂−, yi] = p̂1
f (µ̂− yi|σ̂+, η̂)

g(yi|µ̂, σ̂+, σ̂−, η̂)
I(−∞,µ̂](yi), (7)

ẑi2 = 1− ẑi1, i = 1, . . . , n. (8)

The E- and M-steps on the (k + 1)th iteration of the EM algorithm are
E-step. From (6)–(8), we have

Q(µ, σ+, σ−, η|µ(k), σ
(k)
+ , σ

(k)
− , η(k)) = E[`(µ, σ+, σ−, η|Y, Z)|µ(k), σ

(k)
+ , σ

(k)
− , η(k)]

= −n log(2σ) + n(η + log η)

+
n

∑
i=1

[
ẑ(k)i1

(
µ− yi

σ+
− ηe

µ−yi
σ+

)
+ ẑ(k)i2

(
yi − µ

σ−
− ηe

yi−µ
σ−

)]
.

and
M-step. Update σ±, by solving the following equation

n

∑
i=1

ẑ(k)ij

(
η(k) |yi − µ(k)|

σ2
±

e
|yi−µ(k) |

σ± − |yi − µ(k)|
σ2
±

)
=

n
2σ

.

Update µ by solving the following equation

µ̂(k+1) = argmaxµ

n

∑
i=1

ẑ(k)i1

µ− yi

σ̂
(k+1)
+

− ηe

µ−yi
σ̂
(k+1)
+

+ ẑ(k)i2

µ− yi

σ̂
(k+1)
−

− ηe

µ−yi
σ̂
(k+1)
−

 .

Update η by

η̂ = n

 n

∑
i=1

ẑ(k)i1 e

µ−yi
σ̂
(k+1)
+ + ẑ(k)i2 e

µ−yi
σ̂
(k+1)
−


−1

.

The EM-algorithm must be iterated until the sufficient convergence rule is satisfied:

‖(µ̂(k+1), σ̂
(k+1)
+ , σ̂

(k+1)
− , η̂(k+1))− (µ̂(k), σ̂

(k)
+ , σ̂

(k)
− , η̂(k))‖ < τ,

for a tolerance τ close to zero. The FIM for standard deviations of MLEs (µ̂, σ̂, η̂, ε̂) and additional
details of the EM-algorithm are described in [1].

3. Entropic Quantifiers

In the next section, we present the main results of entropic quantifiers for SRG distribution.
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3.1. Shannon Entropy

The Shannon entropy (SE), introduced by [16] in the context of univariate continuous distributions,
quantifies the information contained in a random variable X with pdf f (x) through the expression

H(X) = −
∫ +∞

−∞
f (x) log f (x)dx. (9)

The SE concept is attributed to the uncertainty of the information presented in X [17].
Propositions 1 and 2 present the SE for GZ and SRG distributions, respectively.

Proposition 1. [15]. The SE of X ∼ GZ(σ, η) is

H(X) = log
{

B(1, 1)
η

}
− ση − E(X)

σ
+ σηMX(σ

−1),

where B(·, ·) is the usual Beta function and E(X) is given in (2).

Substituting µ = 0 and ε = −1 into (4) (i.e., reducing SRG to its special case GZ), we obtain
MX(σ

−1) = ηeηz−1(η) = 1. Therefore, H(X) in Proposition 1 is reduced to

H(X) = − log η − eηEi(−η), (10)

i.e., the SE of the GZ random variable only depends on shape parameter η.

Proposition 2. The SE of Y ∼ SRG(µ, σ, η, ε) is

H(Y) =
1 + ε

2

{
H(X+ε)− log

(
1 + ε

2

)}
+

1− ε

2

{
H(X−ε)− log

(
1− ε

2

)}
,

where X±ε ∼ GZ(σ(1± ε), η) and H(X±ε) are obtained using Proposition 1.

Proof. From (3) and (9), we obtained

H(Y) = −
∫ +∞

−∞
g(y|µ, σ, η, ε) log g(y|µ, σ, η, ε)dy

= −1
2

∫ +∞

0
f
(

x
1 + ε

∣∣∣σ, η

)
log
{

1
2

f
(

x
1 + ε

∣∣∣σ, η

)}
dx

−1
2

∫ +∞

0
f
(

x
1− ε

∣∣∣σ, η

)
log
{

1
2

f
(

x
1− ε

∣∣∣σ, η

)}
dx

= −1
2

∫ +∞

0
(1 + ε) f (x|σ(1 + ε), η) log

{
1 + ε

2
f (x|σ(1 + ε), η)

}
dx

−1
2

∫ +∞

0
(1− ε) f (x|σ(1− ε), η) log

{
1− ε

2
f (x|σ(1− ε), η)

}
dx,

which concludes the proof.

From (10), given that H(X±ε) only depends on shape parameter η, we obtain H(X±ε) = H(X),
and H(Y) only depends on η and ε parameters. Therefore,

H(Y) = − log η − eηEi(−η)− 1 + ε

2
log
(

1 + ε

2

)
− 1− ε

2
log
(

1− ε

2

)
. (11)

Figure 1 illustrates SE behavior for random variable Y. We observed that SE increases when
η decreases. For each η, SE is maximized and minimized at ε = 0 (Reflected-GZ) and ε → −1
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(Truncated-GZ and GZ), respectively. More details appear in [3,8] for the SE expressions of other
asymmetric distributions.
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1
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η=2
η=3
η=4

Figure 1. Shannon entropy of Skew-Reflected-Gompertz (SRG) distributions for ε ∈ (−1, 1) and several
values of η.

3.2. Rényi Entropy

The αth-order Rényi entropy (RE), introduced by [18] in the context of univariate continuous
distributions, extends the concept of SE information contained in a random variable X with pdf f (x)
through a level α, α ∈ N, α > 0, and the expression

Rα(X) =
1

1− α
log

∫ +∞

−∞
[ f (x)]αdx. (12)

RE information can be negative and is ordered with respect to α, i.e., Rα1(X) ≥ Rα2(X) for
any α1 < α2 (see, e.g., [7] and other properties of RE). From (12), the SE is obtained by the limit of
H(X) = limα→1 Rα(X) by applying l’Hôpital’s rule to Rα(X) with respect to α (see e.g., [7]). The RE of
the GZ and SRG distributions is presented in Propositions 3 and 4, respectively.

Proposition 3. [15,19]. The RE of X ∼ GZ(σ, η) with α > 1, α ∈ N, is

Rα(X) = − log α

1− α
+ log

η

σ
+

1
1− α

log

{
α−1

∑
j=0

(
α− 1

j

)
Γ(j + 1)
(αη)j

}
,

where Γ(u) =
∫ ∞

0 tu−1e−tdt is the gamma function.

Proposition 4. The RE of Y ∼ SRG(η, ε) with α > 1, α ∈ N, is

Rα(Y) =
1

1− α
log
{(

1 + ε

2

)α

e(1−α)Rα(X+ε) +

(
1− ε

2

)α

e(1−α)Rα(X−ε)

}
,

where X±ε ∼ GZ(σ(1± ε), η) and Rα(X±ε) are obtained using Proposition 3.
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Proof. From (3) and (12), we obtained

Rα(Y) =
1

1− α
log

∫ +∞

−∞
[g(y|µ, σ, η, ε)]αdy,

=
1

1− α
log
{∫ +∞

0

[
1
2

f
(

x
1 + ε

∣∣∣σ, η

)]α

dx +
∫ +∞

0

[
1
2

f
(

x
1− ε

∣∣∣σ, η

)]α

dx
}

,

=
1

1− α
log
{(

1 + ε

2

)α ∫ +∞

0
[ f (x|σ(1 + ε), η)]αdx +

(
1− ε

2

)α ∫ +∞

0
[ f (x|σ(1− ε), η)]αdx

}
,

which concludes the proof.

Figure 2a illustrates the behavior of RE for random variable Y when α = 2 (quadratic RE). As in
the SE case, we also observed that RE increases when η decreases and reaches maximum and minimum
at ε = 0 (Reflected-GZ) and ε → −1 (Truncated-GZ and GZ), respectively. When α = 5 (or α > 2)
(see Figure 2b), RE decays faster than in the quadratic RE case as ε→ −1. More details appear in [7]
for the RE expressions of other asymmetric distributions.

ε
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Y
)

−
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−
4

−
3

−
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−
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0
1

2
3

−1.0 −0.5 0.0 0.5 1.0
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Figure 2. Rényi entropy of SRG distributions for σ = 1, −1 < ε < 1, several values of η and (a) α = 2
and (b) α = 5 values.

3.3. Kullback–Leibler Divergence

The Kullback–Leibler (KL) divergence introduced by [20] in the context of univariate continuous
distributions, extends the concept of SE between two random variables X1 and X2 with pdfs f1(x1)

and f2(x2), respectively, through the expression

K(X1, X2) =
∫ +∞

−∞
f1(x) log

{
f1(x)
f2(x)

}
dx. (13)

The KL divergence measures the disparity between the pdfs of X1 and X2, and is non-negative,
non-symmetric and zero only if X1 = X2 in distribution. Also, the KL divergence does not satisfy
the triangular inequality (see, e.g., [8,17] for other properties of KL and other divergences). The KL
divergence for two GZ and two SRG distributions are presented in Propositions 5 and 6.

Proposition 5. [21]. The KL divergence between X1 ∼ GZ(σ1, η1) and X2 ∼ GZ(σ2, η2) is

K(X1, X2) = log
{

eη1 σ2η1

eη2 σ1η2

}
+ eη1

[(
σ1

σ2
− 1
)

Ei(−η1) +
η2

ησ1/σ2
1

Γ
(

σ1

σ2
− 1, η1

)]
− (η1 + 1),
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where Γ(u, v) =
∫ ∞

v tu−1e−tdt is the upper incomplete gamma function.

Proposition 6. The KL divergence between Y1 ∼ SRG(0, σ1, η1, ε1) and Y2 ∼ SRG(0, σ2, η2, ε2) is

K(Y1, Y2) =
1 + ε1

2

[
log
{

1 + ε1

1 + ε2

}
+ K(X+ε1 , X+ε2)

]
+

1− ε1

2

[
log
{

1− ε1

1− ε2

}
+ K(X−ε1 , X−ε2)

]
,

where X±εi ∼ GZ(σi(1± εi), ηi), i = 1, 2, and K(X±ε1 , X±ε2) are obtained using Proposition 5.

Proof. From (3) and (13), we obtained

K(Y1, Y2) =
∫ +∞

−∞
g(x|0, σ1, η1, ε1) log

{
g(x|0, σ1, η1, ε1)

g(x|0, σ2, η2, ε2)

}
dx,

=
1
2

∫ +∞

0
f
(

x
1 + ε1

∣∣∣σ1, η1

)
log


f
(

x
1+ε1

∣∣∣σ1, η1

)
f
(

x
1+ε2

∣∣∣σ2, η2

)
 dx

+
1
2

∫ +∞

0
f
(

x
1− ε1

∣∣∣σ1, η1

)
log


f
(

x
1−ε1

∣∣∣σ1, η1

)
f
(

x
1−ε2

∣∣∣σ2, η2

)
 dx,

=
1 + ε1

2

[
log
{

1 + ε1

1 + ε2

}
+
∫ +∞

0
f (x|σ1(1 + ε1), η1) log

{
f (x|σ1(1 + ε1), η1)

f (x|σ2(1 + ε2), η2)

}
dx
]

+
1− ε1

2

[
log
{

1− ε1

1− ε2

}
+
∫ +∞

0
f (x|σ1(1− ε1), η1) log

{
f (x|σ1(1− ε1), η1)

f (x|σ2(1− ε2), η2)

}
dx
]

,

which concludes the proof.

More details appear in [3,8] for the KL divergence expressions of other asymmetric distributions.
Using Proposition 6, the asymptotic KL divergence between Y ∼ SRG(0, σ, η, ε) and X ∼ GZ(σ, η) is

K(Y, X) ≈ 1 + ε

2

[
lim

ε2→−1
log
(

1 + ε

1 + ε2

)
+ K(X+ε, X)

]
+

1− ε

2

[
log
(

1− ε

2

)
+ K(X−ε, X)

]
,

as ε2 → −1. However, we see that log
(

1+ε
1+ε2

)
= +∞ as ε2 → −1 and K(Y, X) is not finite. However,

from Proposition 6 the asymptotic KL divergence between Y1 and Y2 is

K(Y1, Y2) ≈ K(X, Y) = log
(

2
1− ε

)
+ K(X, X−ε), (14)

as ε1 → −1, where X−ε ∼ GZ(σ(1− ε), η). Therefore, while K(Y, X) is not finite, K(X, Y) is finite
and can be used to study the disparity of ε from −1. Thus, hypothesis testing for H0 : ε = −1 can
be addressed. Besides, we further study hypothesis testing for scale and shape parameters between
two SRG distributions in Section 3.4. From (14), we also took that K(Y1, Y2) ≈ K(X, X1) as ε → −1,
with X1 ∼ GZ(2σ, η).

Figure 3 illustrates the KL divergence between two SRG distributions. We observed that for the
critical points of (ε1, ε2) → {(−1, 1); (1,−1)}, the KL divergence reaches the highest values and is
close to zero in the other values [panels (a) and (b)]. For large η’s [panel (c)], the KL divergence is zero
for a concentrated region of the dominion where ε1 = ε2.
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Figure 3. Plots of Kullback–Leibler (KL) divergence between Y1 ∼ SRG(0, σ1, η1, ε1) and Y2 ∼
SRG(0, σ2, η2, ε2) for values σ1 = σ2 = 1 and (a) η1 = η2 = 0.25; (b) η1 = η2 = 3; and (c) η1 = η2 = 10.

All information quantifiers and the EM algorithm for SRG distribution were implemented in [22].

3.4. Asymptotic Test

Consider two independent samples of sizes n1 and n2 from Y1 and Y2, respectively; where θ, θ′ ∈
Θ ⊂ Rp, and X1 and X2 have pdfs g(y; θ1) and g(y; θ2), respectively; with θi = (σi, ηi, εi), i = 1, 2.
Suppose partition θi = (θi1, θi2), and assume θ21 = θ11 ∈ Θ1 ⊂ Rr, so that θi2 ∈ Θ ∩ Θc

1 ⊂ Rp−r.
Let θ̂i = (θ̂11, θ̂i2) be the MLE of θi = (θ11, θi2) for i = 1, 2, which corresponds to the MLE of the full
model parameters (θ1, θ2) under the null hypothesis H0 : θ21 = θ11. Thus, part b) of Corollary 1 in [12]
establishes that if the null hypothesis H0 : θ22 = θ12 holds and n1

n1+n2
−→

n1,n2→∞
λ, with 0 < λ < 1, then

K0 =
2n1n2

n1 + n2
K(θ̂1, θ̂2)

d−→
n1,n2→∞

χ2
p−r, (15)

where r = 3 is the number of parameters of the SRG distribution (location parameter is not considered
for KL divergence). Thus, a test of level α for the above homogeneity null hypothesis consists of
rejecting H0 if K0 > χ2

p−r,1−α, where χ2
p−r,α is the αth percentile of the χ2

p−r-distribution.
As [3] stated, the proposed asymptotic test is only valid for regular conditions of the SRG

distribution, in particular for a non-singular FIM. Therefore, given that the SRG distributions’ FIM is
singular at ε→ ±1 [1], the SRG model does not serve for testing the null hypothesis using (15) when ε

is close to −1 or 1.

4. Application

4.1. Sea Surface Temperature Data

The spatial information and SST data analyzed in this study were recorded by a scientific observer
(whose labor concerns biological sampling of fishes, incidental captures of birds, turtles and marine
mammals. Biological sampling was complemented with information such as time, longline and hook
features, number of buoys, baits, etc.) (SO) in the Chilean longline fleet (industrial and artisanal),
which was oriented to capture swordfish (Xiphias gladius, [23]) from 2012 to 2014 (obtaining a sampling
of 83% in 2012, 55% in 2013, 90% in 2014, and 75% in 2012–2014). The covered area of the study was at
21◦31′–36◦39′ LS and 71◦08′–85◦52′ LW (see Figure 4).
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Figure 4. Spatial distribution of Sea Surface Temperature (SST) observations by year (21◦31′–36◦39′ LS,
71◦08′–85◦52′ LW).

SST records in swordfish captures are crucial for distributional analysis and fish abundance.
Specifically, variations in SST are physical factors that control productivity, growth and migration
of species [24]. In addition, SST is strongly correlated with atmospheric pressure at sea level and
thus climatic time scales. Therefore, changes in SST overlap with ecosystem changes [25]. However,
SST influence on ecosystems is not clear because other physical processes such as superficial warming,
horizontal advection of currents, upwelling, etc. [11], modify SST. Therefore, SST anomalies could be
symptomatic rather than causal.
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4.1.1. SRG Parameter Estimates

Considering the smallest Akaike (AIC) and Schwarz (BIC) information criteria, we observed in
Table 1 that SRG performs better than the SN and ESN models (see Appendices A and B, respectively).
In addition, Table 1 shows the estimated parameters (based on the EM algorithm presented in Section 2)
for SST datasets by year assuming SRG distribution. In 2012, a negative ε estimate corresponds to
asymmetry to the right, and in 2013 and 2014 negative ε and η close to zero produce a two-piece
distribution to fit “cold” and “warm” temperatures (Figure 5).

Table 1. Parameter estimates and their respective standard deviations (SD) for SST by year based
on SRG, epsilon-skew-normal (ESN) and skew-normal (SN) models. For each model, log-likelihood
function `(θ), θ = (µ, σ, η, ε), Akaike’s (AIC) and Bayesian (BIC) information criteria, and goodness-of-fit
tests (Kolmogorov–Smirnov (K–S), Anderson–Darling (A–D), and Cramer–von Mises, (C–V)) are also
reported with respective p-values in parentheses.

Year Model Param. Estim. (S.D) `(θ) AIC BIC K–S A–D C–V

2012

SRG

µ 17.992 0.103

−1401.896 2811.793 2830.399 0.044 2.014 0.214

(n = 774)

σ 2.590 0.067
(0.095) (0.090) (0.242)η 1.444 0.027

ε −0.207 0.075

ESN
θ 18.000 0.031

−1507.534 3021.069 3035.023 0.118 26.417 2.059
v 1.657 0.015 (<0.01) (<0.01) (<0.01)
ε −0.418 0.069

SN
ξ 16.777 0.114

−1404.581 2815.161 2829.116 0.041 1.752 0.198
ω 5.199 0.043 (0.143) (0.126) (0.271)
λ 2.527 0.311

2013

SRG

µ 17.935 0.061

−687.420 1382.839 1398.942 0.082 2.632 0.491

(n = 415)

σ 1.112 0.026
(0.010) (0.042) (0.041)η 0.432 0.021

ε −0.108 0.029

ESN
θ 17.600 0.046

−716.375 1438.750 1450.827 0.089 7.721 0.970
v 1.328 0.026 (<0.01) (<0.01) (0.002)
ε −0.376 0.092

SN
ξ 16.598 0.200

−691.531 1389.063 1401.140 0.066 2.002 0.328
ω 3.812 0.054 (0.054) (0.092) (0.113)
λ 2.421 0.617

2014

SRG

µ 17.454 0.048

−653.082 1314.164 1330.502 0.092 2.848 0.533

(n = 439)

σ 0.896 0.020
(<0.01) (0.033) (0.032)η 0.375 0.020

ε −0.106 0.025

ESN
θ 17.200 0.053

−703.748 1413.496 1425.750 0.109 11.996 1.529
v 0.956 0.035 (<0.01) (<0.01) (<0.01)
ε −0.384 0.090

SN
ξ 16.146 0.098

−666.984 1339.968 1352.222 0.096 4.055 0.711
ω 3.245 0.045 (<0.01) (<0.01) (0.011)
λ 3.434 0.618

To evaluate the goodness-of-fit test, the Kolmogorov–Smirnov (K–S), Anderson–Darling (A–D),
and Cramer–von Mises (C–V) tests were considered for all models, commonly used to analyze the
goodness-of-fit test of a particular distribution see, e.g., [26]). Considering a 95% confidence level,
SRG fits perform well for 2012 and 2013, and on a 90% confidence level, the SRG fit performs well
for 2014.
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Figure 5. MLE fit of SRG, ESN and SN models for SST data by year.

4.1.2. Information Quantifiers and Asymptotic Test

Parameters estimated from the SRG model and presented in Table 1 are used to perform the
quantifiers of Sections 3.1–3.3 for SST in each year and for the asymptotic test of Section 3.4 for
comparing SST between two years. The results of these analyses are shown in Table 2. In Table 2,
K0 = K̂(Y1, Y2) represents the KL divergence between the years Y1 (column) and Y2 (row).

The first quantifiers (SE and RE) illustrate that the highest information of SST is obtained by SE
and increases with the increment of years. For all RE, the highest information of SST is obtained in
2012 and is negative for 2013 and 2014 and similar during that period. Differences in information
between SE and RE are produced by the independency of SE with parameter σ, while RE depends on
three parameters as in Proposition 4.

In addition, the asymptotic test presented in Table 2 is analogous for all the years in both groups.
In fact, the null hypothesis H0 : θ1 = θ2 is rejected at a 95% confidence level. This rejection is reinforced
by high values of statistics K0, produced by a high sample size of both groups (n1 and n2).

Table 2. SRG Shannon, H(Y), and Rényi, Rα(Y), α = 2, 3, 4, entropies for SST data. For each year,
the KL divergence K0 = K̂(Y1, Y2), statistic and its respective p-values of Equation (15) are reported.
All reported K0 estimates considered the estimated parameters and sample size n in Table 1.

Year Quantifier 2012 2013 2014

H(Y) 0.765 0.781 2.754
R2(Y) 0.384 −0.362 −0.365
R3(Y) 0.252 −0.417 −0.418
R4(Y) 0.163 −0.457 −0.457

2012
K0 - 0.266 0.911

Statistic - 143.740 520.41
p-value - <0.01 <0.01

2013
K0 0.080 - 0.071

Statistic 43.192 - 30.233
p-value <0.01 - <0.01

2014
K0 0.143 0.043 -

Statistic 80.327 18.282 -
p-value <0.01 <0.01 -

5. Conclusions

We have presented a methodology to compute the Shannon and the Rényi entropy
and the Kullback–Leibler divergence for the family of Skew-Reflected-Gompertz distributions.
Our methods consider the information quantifiers previously computed for the Gompertz distribution.
Explicit formulas for Shannon and Rényi entropies (in terms of the Gompertz, Shannon and
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Rényi entropies, respectively), and the Kullback–Leibler divergence (using incomplete gamma
function) facilitate easy computational implementation. Additionally, given the regularity conditions
accomplished by the Skew-Reflected-Gompertz distribution, specifically by the Fisher information
matrix convergence when ε is in (−1, 1), an asymptotic test for comparing two groups of datasets
was developed.

The statistical application to South Pacific sea surface temperature was given. We first carried out
SRG goodness-of-fit tests in samples over three years, where we find strong evidence (a 95% confidence
level) for 2012, and moderate evidence (a 90% confidence level) for 2013 and 2014. The results show
that the proposed methodology serves to compare two sets of samples, Skew-Reflected-Gompertz
distributed. The proposed asymptotic test is therefore useful to detect anomalies in sea surface
temperature, linked to extreme events influenced by environmental conditions [11,24,25]. We encourage
researchers to consider the proposed methodology for further investigations related to environmental
datasets [1].
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Abbreviations

The following abbreviations are used in this manuscript:

A–D Anderson–Darling
AIC Akaike’s information criterion
BIC Bayesian information criterion
C–V Cramer–von Mises
CDF Cumulative distribution function
EM Expectation maximization
ESN Epsilon-skew-normal
FIM Fisher information matrix
GZ Gompertz
K–S Kolmogorov–Smirnov
KL Kullback–Leibler
MGF Moment-generating function
MLE Maximum Likelihood Estimator
PDF Probability density function
RE Rényi entropy
SD Standard deviation
SE Shannon entropy
SN Skew-normal
SRG Skew-Reflected-Gompertz
SST Sea surface temperature

Appendix A. The Epsilon-Skew-Normal Distribution

The epsilon-skew-normal distribution [4,27] in its location-scale version is denoted as ESN(θ, v, ε).
It can be derived from a more general class of two-piece asymmetric distributions proposed by [14],
by considering the standardized normal kernel φ(·) (zero mean and variance 1), denoted as N(0, 1),
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as the density f and the functions a(ε) = 1 + ε and b(ε) = 1− ε. If Z ∼ ESN(θ, v, ε), thus Z has pdf
given by

h(z|θ, v, ε) =

 φ
(

θ−z
v(1+ε)

)
, z ≤ θ,

φ
(

z−θ
v(1−ε)

)
, z > θ,

(A1)

where Z = θ + vX for location θ ∈ R and scale v > 0 parameters. The mean and variance of Z are

E(Z) = θ − 4vε/
√

2π,

Var(Z) =
v2

π
[(3π − 8)ε2 + π],

and the MGF of X is given by

MX(t) = (1 + ε)e
(1+ε)2t2

2 Φ[−(1 + ε)t] + (1− ε)e
(1−ε)2t2

2 Φ[(1− ε)t],

where Φ(·) is the cdf of standardized Gaussian distribution.

Appendix B. The Skew-Normal Distribution

Let X be a skew-normal (SN, [28]) random variable denoted as X ∼ SN(ξ, ω, λ). The pdf of X is
given by

f (x; λ) = 2φ(z)Φ(λz), (A2)

with z = (x− ξ)/ω. The SN model with the density (A2) is explained by its stochastic representation

X d
= ξ + δ|U0|+

√
1− δ2U, (A3)

where δ = λ/
√

1 + λ2, X is represented as a linear combination of Gaussian U and a half-Gaussian
|U0| variable, and U0 ∼ N(0, 1) and U ∼ N(0, ω2) are independent (Theorem 1 of [29]). From (A3),
the mean and variance of X are E(X) = ξ +

√
2/πδ and Var(X) = ω2 − (2/π)δ2, respectively.

References

1. Hoseinzadeh, A.; Maleki, M.; Khodadadi, Z.; Contreras-Reyes, J.E. The Skew-Reflected-Gompertz
distribution for analyzing symmetric and asymmetric data. J. Comput. Appl. Math. 2019, 349, 132–141.
[CrossRef]

2. Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of
determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115, 513–583. [CrossRef]

3. Arellano-Valle, R.B.; Contreras-Reyes, J.E.; Stehlík, M. Generalized skew-normal negentropy and its
application to fish condition factor time series. Entropy 2017, 19, 528. [CrossRef]

4. Mudholkar, G.S.; Hutson, A.D. The epsilon-skew-normal distribution for analyzing near-normal data. J. Stat.
Plan. Inference 2000, 83, 291–309. [CrossRef]

5. Maleki, M.; Mahmoudi, M.R. Two-Piece Location-Scale Distributions based on Scale Mixtures of Normal
family. Commun. Stat. Theor. Meth. 2017, 46, 12356–12369. [CrossRef]

6. Moravveji, B.; Khodadai, Z.; Maleki, M. A Bayesian Analysis of Two-Piece distributions based on the Scale
Mixtures of Normal Family. Iran. J. Sci. Technol. Trans. A 2019, 43, 991–1001. [CrossRef]

7. Contreras-Reyes, J.E. Rényi entropy and complexity measure for skew-gaussian distributions and related
families. Physica A 2015, 433, 84–91. [CrossRef]

8. Contreras-Reyes, J.E. Analyzing fish condition factor index through skew-gaussian information theory
quantifiers. Fluct. Noise Lett. 2016, 15, 1650013. [CrossRef]

http://dx.doi.org/10.1016/j.cam.2018.09.011
http://dx.doi.org/10.1098/rspl.1815.0271
http://dx.doi.org/10.3390/e19100528
http://dx.doi.org/10.1016/S0378-3758(99)00096-8
http://dx.doi.org/10.1080/03610926.2017.1295160
http://dx.doi.org/10.1007/s40995-018-0541-9
http://dx.doi.org/10.1016/j.physa.2015.03.083
http://dx.doi.org/10.1142/S0219477516500139


Mathematics 2019, 7, 403 14 of 14

9. Wang, Y.Q.; Derksen, R.W. The confirmation of the α–β model and the maximum entropy formulation in
a thermal wake. Environmetrics 1998, 9, 269–282. [CrossRef]

10. De Queiroz, M.M.; Silva, R.W.; Loschi, R.H. Shannon entropy and Kullback–Leibler divergence in
multivariate log fundamental skew-normal and related distributions. Can. J. Stat. 2016, 44, 219–237.
[CrossRef]

11. Di Lorenzo, E.; Combes, V.; Keister, J.E.; Strub, P.T.; Thomas, A.C.; Franks, P.J.; Ohman, M.D.; Furtado, J.C.;
Bracco, A.; Bograd, S.J.; et al. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography
2013, 26, 68–81. [CrossRef]

12. Salicrú, M.; Menéndez, M.L.; Pardo, L.; Morales, D. On the applications of divergence type measures in
testing statistical hypothesis. J. Multivar. Anal. 1994, 51, 372–391. [CrossRef]

13. Maleki, M.; Contreras-Reyes, J.E.; Mahmoudi, M.R. Robust Mixture Modeling Based on Two-Piece Scale
Mixtures of Normal Family. Axioms 2019, 8, 38. [CrossRef]

14. Arellano-Valle, R.B.; Gómez, H.W.; Quintana, F.A. Statistical inference for a general class of asymmetric
distributions. J. Stat. Plan. Inference 2005, 128, 427–443. [CrossRef]

15. Jafari, A.A.; Tahmasebi, S.; Alizadeh, M. The beta-Gompertz distribution. Rev. Colomb. Estad. 2014, 37,
141–158. [CrossRef]

16. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
17. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley & Son, Inc.: New York, NY, USA, 2006.
18. Rényi, A. Probability Theory; Dover Publications: New York, NY, USA, 2012.
19. Abu-Zinadah, H.H.; Aloufi, A.S. Some characterizations of the exponentiated Gompertz distribution.

Int. Math. Forum 2014, 9, 1427–1439. [CrossRef]
20. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
21. Bauckhage, C. Characterizations and Kullback–Leibler Divergence of Gompertz Distributions. arXiv 2014,

arXiv:1402.3193.
22. R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2018; ISBN 3-900051-07-0.
23. Barría, P.; González, A.; Cortés, D.D.; Mora, S.; Miranda, H.; Cerna, F.; Cid, L.; Ortega, J.C. Seguimiento

Pesquerías Recursos Altamente Migratorios, 2016. Convenio de Desempeño 2016; Informe Final, Subsecretaría de
Economía y EMT; Instituto de Fomento Pesquero: Valparaíso, Chile, 2017.

24. Alheit, J.; Bernal, P. Effects of physical and biological changes on the biomass yield of the Humboldt Current
ecosystem. In Large Marine Ecosystems—Stress, Mitigation and Sustainability; American Association for the
Advancement of Science: Washington, DC, USA, 1993; pp. 53–68.

25. Oerder, V.; Bento, J.P.; Morales, C.E.; Hormazabal, S.; Pizarro, O. Coastal Upwelling Front Detection off
Central Chile (36.5–37◦S) and Spatio-Temporal Variability of Frontal Characteristics. Remote Sens. 2018,
10, 690. [CrossRef]

26. Lenart, A.; Missov, T.I. Goodness-of-fit tests for the Gompertz distribution. Commun. Stat. Theor. Meth. 2016,
45, 2920–2937. [CrossRef]

27. Bondon, P. Estimation of autoregressive models with epsilon-skew-normal innovations. J. Multivar. Anal.
2009, 100, 1761–1776. [CrossRef]

28. Azzalini, A. A Class of Distributions which includes the Normal Ones. Scand. J. Stat. 1985, 12, 171–178.
29. Henze, N. A probabilistic representation of the ‘skew-normal’ distribution. Scand. J. Stat. 1986, 13, 271–275.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<269::AID-ENV303>3.0.CO;2-N
http://dx.doi.org/10.1002/cjs.11285
http://dx.doi.org/10.5670/oceanog.2013.76
http://dx.doi.org/10.1006/jmva.1994.1068
http://dx.doi.org/10.3390/axioms8020038
http://dx.doi.org/10.1016/j.jspi.2003.11.014
http://dx.doi.org/10.15446/rce.v37n1.44363
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.12988/imf.2014.48146
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.3390/rs10050690
http://dx.doi.org/10.1080/03610926.2014.892323
http://dx.doi.org/10.1016/j.jmva.2009.02.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Skew-Reflected-Gompertz Distribution
	Entropic Quantifiers
	Shannon Entropy
	Rényi Entropy
	Kullback–Leibler Divergence
	Asymptotic Test

	Application
	Sea Surface Temperature Data
	SRG Parameter Estimates
	Information Quantifiers and Asymptotic Test


	Conclusions
	The Epsilon-Skew-Normal Distribution
	The Skew-Normal Distribution
	References

