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Abstract: In this paper, we study a new four-parameter distribution called the odd gamma
Weibull-geometric distribution. Having the qualities suggested by its name, the new distribution is
a special member of the odd-gamma-G family of distributions, defined with the Weibull-geometric
distribution as baseline, benefiting of their respective merits. Firstly, we present a comprehensive
account of its mathematical properties, including shapes, asymptotes, quantile function, quantile
density function, skewness, kurtosis, moments, moment generating function and stochastic ordering.
Then, we focus our attention on the statistical inference of the corresponding model. The maximum
likelihood estimation method is used to estimate the model parameters. The performance of this
method is assessed by a Monte Carlo simulation study. An empirical illustration of the new
distribution is presented by the analyses two real-life data sets. The results of the proposed
model reveal to be better as compared to those of the useful beta-Weibull, gamma-Weibull and
Weibull-geometric models.

Keywords: Weibull distribution; gamma distribution; hazard rate function; lifetime data; maximum
likelihood method
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1. Introduction

The parametric models based on standard (probability) distributions are not always suitable to
reveal the finer detail of the underlying structure of a data set. This limitation has triggered the creation
of new families of distributions, often defined as compounding or weighting existing distributions.
The most useful of them can be found in the surveys of [1,2]. In particular, the families of distributions
defined with gamma generators has demonstrated a high ability to construct flexible models, showing
nice fits for various kinds of real-life data sets. See, for instance, [3–6]. The odd-gamma-G family
introduced by [5] will be at the heart of our study. For this reason, it is briefly described below. Let G(x)
be a cumulative distribution function (cdf) of a continuous univariate distribution and g(x) be the
corresponding probability density function (pdf). Then, the odd-gamma-G family of distributions is
constructed from the gamma distribution and the odd transformation given by oddG(x) = G(x)/G(x),
with G(x) = 1− G(x). The corresponding cdf given by

F(x) =
1

Γ(α)
γ (α, oddG(x)) , x ∈ R, (1)
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where γ(α, z) =
∫ z

0 tα−1e−tdt, α > 0, z ≥ 0 is the lower incomplete gamma function and Γ(α) =∫ +∞
0 tα−1e−tdt is the gamma function. The corresponding pdf is given by

f (x) =
1

Γ(α)
g(x)[

G(x)
]2 [oddG(x)]α−1 exp {− oddG(x)} , x ∈ R.

This modification can significantly enriches the former model related to G(x). This is supported by [5]
with the uniform distribution as baseline and by [6] with the exponentiated version of the uniform
distribution and the exponentiated version of the Weibull distribution as baselines. See also more
general distributions in [7]. In terms of modelling, it is shown that they enjoy better goodness of fit
properties to other useful competitors.

On the other side, Ref. [8] introduced and studied another generalization of the Weibull
distribution called the Weibull-geometric distribution. As indicated by the name, it is obtained
by compounding the Weibull and geometric distributions. The corresponding cdf is given by

G(x) =
1− e−(βx)c

1− pe−(βx)c , x > 0, (2)

where β > 0, c > 0 and p ∈ [0, 1). The corresponding pdf is given by

g(x) = cβcxc−1(1− p)e−(βx)c
[
1− pe−(βx)c

]−2
, x > 0.

One can remark that the Weibull distribution arises as a special case when p = 0. It is shown in [8]
that the Weibull-geometric pdf and hrf take more general forms that the standard Weibull distribution.
Among others, thanks to the presence of the parameter p, the related model is of interest for modeling
unimodal failure rates (contrary to the standard Weibull model).

In this paper, we focus our attention on a new distribution with cdf defined by the compounding
of the odd-gamma-G cdf given by (1) and the Weibull-geometric cdf given by (2). The obtained
distribution is then called the odd gamma Weibull-geometric distribution (OGWG for short). We thus
aim to benefit of the respective merits of the two compounded distributions to create a new one having
a great flexibility in modelling. Among others, we show that the OGWG pdf can have reversed-J, right
skewed shapes, left-skewed and approximately symmetric, and the OGWG hrf can have increasing
failure rate, decreasing failure rate and bathtub shapes. These aspects are welcome to the construction
of new flexible models for a wide variety of data sets.

The rest of the paper is organized as follows. In Section 2, the main functions related the
OGWG distribution are presented, with analytical results and graphical illustrations on their shapes.
The mathematical properties of the new distribution are derived in Section 3. In Section 4, estimators
for the model parameters are obtained by the method of maximum likelihood estimation. A simulation
study is then performed to show the numerical performance of the estimators. In Section 5, two real
data sets are considered for analysis, showing the nice fit of the proposed model in comparison to
useful competitors. Some concluding remarks are given in Section 6.

2. The OGWG Distribution

2.1. Main Probability Functions

Let us recall that the cdf of the OGWG distribution is defined by (1) with G(x) given (2). By
noticing that oddG(x) = (e(βx)c − 1)/(1− p), the corresponding cdf is given by

F(x) =
1

Γ(α)
γ

(
α,

e(βx)c − 1
1− p

)
, x > 0, (3)
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with c > 0, α > 0, p ∈ [0, 1) and β > 0. When needed, the OGWG distribution will be denoted
by OGWG(c, α, p, β) in order to specify the parameters. By differentiation (almost surely), the pdf
corresponding to (3) is given by

f (x) =
cβc

Γ(α)(1− p)α
xc−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

1− p

)
, x > 0. (4)

The survival function of the OGWG distribution is given by

S(x) = 1− F(x) = 1− 1
Γ(α)

γ

(
α,

e(βx)c − 1
1− p

)
, x > 0.

The corresponding hazard rate function (hrf) is given by

h(x) =
f (x)
S(x)

=
cβcxc−1e(βx)c

(1− p)α
{

Γ(α)− γ
(
α, (e(βx)c − 1)/(1− p)

)} (e(βx)c − 1
)α−1

exp

(
1− e(βx)c

1− p

)
, x > 0. (5)

Remark 1. One can remark that he OGWG distribution is special case of the general gamma-Weibull-Weibull
distribution introduced by ([7], Section 6) (with the notations of [7], it corresponds to β = 1, simplifying the
complexity of the distribution, α = 1/(1− p), λ = 1/β and k = c). It is also an extension of the so-called
exponentiated exponential power distribution thanks to the presence of the parameter p.

2.2. Analytical Properties of the Shapes

We now investigate the critical points and asymptotes for the OGWG pdf, i.e., f (x) given by (4),
and the OGWG hrf, i.e., h(x) given by (5). In order to deal with tractable equations for the critical
points, we work with the logarithmic functions: log[ f (x)] and log[h(x)]. Thus, the critical points of
f (x) are the solution x0 of the nonlinear equation ∂ log[ f (x)]/∂x |x=x0= 0, i.e.,

(c− 1)
1
x0

+ cβcxc−1
0 + cβcxc−1

0 e(βx0)
c
{
(α− 1)

1
e(βx0)c − 1

− 1
1− p

}
= 0.

The nature of x0 can be determined by the study of the sign of the value ∂2 log[ f (x)]/∂x2 |x=x0 .
For given parameters c, α, p and β, this aspect can be evaluated numerically by using a standard
software (R, Matlab, Mathematica. . . ).

In a similar way, the critical points of h(x) are the solution x∗ of the nonlinear equation
∂ log[h(x)]/∂x |x=x∗= 0, i.e.,

(c− 1)
1
x∗

+ cβcxc−1
∗ + cβcxc−1

∗ e(βx∗)c×(α− 1)
1

e(βx∗)c − 1
− 1

1− p
+

(
e(βx∗)c − 1

)α−1
exp

(
(1− e(βx∗)c

)/(1− p)
)

(1− p)α
{

Γ(α)− γ
(
α, (e(βx∗)c − 1)/(1− p)

)}
 = 0.

Again, the nature of x∗ can be determined by the study of the sign of the value ∂2 log[h(x)]/∂x2 |x=x0 .
The asymptotic properties of F(x), f (x) and h(x) are now studied. Since γ(α, u) ∼ uα/α when

u→ 0, for x → 0, we have

F(x) ∼ 1
αΓ(α)

βαc

(1− p)α
xαc, f (x) ∼ cβαc

Γ(α)(1− p)α
xαc−1, h(x) ∼ cβαc

Γ(α)(1− p)α
xαc−1.
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In this case, note that f (x) tends to 0 when αc > 1, tends to β/[αΓ(α)(1− p)α] when αc = 1 and tends
to +∞ when αc ∈ (0, 1). The same results hold for h(x).

Since γ(α, u) ∼ Γ(α)− uα−1e−u when u→ +∞, for x → +∞, we have

F(x) ∼ 1− 1
Γ(α)

1
(1− p)α−1 e(α−1)(βx)c

exp

(
1− e(βx)c

1− p

)
,

f (x) ∼ cβc

Γ(α)(1− p)α
xc−1eα(βx)c

exp

(
1− e(βx)c

1− p

)
and

h(x) ∼ cβc

1− p
xc−1e(βx)c

.

Let us remark that, in this case, f (x) tends to 0, whereas h(x) tends to +∞, for all the possible values
of the parameters. Also, the parameter α plays no role in the asymptotic behavior of h(x).

Figures 1 and 2 display some plots of f (x) and h(x) when β = 1 for different values of c, α and
p. The plots in Figure 1 reveal that f (x) can have reversed-J, right skewed shapes, left-skewed and
approximately symmetric. The plots in Figure 2 indicate that the h(x) can have increasing failure rate,
decreasing failure rate and bathtub shapes.
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0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

h
(x

)

α = 0.9     c = 0.6    p = 0.1

α = 1.8     c = 0.5    p = 0.4

α = 1.5     c = 1.2    p = 0.05

α = 1.5     c = 1.7    p = 0.8

α = 2.2     c = 1.5    p = 0.5

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

x

h
(x

)

α = 1.5     c = 0.5    p = 0.1

α = 2.1     c = 0.35  p = 0.4

α = 0.5     c = 0.1    p = 0.3

α = 2.5     c = 0.8    p = 0.1

α = 3.5     c = 0.8    p = 0.2

Figure 2. Plots of the OGWG hrf for certain parameter values (with β = 1 only).



Mathematics 2019, 7, 399 5 of 18

3. Some Mathematical Properties of the OGWG Distribution

3.1. Quantile Function

The quantile function of the OGWG distribution, denoted by Q(y), y ∈ (0, 1), is characterized by
the non-linear equation : F(Q(y)) = y. After some algebra, we obtain

Q(y) =
1
β

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]1/c

, y ∈ (0, 1), (6)

where γ−1(α, x) is the inverse lower incomplete gamma function, i.e., satisfying γ−1(α, γ(α, x)) = x
for x > 0. The median of the OGWG distribution is given by M∗ = Q(0.5). For i ∈ {1, 2, 3}, the i-th
quartile is given by Qi = Q(i/4) (with Q2 = M∗) and for j ∈ {1, . . . , 7}, the j-th octile is given by
Ej = Q(j/8).

Among others, we can use the quartiles and the octiles to investigate the effect of the parameters
c, α, p and β on the skewness and kurtosis of the OGWG distribution. One of the earliest skewness
measure is the Bowley skewness introduced by [9] and defined by

B =
Q3 + Q1 − 2Q2

Q3 −Q1
.

For the kurtosis, one can use the Moors kurtosis introduced by [10] and defined by

M =
E3 − E1 + E7 − E5

E6 − E2
.

The sign of B is informative on the skewness nature of the distribution. Indeed, if B = 0 then the
distribution is symmetric, if B > 0 then the distribution has a right skewed tail and if B < 0 then the
distribution has a left skewed tail. On the other side, the heaviness of the tail is evaluated numerically
by M. A large M corresponds to a heavy tail.

Also, we can derive the quantile density function by differentiation of Q(y). It comes

q(y) =
1

f (Q(y))
=

1
βc

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]1/c−1

×

(1− p)Γ(α)
[1 + (1− p)γ−1(α, yΓ(α))] (γ−1(α, yΓ(α)))α−1e−γ−1(α,yΓ(α))

, y ∈ (0, 1).

This function is useful to defined numerous statistical quantities (asymptotic confidence intervals,
inference procedures. . . ). We refer to [11].

3.2. Some Characterizations

Let U be a random variable following the uniform distribution over (0, 1) and Q(y) be the quantile
function given by (6). Then, the random variable X defined by

X = Q(U) =
1
β

[
log
{

1 + (1− p)γ−1(α, UΓ(α))
}]1/c

follows the OGWG(c, α, p, β) distribution. By noticing that Z = γ−1(α, UΓ(α)) follows the gamma
distribution with parameters 1 and α, i.e., with cdf R(x) = (1/Γ(α))

∫ x
0 tα−1e−tdt, x > 0, one can

also write X according to Z as X = (1/β) [log {1 + (1− p)Z}]1/c. This characterization is useful to
generate data according to the OGWG(c, α, p, β) distribution.
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Furthermore, if X is a random variable following the OGWG(c, α, p, β) distribution, then the
random variable Y defined by

Y =
e(βX)c − 1

1− p

follows the gamma distribution with parameters 1 and α.

3.3. Series Expansion of the OGWG pdf

The following result presents a series expansion for the OGWG pdf.

Proposition 1. The OGWG pdf can be expressed as sums of Weibull pdfs. More precisely, there exists a sequence
of real number (vr,s)(r,s)∈N2 such that the pdf f (x) given by can be expressed as

f (x) =
+∞

∑
r,s=0

vr,s`r,s(x),

where `r,s(x) = c(r + s + 1)βcxc−1e−(r+s+1)(βx)c
and one can remark that `r,s(x) is the pdf of the Weibull

distribution with parameters (r + s + 1)1/cβ and c.

Proof. Let us consider the expression of f (x) depending on G(x) and g(x), i.e.,

f (x) =
1

Γ(α)
g(x)[

G(x)
]2 [G(x)

G(x)

]α−1

exp
{
−G(x)

G(x)

}
, x ∈ R,

with G(x) = (1− e−(βx)c
)/(1− pe−(βx)c

) and g(x) = cβc(1− p)xc−1e−(βx)c
[
1− pe−(βx)c

]−2
.

By virtue of the power series expansion of the exponential function, i.e., ex =
+∞
∑

i=0

1
i! xi, x ∈ R,

and the generalized binomial series expansion, i.e., (1− x)b =
+∞
∑

j=0
(b

j)(−1)jxj, |x| < 1, where (b
j) =

b(b− 1) . . . (b− j + 1)/j!, f (x) can be expressed as

f (x) =
1

Γ(α)
g(x)[

G(x)
]2 [G(x)

G(x)

]α−1 +∞

∑
i=0

(−1)i

i!

[
G(x)
G(x)

]i

=
1

Γ(α)

+∞

∑
i=0

(−1)i

i!
g(x)[G(x)]α+i−1[1− G(x)]−α−i−1

=
1

Γ(α)

+∞

∑
i,j=0

(
−α− i− 1

j

)
(−1)i+j

i!
g(x) [G(x)]α+i+j−1

=
1

Γ(α)

+∞

∑
i,j=0

(
−α− i− 1

j

)
(−1)i+j

i!

[
cβc(1− p)xc−1e−(βx)c

] (1− e−(βx)c
)α+i+j−1

(
1− pe−(βx)c)α+i+j+1 .

By applying the generalized binomial formula twice, we have(
1− e−(βx)c

)α+i+j−1

(
1− pe−(βx)c)α+i+j+1 =

+∞

∑
r,s=0

(
α + i + j− 1

r

)(
−α− i− j− 1

s

)
(−1)r+s pse−(r+s)(βx)c

.
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Putting all the above equalities together, we get

f (x) =
+∞

∑
r,s=0

vr,s`r,s(x),

where

vr,s = (1− p)
1

r + s + 1
1

Γ(α)

+∞

∑
i,j=0

(
−α− i− 1

j

)(
α + i + j− 1

r

)(
−α− i− j− 1

s

)
(−1)r+s+i+j ps 1

i!

and `r,s(x) = c(r + s + 1)βcxc−1e−(r+s+1)(βx)c
. This ends the proof of Proposition 1.

The result of Proposition 1 is useful to have sum expressions of various probability measures,
specially those of the form

∫ +∞
−∞ k(x) f (x)dx, where k(x) denotes a certain function. Indeed, when the

dominated convergence theorem can be applied, we have the following series expansion:

∫ +∞

−∞
k(x) f (x)dx =

+∞

∑
r,s=0

vr,s

∫ +∞

0
k(x)`r,s(x)dx. (7)

3.4. Moments

Hereafter, X denotes a random variable following the OGWG(c, α, p, β) distribution.
It follows from the asymptotic study of f (x) performed in Section 2.2 that, for any integer m, m-th

moment of X exists (by using Riemann integrals). Furthermore, it is given by

µ′m = E(Xm) =
∫ +∞

−∞
xm f (x)dx

=
cβc

Γ(α)(1− p)α

∫ +∞

0
xm+c−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

1− p

)
dx.

Several expressions of this integral are given below. First of all, by applying the natural change of
variable y = (e(βx)c − 1)/(1− p), i.e., x = (1/β)[log(1 + (1− p)y)]1/c, we obtain

µ′m =
1

Γ(α)
1

βm

∫ +∞

0
[log(1 + (1− p)y)]m/cyα−1e−ydy. (8)

To the best of our knowledge, there is no closed form for this integral. However, for given parameters
c, α, p and β, it can be computed numerically by using a scientific softwares (see Table 1 below).

The following result proposes bounds for µ′m. This gives an approximative analytical view on the
roles of the parameters on the possible values of µ′m.

Proposition 2. Let us set

Ac,α,p,β =
Γ(m/c + α)

Γ(α)
(1− p)m/c

βm .

Then, we can bound µ′m as

1
[1 + (m/c)(1− p)]m/c+α

Ac,α,p,β ≤ µ′m ≤ Ac,α,p,β.

Proof. Let us consider the expression (8) for µ′m. The following bounds hold for the logarithmic
function: for any x > 0, x/(1 + x) ≤ log(1 + x) ≤ x. On the other hand, we have ex ≥ 1 + x for any
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x ∈ R. Therefore, for any x > 0, we have xe−x ≤ log(1 + x) ≤ x. Hence, by using xe−x ≤ log(1 + x)
and a change of variable, we obtain

µ′m ≥
1

Γ(α)
1

βm

∫ +∞

0
[(1− p)ye−(1−p)y]m/cyα−1e−ydy

=
1

Γ(α)
1

βm (1− p)m/c
∫ +∞

0
ym/c+α−1e−[1+(m/c)(1−p)]ydy

=
1

Γ(α)
1

βm (1− p)m/c 1
[1 + (m/c)(1− p)]m/c+α

Γ(m/c + α)

=
1

[1 + (m/c)(1− p)]m/c+α
Ac,α,p,β.

In a similar way, by using log(1 + x) ≤ x, we have

µ′m ≤
1

Γ(α)
1

βm

∫ +∞

0
[(1− p)y]m/cyα−1e−ydy

=
1

Γ(α)
1

βm (1− p)m/c
∫ +∞

0
ym/c+α−1e−ydy

=
1

Γ(α)
1

βm (1− p)m/cΓ(m/c + α) = Ac,α,p,β.

By combining the previous bounds, we end the proof of Proposition 2.

Alternatively, one can use directly the quantile function given by (6). Indeed, by the change of
variable x = Q(y), we have

µ′m =
∫ 1

0
[Q(y)]mdy =

1
βm

∫ 1

0

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]m/c

dy.

In fact, it is equivalent to (8) with the change of variable u = (1/Γ(α))γ(α, y) in (8), i.e., y =

γ−1(α, uΓ(α)).
As a final approach, one can use the result of Proposition 1 and more specially, the result (7).

Hereafter, let Xr,s be a random variable following the Weibull distribution with parameters (r + s +
1)1/cβ and c, i.e., with the pdf given by `r,s(x) = c(r + s + 1)βcxc−1e−[(r+s+1)1/c βx]c , x > 0. Then,
we have

µ′m =
+∞

∑
r,s=0

vr,sE(Xm
r,s) =

1
βm

+∞

∑
r,s=0

vr,s
1

(r + s + 1)m/c Γ
(m

c
+ 1
)

.

From any of the above expressions of µ′m, we can derive central measures as the mean of X given
by E(X) = µ′1, the variance of X given by V(X) = µ′2 − (µ′1)

2 and the m-th central moment of X
given by

µm = E
[
(X− µ′1)

m] = m

∑
k=0

m!
k!(m− k)!

(−1)k(µ′1)
kµ′m−k.

We can also determine other standard measures as the coefficient of skewness and coefficient of
kurtosis, respectively given by

CS =
µ3

µ3/2
2

, CK =
µ4

µ2
2

.

Table 1 presents the numerical values of µ′1, µ′2, µ′3, µ′4, V(X), CS and CK for selected values of
the parameters.
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Table 1. Some moments, variance, skewness and kurtosis of the OGWG(c, α, p, β) distribution for the
following selected parameters values in order (c, α, p, β); (i): (0.3, 0.2, 0.2, 1), (ii): (0.1, 0.1, 0.2, 1), (iii):
(0.1, 1, 0.2, 0.1) (iv): (0.1, 2, 0.5, 1) (v): (0.1, 5, 0.5, 1) and (vi): (0.5, 5, 0.5, 1).

(i) (ii) (iii) (iv) (v) (vi)

µ′1 0.0449 0.0472 3.0687 1.4307 12.8356 1.5471
µ′2 0.0674 1.5278 137.2844 44.8664 598.1401 2.9802
µ′3 0.2314 87.1821 8749.1190 12489.1710 38083.25 6.7361
µ′4 1.2680 6047.4790 640578.8 169843.6 2776370 17.2563

V(X) 0.0654 1.5256 127.8670 42.8193 433.3854 0.5865
CS 13.3020 46.1489 5.2168 8.2173 2.13697 0.6909
CK 286.7989 2591.0480 33.0687 7.086025 3.3211 3.4358

3.5. Moment Generating Function

The moment generating function of X is given by

M(t) = E(etX) =
∫ +∞

−∞
etx f (x)dx

=
cβc

Γ(α)(1− p)α

∫ +∞

0
etxxc−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

1− p

)
dx.

It is well defined for t ∈ R. By applying the change of variable y = (e(βx)c − 1)/(1− p), we can express
M(t) as

M(t) =
1

Γ(α)

∫ +∞

0
e(t/β)[log(1+(1−p)y)]1/c

yα−1e−ydy.

Alternatively, by the change of variable x = Q(y), we have

M(t) =
∫ 1

0
etQ(y)dy =

∫ 1

0
e(t/β)[log{1+(1−p)γ−1(α,yΓ(α))}]1/c

dy.

For given parameters c, α, p, β and t, the integrals above can be computed numerically.
A series expansion of M(t) can be derived from (7). Indeed, we have

M(t) =
+∞

∑
r,s=0

vr,sE(etXr,s) =
+∞

∑
r,s=0

+∞

∑
m=0

vr,s
tm

m!βm(r + s + 1)m/c Γ
(m

c
+ 1
)

.

As always, we have the following relations between the moments and the moment
generating function:

µ′m = M(m)(t) |t=0, M(t) =
+∞

∑
m=0

tm

m!
µ′m.

3.6. Incomplete Moments

Let 1A be the indicator function of over an event A. Then, the m-th incomplete moment of X is
defined by

θ′m(t) = E
(

Xm1{X≤t}

)
=
∫ t

−∞
xm f (x)dx

=
∫ t

0
xm+c−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

1− p

)
dx.
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By applying the change of variable y = (e(βx)c − 1)/(1− p), we obtain

θ′m(t) =
1

Γ(α)
1

βm

∫ (e(βt)c−1)/(1−p)

0
[log(1 + (1− p)y)]m/cyα−1e−ydy.

One can determined bounds for θ′m(t) by proceeding as in the proof of Proposition 2.
Alternatively, by the change of variable x = Q(y), we have immediately

θ′m(t) =
∫ F(t)

0
[Q(y)]mdy

=
1

βm

∫ 1
Γ(α) γ

(
α,(e(βt)c−1)/(1−p)

)
0

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]m/c

dy.

Again, for given parameters c, α, p, β and t, we can evaluate these integrals numerically.
Also, another expression comes from (7). We have

θ′m(t) =
+∞

∑
r,s=0

vr,sE
(

Xm
r,s1{Xr,s≤t}

)
=

1
βm

+∞

∑
r,s=0

vr,s
1

(r + s + 1)m/c γ
(m

c
+ 1, (r + s + 1)(βt)c

)
.

With the first incomplete moment of X, one can define several kinds of means deviation.
For instance, there are the mean deviation of X about the mean µ′1 given by

δ1 = E(|X− µ′1|) = 2µ′1F(µ′1)− 2θ′1(µ
′
1)

and the mean deviation of X about the median M∗ given by

δ2 = E(|X−M∗|) = µ′1 − 2θ′1(M∗).

We can also express the Bonferroni and Lorenz curves respectively given by

B(y) =
1

yµ′1
θ′1(Q(y)) =

1
yµ′1

θ′1

(
1
β

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]1/c

)
and

L(y) =
1

µ′1
θ′1(Q(y)) =

1
µ′1

θ′1

(
1
β

[
log
{

1 + (1− p)γ−1(α, yΓ(α))
}]1/c

)
, y ∈ (0, 1).

As an example of the use of higher orders of the incomplete moments, the m-th moment of the
residual life of X is given by

θ∗m(t) =
1

1− F(t)

∫ +∞

t
(x− t)m f (x)dx

=
Γ(α)

Γ(α)− γ
(
α, (e(βt)c − 1)/(1− p)

) m

∑
i=0

(
m
i

)
(−1)m−itm−i [µ′i − θ′i(t)

]
, t ≥ 0.

3.7. Stochastic Ordering

Under some assumptions on the parameters, the result below shows that the OGWG(c, α, p, β)

distribution is ordered with respect to the likelihood ratio ordering. Further details and applications
on stochastic ordering can be found in [12].

Proposition 3. Let X be a random variable following the OGWG(c, α1, p1, β) distribution and Y be a random
variable following the OGWG(c, α2, p2, β) distribution. Suppose that α1 ≤ α2 and p2 ≤ p1. Then X is smaller
than Y in the likelihood ratio order, i.e., the function defined by ratio of the pdf of X over the pdf of Y is decreasing.
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Proof. Let f1(x) be the pdf of X and f2(x) be the pdf of Y. Then, we have

f1(x)
f2(x)

=
Γ(α2)(1− p2)

α2

Γ(α1)(1− p1)α1

(
e(βx)c − 1

)α1−α2
exp

{
p1 − p2

(1− p1)(1− p2)

(
1− e(βx)c

)}
.

Let us consider the logarithmic function to have a more tractable expression. We have

log
[

f1(x)
f2(x)

]
= log

[
Γ(α2)(1− p2)

α2

Γ(α1)(1− p1)α1

]
+ (α1 − α2) log

(
e(βx)c − 1

)
+

p1 − p2

(1− p1)(1− p2)

(
1− e(βx)c

)
.

Since α1 ≤ α2 and p2 ≤ p1, as sum of two negative functions, we have

∂

∂x
log
[

f1(x)
f2(x)

]
= (α1 − α2)

cβcxc−1e(βx)c

e(βx)c − 1
+

p2 − p1

(1− p1)(1− p2)
cβcxc−1e(βx)c ≤ 0.

The proof of Proposition 3 is completed.

4. Estimation of Parameters

Hereafter, we focus our attention on the applied aspect of the OGWG distribution, considering it
as a statistical model. Indeed, motivated by its flexibility discussed in the above sections, the OGWG
model is appropriate for the analyses of data sets with a non-trivial structure, as those frequently
encountered in engineering, medicine, hydrology, economics and finance.

4.1. Maximum Likelihood Estimation

Several parameter estimation methods are available in the literature. Among them, thanks to its
strong theoretical guaranties, the maximum likelihood method remains the most popular. In particular,
it can be used to construct confidence intervals for the model parameters and also in test statistics.
For these reasons, we consider the estimation of the unknown parameters for the OGWG model from
complete samples with this method only. Let x1, . . . , xn be a sample of size n from the OGWG(c, α, p, β)

distribution. The log-likelihood function for the vector of parameters Θ = (c, α, p, β)> is given by

`(Θ) =
n

∑
i=1

log[ f (xi)]

= n log(c) + nc log(β)− n log[Γ(α)]− nα log(1− p) + (c− 1)
n

∑
i=1

log(xi) +
n

∑
i=1

(βxi)
c

+ (α− 1)
n

∑
i=1

log
(

e(βxi)
c − 1

)
+

1
1− p

n

∑
i=1

(
1− e(βxi)

c
)

.

The corresponding score vector is given by U(Θ) = (Uc(Θ), Uα(Θ), Up(Θ), Uβ(Θ))> with

Uc(Θ) =
∂

∂c
`(Θ) =

n
c
+ n log(β) +

n

∑
i=1

log(xi) +
n

∑
i=1

(βxi)
c log(βxi) + (α− 1)

n

∑
i=1

(βxi)
c log(βxi)e(βxi)

c

e(βxi)c − 1

− 1
1− p

n

∑
i=1

(βxi)
c log(βxi)e(βxi)

c
,

Uα(Θ) =
∂

∂α
`(Θ) = −n

Γ′(α)
Γ(α)

− n log(1− p) +
n

∑
i=1

log
(

e(βxi)
c − 1

)
,

Up(Θ) =
∂

∂p
`(Θ) =

nα

1− p
+

1
(1− p)2

n

∑
i=1

(
1− e(βxi)

c
)

,

Uβ(Θ) =
∂

∂β
`(Θ) =

nc
β

+
c
β

n

∑
i=1

(βxi)
c +

c(α− 1)
β

n

∑
i=1

(βxi)
ce(βxi)

c

e(βxi)c − 1
− c

β(1− p)

n

∑
i=1

(βxi)
ce(βxi)

c
.
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By solving the system U(Θ) = (0, 0, 0, 0)>, we obtain a solution denoted by Θ̂ = (ĉ, α̂, p̂, β̂)> (assuming
that it is unique). Hence, ĉ, α̂, p̂ and β̂ are the maximum likelihood estimates (MLEs) of c, α, p and
β, respectively. The analytical expressions of these estimates do not exist in our case. However,
they can be solved numerically by using iterative techniques (quasi-Newton BFGS, Newton-Raphson
algorithms. . . ). Further details can be found in [13]. Assuming that the parameters are in the interior
of the parameter space but not on the boundary, the subjacent distribution of Θ̂ can be approximated
by a 4 dimensional normal distribution with mean Θ and covariance matrix given by J(Θ̂)−1, where
J(Θ) denotes the 4× 4 symmetric matrix defined by

J(Θ) = − ∂2

∂Θ∂ΘT `(Θ) = −


lc,c lc,α lc,p lc,β
. lα,α lα,p lα,β
. . lp,p lp,β
. . . lβ,β

 , (9)

whose elements are given in Appendix A. From this asymptotic property, one can construct
approximate confidence intervals for c, α, p and β. More precisely, for h ∈ {c, α, p, β}, an approximate
confidence interval for h at the level 100(1−ω)% is given by

CIh = [ĥ− zω/2sĥ, ĥ + zω/2sĥ], (10)

where sĥ is the square-root of the diagonal element of J(Θ̂)−1 at the same position as h and zω/2 is
the quantile 100(1− ω/2)% of the standard normal distribution. Also, we are able to compute the
likelihood ratio (LR) statistics for testing goodness-of-fit of the OGWG model with its sub-models.

4.2. Monte Carlo Simulation Study

Now we assess the asymptotic properties of the MLEs for the parameters of the OGWG model
using Monte Carlo simulations. The simulation study is repeated N = 5000 times each with sample
sizes n = 50, 100, 200 and with the following parameter scenarios: I: c = 1.5, α = 0.5, p = 0.5 and
β = 0.5, II: c = 1.5, α = 0.5, p = 0.1 and β = 0.5 and III: c = 1.5, α = 1.5, p = 0.5 and β = 0.8.
We investigate the empirical bias (Bias), mean square error (MSE) and coverage probability (CP) at the
nominal level 95%. For h ∈ {c, α, p, β}, they are respectively defined by

Biash(n) =
1
N

N

∑
i=1

(ĥi − h), MSEh(n) =
1
N

N

∑
i=1

(ĥi − h)2, CPh(n) =
1
N

N

∑
i=1

1(ĥi−usĥi
,ĥi+usĥi

),

where ĥi denotes the MLE of h obtained at the i-th repetition of the simulation and z0.975 is the quantile
97.5% of the standard normal distribution, i.e., u = z0.975 ≈ 1.95996.

Table 2 gives the values of these measures under the scenarios and different sample sizes as
indicated above. In most of the cases, we see that the empirical biases tends to zero when n increases,
the empirical MSEs decay toward zero as n increases and the empirical CPs are quite close to the level
95%. Thus, based on these simulation results, we conclude that the MLEs perform well in estimating
c, α, p and β. Therefore, the MLEs and their asymptotic results can be adopted for estimating and
constructing approximate confidence intervals for c, α, p and β.
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Table 2. Biases, MSEs and CPs of the simulation study.

I II III

Parameter n Bias MSE CP Bias MSE CP Bias MSE CP

c 50 0.028 0.098 0.99 0.146 0.535 0.94 0.511 1.433 0.96
100 0.011 0.043 0.97 0.164 0.309 0.95 0.374 0.871 0.95
200 −0.008 0.021 0.96 0.195 0.228 0.97 0.089 0.313 0.98

α 50 0.250 0.410 0.94 0.172 0.241 1.00 0.118 0.913 0.95
100 0.104 0.351 0.95 0.053 0.065 0.96 0.091 0.403 0.98
200 −0.091 0.182 0.96 0.001 0.031 0.97 0.016 0.048 0.97

p 50 0.002 0.072 0.96 0.311 0.163 0.99 0.053 0.171 0.97
100 −0.025 0.062 0.98 0.271 0.132 0.95 0.050 0.121 0.96
200 −0.082 0.049 0.97 0.222 0.100 0.96 0.020 0.065 0.95

β 50 0.258 0.912 0.95 −0.062 0.022 0.95 0.211 0.391 0.93
100 0.150 0.627 0.96 −0.059 0.017 0.96 0.100 0.253 0.95
200 0.088 0.414 0.97 −0.051 0.011 0.98 0.093 0.191 0.96

5. Data Analysis

In this section, the OGWG distribution is used as model to analyze two a real-life data sets.
We compare the fits of the OGWG model with the beta-Weibull (BW) (see [14]), Weibull-geometric (WG)
(see [8]) and gamma-Weibull (GW) models (i.e., the OGWG model with p = 0). The corresponding
pdfs are respectively given by

OGWG : fOGWG(x) =
cβc

Γ(α)(1− p)α
xc−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

1− p

)
, x, c, α, p, β > 0,

BW : fBW(x) =
cβcxc−1e−b(βx)c

Γ(a)Γ(b)/Γ(a + b)

(
1− e−(βx)c

)a−1
, x, a, b, c, β > 0,

WG : fWG(x) =
1− e−(βx)c

1− pe−(βx)c , x, c, p, β > 0,

GW : fGW(x) =
cβc

Γ(α)
xc−1e(βx)c

(
e(βx)c − 1

)α−1
exp

(
1− e(βx)c

)
, x, α, c, β > 0.

We estimate the model parameters by using the maximum likelihood method as presented
in Section 4. We compare the goodness-of-fit of the models using Cramér–von Mises (W∗) and
Anderson-Darling (A∗) statistics, which are described in detail by [15]. In addition, we consider the
Kolmogorov-Smirnov (K-S) statistic, AIC and BIC. In general, the smaller the values of these statistics,
the better the fit to the data. Two analyses are performed on two different data sets, as described below.

Data analysis 1: The first data set, taken from [16], represents the failure times of air conditioning
system of air plan. Some descriptive statistics are given in Table 3. The skewness is positive
(right-skewed data) and the kurtosis is positive. The boxplot and the TTT plot are given in Figure 3.
In particular, the TTT plot shows a possible monotonically increasing or constant hrf, indicating
that the OGWG model could be appropriate for the fitting of this data set. The MLEs (with SEs in
parenthesis), A∗, W∗, K-S statistics, AIC and BIC are listed in Table 4. For each criterion, the smallest
values is reached by the OGWG model, indicating that it provides the best fit. For a visual approach,
the estimated pdf and cdf of the OGWG model are displayed in Figure 4. We also see the P-P and
Q-Q plots. All the graphics show nice fits for the OGWG model. Finally, the asymptotic confidence
intervals of the OGWG parameters given by (10) are presented in Table 5 with the levels 95% and 99%.
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Table 3. Descriptive statistics for data set 1.

Statistics n Mean Median Mode Variance Skewness Kurtosis

Data 1 213 93.1408 57 14 106.76 2.1118 4.9249

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Box Plot

x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)
(a) (b)

Figure 3. (a) Boxplot and (b) TTT plot for data set 1.
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Figure 4. PP, QQ, epdf and ecdf plots of the OGWG distribution for data set 1.
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Table 4. MLEs, their SEs (in parentheses) and goodness-of-fit measures for data set 1.

Distribution Estimates A∗ W∗ K-S AIC BIC

OGWG(c, α, p, β) 0.1527 11.5290 0.8340 0.0249 0.2506 0.0338 0.0379 2353.8560 2363.0490
(0.0520) (2.4351) (0.1133) (0.0320)

BW(a, b, c, β) 3.6631 0.1333 0.6803 0.3258 0.2964 0.0383 0.0391 2357.3430 2370.7880
(0.6564) (0.0098) (0.0025) (0.0025)

WG(c, p, β) 1.1719 0.7071 0.0056 0.2957 0.0425 0.0390 2354.6050 2364.6890
(0.0956) (0.1196) (0.0011)

GW(α, c, β) 0.2868 2.7657 0.0342 1.0608 0.1717 0.0573 2363.5300 2373.6140
(0.0679) (0.7995) (0.0292)

Table 5. Confidence intervals of OGWG for data set 1.

CI c α p β

95% [0.0507 0.2546] [6.7562 16.3017] [0.6119 1.0560] [0 0.0876]
99% [0.0185 0.2868] [5.2464 17.8115] [0.5416 1.1263] [0 0.1074]

Data analysis 2: The second data set, taken from [17], represents the tensile strength, measured in GPa,
of 69 carbon fibers tested under tension at gauge lengths of 20 mm. The summary statistics are given
in Table 6. The skewness and kurtosis are positive but close to zero. Figure 5 shows the boxplot and
the TTT plot. Since the curve in the TTT plot is concave, it seems to correspond to a monotonically
decreasing hrf, so the OGWG model could be suitable for the fitting of data set 2. The MLEs (with SEs
in parenthesis), A∗, W∗, K-S statistics, AIC and BIC are listed in Table 7. All are favorable to the OGWG
model. Also, the estimated pdf and cdf of the OGWG model are displayed in Figure 6, as well as P-P
and Q-Q plots. All the graphics show nice fits for the OGWG model. Finally, the asymptotic confidence
intervals of the OGWG parameters given by (10) are presented in Table 8 with the levels 95% and 99%.

Among others, the obtained results of this data set suggest that the OGWG family of distributions
can be also utilized in calibration and errors-in-variables modeling (see [18]).

Table 6. Descriptive statistics for data set 2.

Statistics n Mean Median Mode Variance Skewness Kurtosis

Data 2 69 2.4551 2.4780 2.2500 0.5052 0.1020 0.2253
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Figure 5. (a) Boxplot and (b) TTT plot for data set 2.
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Table 7. MLEs, their SEs (in parentheses) and goodness-of-fit measures for data set 2.

Distribution Estimates A∗ W∗ K-S AIC BIC

OGWG(c, α, p, β) 1.8247 5.6103 0.9449 0.1931 0.1705 0.0188 0.0328 104.6965 111.6329
(0.1062) (1.1340) (0.0898) (0.1349)

BW(a, b, c, β) 2.6824 1.0947 3.2891 0.4510 0.1736 0.0211 0.0433 108.5069 117.4433
(2.6516) (3.4755) (2.1102) (0.2442)

WG(c, p, β) 7.5850 0.8884 0.3046 0.1899 0.0252 0.0423 106.5669 113.2692
(1.1497) (0.1321) (0.0327)

GW(α, c, β) 0.5060 12.1478 2.5990 0.1810 0.0221 0.0443 106.5870 113.2894
(0.4747) (14.2268) (6.7712)
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Figure 6. PP, QQ, epdf and ecdf plots of the OGWG distribution for data set 2.

Table 8. Confidence intervals of OGWG for data set 2.

CI c α p β

95% [1.6165 2.0328] [3.3876 7.8329] [0.7704 1.1193] [0 0.4575]
99% [1.5507 2.0986] [2.6845 8.5360] [0.7158 1.1745] [0 0.5411]

6. Concluding Remarks

This paper proposed a new distribution called the odd gamma Weibull-geometric distribution
(OGWG) and developed its merits from the mathematical and practical points of view. In particular,
we study its shapes, asymptotes, quantile function, quantile density function, skewness, kurtosis,
moments, moment generating function and stochastic ordering. Then, the statistical inference of the
OGWG model is studied, with the maximum likelihood estimation method as benchmark. A simulation
work is performed to show the usefulness of the obtained estimators. Then, the analyses two real-life
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data sets are explored, revealing that the OGWG model is better in terms of fit as compared to the useful
beta-Weibull, gamma-Weibull and Weibull-geometric models. It is hoped that the new perspectives of
applications presenting by the OGWG distribution will attract the statistician and the practitioners
in general.
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Appendix A

The components of the matrix given by (9) are presented below.

lc,c =
∂2

∂c2 `(Θ) = − n
c2 +

n

∑
i=1

(βxi)
c[log(βxi)]

2 + (α− 1)
n

∑
i=1

(βxi)
c[log(βxi)]

2e(βxi)
c
[e(βxi)

c − 1− (βxi)
c](

e(βxi)c − 1
)2

− 1
1− p

n

∑
i=1

(βxi)
c[log(βxi)]

2e(βxi)
c
[1 + (βxi)

c],

lc,α =
∂2

∂c∂α
`(Θ) =

n

∑
i=1

(βxi)
c log(βxi)e(βxi)

c

e(βxi)c − 1
,

lc,p =
∂2

∂c∂p
`(Θ) = − 1

(1− p)2

n

∑
i=1

(βxi)
c log(βxi)e(βxi)

c
,

lc,β =
∂2

∂c∂β
`(Θ) =

n
β
+

1
β

n

∑
i=1

(βxi)
c[c log(βxi) + 1]

+
α− 1

β

n

∑
i=1

(βxi)
ce(βxi)

c(
e(βxi)c − 1

)2 [e
(βxi)

c − c(βxi)
c log(βxi) + ce(βxi)

c
log(βxi)− c log(βxi)− 1]

− 1
β(1− p)

n

∑
i=1

(βxi)
ce(βxi)

c
[c(βxi)

c log(βxi) + c log(βxi) + 1],

lα,α =
∂2

∂α2 `(Θ) = −n
Γ′′(α)Γ(α)− [Γ′(α)]2

[Γ(α)]2
,

lα,p =
∂2

∂α∂p
`(Θ) = −n

1
(1− p)2 ,

lα,β =
∂2

∂α∂β
`(Θ) =

c
β

n

∑
i=1

(βxi)
ce(βxi)

c

e(βxi)c − 1

lp,p =
∂2

∂p2 `(Θ) =
nα

(1− p)2 +
2

(1− p)3

n
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i=1

(
1− e(βxi)

c
)

,

lp,β =
∂2

∂p∂β
`(Θ) = − c

β(1− p)2

n

∑
i=1

(βxi)
ce(βxi)

c
,

lβ,β =
∂2

∂β2 `(Θ) = −nc
β2 +

c(c− 1)
β2

n

∑
i=1

(βxi)
c − c(α− 1)

β2

n

∑
i=1

(βxi)
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c
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c
+ c− 1](

e(βxi)c − 1
)2

− c
β2(1− p)

n

∑
i=1

(βxi)
ce(βxi)

c
[c(βxi)

c + c− 1].
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