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Abstract: This paper is concerned with the combinatorial facts of the lattice graphs of Zp1×p2×···×pm ,
Zp

m1
1 ×pm2

2
, and Zp

m1
1 ×pm2

2 ×p1
3
. We show that the lattice graph of Zp1×p2×···×pm is realizable as a convex

polytope. We also show that the diameter of the lattice graph of Zp
m1
1 ×pm2

2 ×···×pmr
r

is
r
∑

i=1
mi and its

girth is 4.
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1. Introduction

The relation between the structure of a group and the structure of its subgroups constitutes an
important domain of research in both group theory and graph theory. The topic has enjoyed a rapid
development starting with the first half of the twentieth century.

The main object of this paper is to study the interplay of group-theoretic properties of a group G
with graph-theoretic properties of its lattice graph L(G). Every group has a corresponding lattice graph,
which can be finite or infinite depending upon the order of the group. This study helps illuminate the
structure of the set H(G) of subgroups of G.

The lattice graph L(G) of a finite cyclic group G is obtained as follows: Each vertex of L(G)

corresponds to an element of H(G), and two vertices corresponding to two elements H1, H2 of H(G)

are connected by an edge if and only if H1 ≤ H2 and that there is no element K of H(G) such that
H1 � K � H2 (see [1,2]), thus ≤ is used when H1 is proper maximal subgroup of H2. The notation ≤
is used as subgroup. Degree of a vertex is the number of edges attached to that vertex. A vertex is
defined to be even or odd if its degree is even or odd. The degree vector of a graph is the sequence of
degrees of its vertices arranged in non-increasing order [3]. The diameter diam(G) of a connected graph
G is the maximum distance among vertices of G [4,5]. The girth g(G) of a graph G is the length of
a smallest cycle in G, and is infinity if G is acyclic [6]. It is a fact that the lattice of subgroups of a given
group can rarely be drawn without its edges crossing [1,2]. The crossing number cr(G) of a graph G
is the minimum number of crossings of its edges among the drawings of G in the plane. A graph is
considered Eulerian if there exists a Eulerian path in which we can start at a vertex, traverse through
every edge only once, and return to the same vertex where we started. A connected graph G is Eulerian
if each vertex has even degree, and is semi-Eulerian if it has exactly two vertices with odd degrees [7].
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A polytope is a finite region of Rn enclosed by a finite number of hyper-planes. A polytope is called
convex if its points form a convex subset of Rn. Combinatorial aspects of the groups can be computed
using its lattice graphs [8,9]. The authors discussed some finite simple groups of low rank in [8].
Tarnauceanu introduced new arithmetic method of counting the subgroups of a finite Abelian group
in [10]. The author of [11] described the finite groups Ghaving |G| − 1 cyclic subgroups. Saeedi and
Farrokhi [12] computed factorization number of some finite groups. Tarnauceanu [13] characterized
elementary Abelian two-groups. Tarnauceanu and Toth discussed cyclicity degree of finite groups
in [14]. Tarnauceanu [15] discussed finite groups with dismantlable subgroup lattices.

In the present article, we are interested in the lattices of finite groups. We demonstrate that
the lattice graph of Zp1×p2×···×pm can be viewed as a convex polytope, and that the diameter of the

lattice graph of Zp
m1
1 ×pm2

2 ×···×pmr
r

is
r
∑

i=1
mi and its girth is 4. We also compute many other properties

of these lattices. We are interested developing some combinatorial invariants of the groups coming
from their lattice graphs. The main motivation comes from the fact that finite graphs are relatively
easier to handle than the finite groups. One is interested in capturing facts of the group while studying
the graph associated to it. This study ultimately relates some parameters of the graphs with some
parameters of the groups. Several authors computed some combinatorial aspects of finite graphs such
as diameter, girth and radius but, for the lattice graph, similar questions are still open and need to
be addressed. This article can be considered as a step forward in this direction. We, naturally, pose
problems about the exact values of these parameters for more general classes of groups such as Sn, An,
and sporadic groups.

2. The Results

In this section, we give the combinatorial results about the lattice graphs of Zp1×p2×···×pm ,
Zp

m1
1 ×pm2

2
, and Zp

m1
1 ×pm2

2 ×p3
. In the end, we give the general results about L(Zn).

2.1. L(Zp1×p2×···×pm)

Theorem 1. The lattice graph ofZn, n = p1× p2× · · · × pm is realizable as a convex polytope with 2m vertices.

Proof. We prove it using all possible maximal chains of subgroups of Zn. It is clear that Zn is finite
cyclic group, thus, for each possible divisor of n, there exist a unique subgroup of this group, up
to isomorphism. This leads us to the set of all subgroups of Zn; V(G) = {< 1 >,< p1 >,< p2 >

,< p3 >, . . . ,< pm−1 >,< pm >,< p1 × p2 >,< p1 × p3 >, . . . ,< p1 × pm >,< p1 × p2 × p3 >

, . . . ,< p1 × p2 × pm >, . . . ,< p1 × p2 × p3×, . . . ,×pm >}. Now, the maximal chains: The subgroup
H0 = < 0 > is contained immediately in m subgroups of Zn: H11 = < p1 × p2 × · · · × pm−1 >, H12 =
< p1 × p2 × · · · × pm−2 × pm >, H1m = < p2 × p3 × · · · × pm >, as shown in Figure 1.
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Figure 1. First step graph.

Each H1i is contained in m− 1 subgroups of Zn: For instance, H11 = < p1 × p2 × . . .× pm−1 > is
contained in H21 = < p1 × p2 × . . .× pm−2 >, H22 = < p1 × p2 × . . .× pm−3 × pm−1 >, . . . , H2m−1 =

< p2 × p3 × . . .× pm−1 > (see Figure 2).
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Figure 2. Intermediate step Graph.

Similarly, every H2j is contained in m− 2 subgroups of Zn: H21 = < p1 × p2 × . . .× pm−2 > is
contained in H3r subgroups of Zn (see Figure 3).
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Figure 3. Intermediate step Graph.

The process will continue until we receive < p1 >, < p2 > . . . < pm > at the second last stage.
Now, each one of these is contained in < 1 > = Zn and the process is finished (see Figure 4).
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Figure 4. Last step Graph.

It is clear that there are m possibilities of subgroups of Zn containing trivial group, m − 1
possibilities of each of H1i to be contained in other subgroups of Zn, m − 2 possibilities for each
of H2j to be contained in next subgroups and so on. Thus, by the product rule, the number of all
possibilities of maximal chains is (m)(m− 1)(m− 2) · · · 3.2.1 = m!. Now, we put all these chains of
subgroup in the plane such that each subgroup is identified to itself occurring in all these series. Thus,
the same subgroups that appear in more than one series, appear only as a single vertex of the lattice
graph in the plane. This lattice graph starts of at the identity and finishes at Zn because these subgroups
appear in all series. This may have crossings. If we imagine this gluing in R3 avoiding all crossings
in higher dimension, we get a convex polytope with 2m vertices, one vertex corresponding to each
element of H(Zn). For instance, the cases for m = 3, 4, 5 are shown in Figures 5–7, respectively.
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Figure 7. L(Zp1×p2×p3×p4×p5 ).

Corollary 1.
(a) The number of maximal subgroups of Zn is m.
(b) The length of each maximal series is m + 1.
(c) The diameter of L(Zn) is m.
(d) L(Zn) is m-regular.

Proof.
(a) It is clear that Zn is cyclic, thus, for each divisor, we have a unique subgroup. Prime divisor pi of n
yields maximum quotient, thus these numbers correspond to the maximal subgroups of Zn, which are
< p1 >,< p2 >,< p3 >, . . . ,< pm−1 >,< pm >.
(b) This can be shown by simply counting the number of vertices of L(Zn) along a path from < 0 >
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to < 1 >; see, for instance, a typical series: < 0 >⊆< p1 × p2 × . . .× pm−1 >⊆ . . . ⊆< p1 × p2 >⊆<
p1 >⊆< 1 >= Zn.
(c) diamL(Zn) is one less than the length of a maximal series, which is the length of each path from
< 0 > to < 1 >.
(d) At the first stage, the degree of the vertex H0 is m because it is adjacent to m vertices H1i ,
i = 1, 2, . . . , m in the second stage, as shown in the construction of L(Zn).

The degree of each vertex at the second stage is m as each vertex H1i is adjacent to m− 1 vertices
lying higher to it and to one vertex lying below it. For instance, H11 = < p1 × p2 × . . . pm−1 > is
attached with H21 = < p1 × p2 × . . .× pm−2 >, H22 = < p1 × p2 × . . .× pm−3 × pm−1 >, . . . , H2m−1 =

< p2 × p3 × . . . × pm−1 >. Similarly, deg(H2j) is m. Continuing this process, we receive that the
vertices corresponding to < p1 >,< p2 >, . . . ,< pm > are adjacent to the vertex corresponding to
< 1 >, giving the degree of the last vertex m too. Thus, each vertex of L(Zn) has degree m, and the
proof is finished.

Remark 1. It should be remarked that the lattice graph of Zn is a small-world network in which nearly all nodes
are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and
most nodes can be reached from every other node by a small number of steps. Thus, it is a connected graph [16].

2.2. L(Zp
m1
1 ×pm2

2
)

The construction of L(Zp
m1
1 ×pm2

2
) is given by using all maximal chains from the set H(Zp

m1
1 ×pm2

2
) =

{< 1 >,< p1 >,< p2
1 >, . . . ,< pm1−1

1 >,< pm1
1 >,< p2 >,< p2

2 >, . . . ,< pm2−1
2 >,< pm2

2 >,<
p1× p2 >, . . . ,< pm1

1 × p2 >, . . . ,< pm1
1 × pm2

2 >}. The subgroup < 0 >=< pm1
1 × pm2

2 > is contained
immediately in two subgroups < pm1

1 × pm2−1
2 > and < pm1−1

1 × pm2
2 > which are further contained

in < pm1−1
1 × pm2−1

2 >. The subgroup < pm1−1
1 × pm2

2 > is contained in < pm1−2
1 × pm2

2 >, which is
contained in next two subgroups, < pm1−2

1 × pm2−1
2 > and < pm1−3

1 × pm2
2 >. < pm1−3

1 × pm2
2 > is

contained in other two subgroups of Zp
m1
1 ×pm2

2
. The process will continue until we receive a subgroup

< p1 × pm2
2 > that is contained in next two subgroups, < p1 × pm2

2 > and < pm2
2 >. Both are further

contained in < pm2−1
2 >, which itself is contained in < pm2−2

2 >. This process is continued until we
obtain a subgroup < p2 >, which is continued in < 1 > = Zp

m1
1 ×pm2

2
, and thus we receive a series of

subgroups of Zp
m1
1 ×pm2

2
; for instance, < 0 >⊆< pm1−1

1 × pm2
2 >⊆< pm1−2

1 × pm2
2 >⊆ . . . ⊆< pm2

2 >⊆<
pm2−1

2 >⊆< pm2−2
2 >⊆ . . . ⊆< p2 >⊆< 1 >. We obtain all other series of subgroups similarly. Now,

gluing all maximal series, we obtain the lattice graph of Zp
m1
1 ×pm2

2
, as shown in Figure 8.

From the construction, we reach at the results:

Proposition 1.
(a) L(Zp

m1
1 ×pm2

2
) is planar.

(b) Length of maximal series of Zp
m1
1 ×pm2

2
is (m1 + m2 + 1).

(c) The diameter of lattice graph of Zp
m1
1 ×pm2

2
is m1 + m2.

Proof.
(a) This is obvious from the construction of L(Zp

m1
1 ×pm2

2
).

(b) Again, this is obvious; see a typical maximal series: < 0 >⊆< pm1−1
1 × pm2

2 >⊆< pm1−2
1 × pm2

2 >⊆
. . . ⊆< pm2

2 >⊆< pm2−1
2 >⊆< pm2−2

2 >⊆ . . . ⊆< p2 >⊆< 1 >.
(c) In this case, the diameter is exactly one less than the number of elements in a maximal series.
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Some metrical Properties of Lattice Graphs of Finite Groups 7

< pm1−2
1 × pm2−1

2 > and < pm1−3
1 × pm2

2 >. < pm1−3
1 × pm2

2 > is contained in161

other two subgroups of Zp
m1
1 ×p

m2
2

.162

The process will continue till we receive a subgroup < p1 × pm2
2 > which is163

contained in next two subgroups, < p1 ×pm2
2 > and < pm2

2 >. Both these are164

further contained in < pm2−1
2 > which itself is contained in < pm2−2

2 >.165

Continue this process till we obtain a subgroup < p2 > which is continued in166

< 1 >= Zp
m1
1 ×p

m2
2

, and so we receive a series of subgroups of Zp
m1
1 ×p

m2
2

. For167

instance168

< 0 >⊆< pm1−1
1 ×pm2

2 >⊆< pm1−2
1 ×pm2

2 >⊆ . . . ⊆< pm2
2 >⊆< pm2−1

2 >⊆<169

pm2−2
2 >⊆ . . . ⊆< p2 >⊆< 1 >.170

Similarly, obtain all other series of subgroups. Now gluing all maximal series,171

we obtain the lattice graph of Zp
m1
1 ×p

m2
2

as shown in Figure 8.172
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174

From the construction, we reach at the results:175

Figure 8. L(Zpm1
1 ×pm2

2
).

2.3. On the Lattice Graph of Zp
m1
1 ×pm2

2 ×p3

The set of subgroups of Zp
m1
1 ×pm2

2 ×p3
is H(Zp

m1
1 ×pm2

2 ×p3
) = {(< pm1

1 × pm2
2 × p3 >,< pm1−1

1 ×
pm2

2 × p3 >, . . . ,< p1 × pm2
2 × p3 >,< pm2

2 × p3 >} ∪ {< pm1
1 × pm2

2 >,< pm1−1
1 × pm2

2 >, . . . ,<
p2

1 × pm2
2 >,< p1 × pm2

2 >,< pm2
2 >} ∪ {< pm1

1 × pm2−1
2 × p3 >,< pm1−1

1 × pm2−1
2 × p3 >, . . . ,<

p1× pm2−1
2 × p3 >,< pm2−1

2 × p3 >} ∪ . . .∪ {< pm1
1 × p3 >,< pm1−1

1 × p3 >, . . . ,< p1× p3 >,< p3 >

} ∪ {< pm1
1 >,< pm1−1

1 >, . . . ,< p2
1 >,< p1 >,< 1 >)}. The subgroup < 0 > = < pm1

1 × pm2
2 × p3 >

is contained immediately in three subgroups < pm1
1 × pm2−1

2 × p3 >, < pm1−1
1 × pm2

2 × p3 > and
< pm1

1 × pm2
2 >. The first two of these are contained in < pm1−1

1 × pm2−1
2 × p3 >. The subgroup <

pm1−1
1 × pm2

2 × p3 > is contained in < pm1−2
1 × pm2

2 × p3 > which is further contained in two subgroups
< pm1−2

1 × pm2−1
2 × p3 > and < pm1−3

1 × pm2
2 × p3 >. The subgroup < pm1−3

1 × pm2
2 × p3 > is

contained in other two subgroups of Zp
m1
1 ×pm2

2 ×p3
. The process will continue till we receive a subgroup

< p1 × pm2
2 × p3 >. It is contained in three subgroups < p1 × pm2

2 >, < p1 × pm2−1
2 × p3 > and

< pm2
2 × p3 >. The subgroup < pm2

2 × p3 > is contained in < pm2
2 >. It is contained in < pm2−1

2 >.
Continuing this process till we obtain < p2 > which is contained in < 1 > = Zp

m1
1 ×pm2

2 ×p3
, and

we will receive series of subgroups of Zp
m1
1 ×pm2

2 ×p3
; for instance, < 0 >⊆< pm1−1

1 × pm2
2 × p3 >⊆<

pm1−2
1 × pm2

2 × p3 >⊆ . . . ⊆< pm2
2 × p3 >⊆< pm2

2 >⊆< pm2−1
2 >⊆ . . . ⊆< p2 >⊆< 1 >. Similarly,

all the remaining subgroups will form other series of subgroups. At the end, gluing the vertices
occurring in all maximal series, we obtain the required graph, as shown in Figure 9.
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m2
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212

Proposition 2.5. The crossing number of L(Zp
m1
1 ×p

m2
2 ×p3

) is 2m1m2.213

Proof. The proof is clear from the table:

m1,m2 1, 1 2, 1 3, 1 . . . m1, 1 m1, 2 m1, 3 . . . m1,m2

cr(G) 2 4 6 . . . 2m1 4m1 6m1 . . . 2(m1)(m2)

�214

The following proposition relates the number of crossings and number215

of subgroups of Zp
m1
1 ×p

m2
2 ×p3

.216

Proposition 2.6. crL(Zp
m1
1 ×p

m2
2 ×p3

) = |V (L(Zp
m1
1 ×p

m2
2 ×p3

))|−2(m1+m2+1).217

Proof. We proceed as follows:218

|V (L(Zp
m1
1 ×p

m2
2 ×p3

))| = 2(m1 + 1)(m2 + 1) = 2(m1m2 + m1 + m2 + 1) =219

2m1m2 + 2(m1 + m2 + 1). But as in proposition 2.4, (crL(Zp
m1
1 ×p

m2
2 ×p3

)) =220

2(m1)(m2) we have, |V (L(Zp
m1
1 ×p

m2
2 ×p3

))| = crL(Zp
m1
1 ×p

m2
2 ×p3

) + 2(m1 +221

m2 + 1), which leads to the given result. �222

Similarly following corollary provides a link between number of crossings223

and number of subgroups of Zp
m1
1 ×p2×p3

.224

Corollary 2.7. crL(Zp
m1
1 ×p2×p3

) =
|V (L(Z

p
m1
1 ×p2×p3

)|
2 − 2.225

Figure 9. L(Zpm1
1 ×pm2

2 ×p3
).

Proposition 2. The crossing number of L(Zp
m1
1 ×pm2

2 ×p3
) is 2m1m2.

Proof. The proof is clear from the Table 1:

Table 1. Crossing numbers.

m1, m2 1, 1 2, 1 3, 1 . . . m1, 1 m1, 2 m1, 3 . . . m1, m2

cr(G) 2 4 6 . . . 2m1 4m1 6m1 . . . 2(m1)(m2)

The following proposition relates the number of crossings and number of subgroups of
Zp

m1
1 ×pm2

2 ×p3
.

Proposition 3. crL(Zp
m1
1 ×pm2

2 ×p3
) = |V(L(Zp

m1
1 ×pm2

2 ×p3
))| − 2(m1 + m2 + 1).

Proof. We proceed as follows: |V(L(Zp
m1
1 ×pm2

2 ×p3
))| = 2(m1 + 1)(m2 + 1) = 2(m1m2 +m1 +m2 + 1) =

2m1m2 + 2(m1 + m2 + 1). However, as in Proposition 2.4, (crL(Zp
m1
1 ×pm2

2 ×p3
)) = 2(m1)(m2) we have,

|V(L(Zp
m1
1 ×pm2

2 ×p3
))| = crL(Zp

m1
1 ×pm2

2 ×p3
) + 2(m1 + m2 + 1), which leads to the given result.

Similarly, the following corollary provides a link between number of crossings and number of
subgroups of Zp

m1
1 ×p2×p3

.

Corollary 2. crL(Zp
m1
1 ×p2×p3

) =
|V(L(Z

p
m1
1 ×p2×p3

)|
2 − 2.
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Proof. The result follows immediately from the relation |V(L(Zp
m1
1 ×p2×p3

))| = 4(m1 + 1) = 2(2m1 +

2) = 2(crL(Zp
m1
1 ×p2×p3

) + 2).

Proposition 4. The length of maximal series of Zp
m1
1 ×pm2

2 ×p3
is m1 + m2 + 2.

Proof. A typical maximal series of subgroups of Zp
m1
1 ×pm2

2 ×p3
is < 0 >⊆< pm1−1

1 × pm2
2 × p3 >⊆<

pm1−2
1 × pm2

2 × p3 >⊆ . . . ⊆< pm2
2 × p3 >⊆< pm2

2 >⊆< pm2−1
2 >⊆< pm2−2

2 >⊆ . . . ⊆< p2 >⊆< 1 >,
which consists of m1 + m2 + 2. Since each maximal series has the same number of elements, we
are done.

Proposition 5. The diameter of L(Zp
m1
1 ×pm2

2 ×p3
) is m1 + m2 + 1.

Proof. The diameter is one less than the length of the maximal series of L(Zp
m1
1 ×pm2

2 ×p3
).

Proposition 6. Girth of the lattice graphs of Zn, n = p1 × p2 × ...× pm−1 × pm, m 6= 1, Zp
m1
1 ×pm2

2
and

Zp
m1
1 ×pm2

2 ×p3
is 4.

Proof. If the degree of each vertex of a graph is at least2, then then there exists a cycle. It is clear that
the degree of each vertex of L(Zn) is 2 except m = 1, thus there exists a cycle and the length of shortest
cycle is 4. Thus, the girth of L(Zn) is 4 except m = 1. Similarly, the girth of Zp

m1
1 ×pm2

2
and Zp

m1
1 ×pm2

2 ×p3

is 4.

Finally, the information about the diameter and girth is enclosed in the most general result:

Theorem 2 (The Main Theorem). If G is the group Zp
m1
1 ×pm2

2 ×p
m3
3 ×...×p

mr−1
r−1 ×pmr

r
, then:

(a) The length of the maximal series of G is 1 +
r
∑

i=1
mi.

(b) The diameter of L(G) is
r
∑

i=1
mi.

(c) g
(

L(G)
)
=

{
∞ when r = 1
4 when r 6= 1

Proof.
(a) The set of subgroups of G is H(G) = {< pm1

1 × pm2
2 × pm3

3 × . . .× pmr−1
r−1 × pmr

r >,< pm1
1 × pm2

2 × pm3
3 ×

. . . × pmr−1
r−1 × pmr−1

r >, . . . ,< pm1
1 × pm2

2 × pm3
3 × . . . × pmr−1

r−1 × pr >} ∪ {< pm1
1 × pm2

2 × pm3
3 × . . . ×

pmr−1−1
r−1 × pr >,< pm1

1 × pm2
2 × pm3

3 × . . .× pmr−1−2
r−1 × pr >, . . . ,< pm1

1 × pm2
2 × pm3

3 × . . .× pr−1× pr >

} ∪ . . . ∪ {< pm1
1 × pm2

2 × pm3−1
3 × . . .× pr−1 × pr >,< pm1

1 × pm2
2 × pm3−2

3 × . . .× pr−1 × pr >, . . . ,<
pm1

1 × pm2
2 × p3 × . . .× pr−1 × pr >} ∪ {< pm1

1 × pm2−1
2 × p3 × . . .× pr−1 × pr >, . . . ,< pm1

1 × p2 ×
p3 × . . .× pr−1 × pr >} ∪ {< pm1−1

1 × p2 × p3 × . . .× pr−1 × pr >, . . . ,< p1 × p2 × p3 × . . .× pr−1 ×
pr >} ∪ {< p1 × p2 × p3 × . . . × pr−1 >, . . . ,< p1 × p2 >,< p1 >,< 1 >}. This set consists of
(m1 + 1)(m2 + 1)(m3 + 1) . . . (mr−1 + 1)(mr + 1) elements; this number is actually the number of
divisors of the order of G. Now, take elements of H(G) and form a (maximal) series from < 0 > to
< 1 >. A typical series of such kind is:

< 0 >=< pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1

r−1 × pmr
r >

⊆< pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1

r−1 × pmr−1
r >

⊆ . . . ⊆< pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1

r−1 × pr >

⊆< pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1−1

r−1 × pr >

⊆< pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1−2

r−1 × pr >
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⊆ . . . ⊆< pm1
1 × pm2

2 × pm3
3 × . . .× pr−1 × pr >

⊆ . . . ⊆< pm1
1 × pm2

2 × pm3−1
3 × . . .× pr−1 × pr >

⊆< pm1
1 × pm2

2 × pm3−2
3 × . . .× pr−1 × pr >

⊆ . . . ⊆< pm1
1 × pm2

2 × p3 × . . .× pr−1 × pr >

⊆< pm1
1 × pm2−1

2 × p3 × . . .× pr−1 × pr >

⊆ . . . < pm1
1 × p2 × p3 × . . .× pr−1 × pr >

⊆< pm1−1
1 × p2 × p3 × . . .× pr−1 × pr >

⊆ . . . ⊆< p1 × p2 × p3 × . . .× pr−1 × pr >

⊆< p1 × p2 × p3 × . . .× pr−1 >

⊆ . . . ⊆< p1 × p2 >⊆< p1 >⊆< 1 > .

This maximal series contains mr + mr−1 − 1 + mr−2 − 1 + . . . + m3 − 1 + m2 − 1 + m1 − 1 + r =

m1 + m2 + m3 + . . . + mr−1 + mr + (−1)(r− 1) + r =
r
∑

i=1
mi + 1 subgroups. Since each maximal series

contains exactly the same number of subgroups, the length of maximal series is 1 +
r
∑

i=1
mi.

(b) It now follows that the diameter of L(G) is
r
∑

i=1
mi, which, in our case, is actually one less than the

length of maximal series of G. This completes the proof.
(c) Case I. (r 6= 1)

Consider two typical maximal series of subgroups of G:

< 0 > = < pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1

r−1 × pmr
r >⊆< pm1−1

1 × pm2
2 × pm3

3 × . . .× pmr−1
r−1 × pmr

r >⊆<
pm1−1

1 × pm2−1
2 × pm3

3 × . . .× pmr−1
r−1 × pmr

r >⊆< pm1−1
1 × pm2−1

2 × pm3−1
3 × . . .× pmr−1

r−1 × pmr
r >⊆ . . . ⊆<

pm1−1
1 × pm2−1

2 × pm3−1
3 × . . . × pmr−1−1

r−1 × pmr−1
r >⊆< pm1−2

1 × pm2−1
2 × pm3−1

3 × . . . × pmr−1−1
r−1 ×

pmr−1
r >⊆ . . . ⊆< p1 × p2 × p3 × . . .× pr−1 × pr >⊆ . . . ⊆< p1 p2 >⊆< p1 >⊆< 1 >.

and

< 0 > = < pm1
1 × pm2

2 × pm3
3 × . . .× pmr−1

r−1 × pmr
r >⊆< pm1

1 × pm2−1
2 × pm3

3 × . . .× pmr−1
r−1 × pmr

r >⊆<
pm1−1

1 ×m2−1
2 ×pm3

3 × . . .× pmr−1
r−1 × pmr

r >⊆< pm1−1
1 × pm2−1

2 × pm3−1
3 × . . .× pmr−1

r−1 × pmr
r >⊆ . . . ⊆<

pm1−1
1 × pm2−1

2 × pm3−1
3 × . . . × pmr−1−1

r−1 × pmr−1
r >⊆< pm1−1

1 × pm2−2
2 × pm3−1

3 × . . . × pmr−1−1
r−1 ×

pmr−1
r >⊆ . . . ⊆< p1 × p2 × p3 × . . .× pr−1 × pr >⊆ . . . ⊆< p1 p2 >⊆< p1 >⊆< 1 >.

On gluing these maximal series in this a way, the subgroup < 0 > is contained immediately in two
subgroups: H1 = < pm1−1

1 × pm2
2 × pm3

3 × . . .× pmr−1
r−1 × pmr

r > and H2 = < pm1
1 × pm2−1

2 × pm3
3 × . . .×

pmr−1
r−1 × pmr

r >. Both these are further contained in H3 = < pm1−1
1 × pm2−1

2 × pm3
3 × . . .× pmr−1

r−1 × pmr
r >,

and we obtain a closed path < 0 >→ H1 → H3 → H2 →< 0 >. We can split this closed path in two
closed paths, < 0 >→ H1 → H2 →< 0 > and H1 → H3 → H2 → H1. For if H1 ⊆ H2, we receive
a contradiction that there does not exist a closed path of length 3.

Similarly, gluing the vertices occurring in all maximal series, we obtain a graph in which one
vertex is joined at least with two vertices which are further joined with another vertex, but these two
vertices are not joined with each other. This confirms that the length of shortest cycle is 4.

Case II. (r = 1)

In this case, since we receive just a finite path, g(L(G)) = ∞.

Theorem 3.
(a) L(Zp1×p2×···×pm) is Eulerian if m is even and is non-Eulerian if m(> 1) is odd.
(b) L(Zp

m1
1 ×pm2

2
) is non-Eulerian if m1 6= 1, 2 and m2 6= 1.

(c) L(Zp
m1
1 ×pm2

2 ×p3
) is non-Eulerian.
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Proof. The proof is given in the following Table 2:

Table 2. Degree vectors and graph types.

Lattice Graphs m Degree Vector Graph Type

L(Zn), 1 V1 = [1 1] Semi-Eulerian
n = p1 × p2× 2 V2 = [2 2 2 2] Eulerian

. . . 3 V3 = [3 3 . . . 8 times 3] Non-eulerian
×pm−1 × pm 4 V4 = [4 4 . . . 16 times 4] Eulerian

...
...

...
m Vm = [m m . . . 2m times m] Eulerian if m = even

Non-Eulerian if m = odd

m1, m2

1, 1 V′1 = [2 2 2 2] Eulerian
2, 1 V′2 = [3 3 2 2 2 2] Semi-Eulerian
3, 1 V′3 = [3 3 3 3 2 2 2 2] Non-Eulerian
4, 1 V′4 = [3 3 3 3 3 3 2 2 2 2] Non-Eulerian

L(Zpm1
1 ×pm2

2
)

...
...

...
m1, 1 V′r = [3 3 . . . (2m1 − 2) Non-Eulerian

times 3 2 2 2 2]
m1, 2 V′s = [4 4 . . . (m1 − 1) times Non-Eulerian

4 3 3 . . . (2m1) times 3 2
2 2 2]

...
...

...
m1, m2 V′t = [4 4 4 ...((m2 − 1) × Non-Eulerian

(m1 − 1)) times 4 3 3...(2m1 When m1 6= 1, 2
+2m2 − 4) times 3 2 2 2 2] and m2 6= 1

1, 1 V′′1 = [3 3 3 3 3 3 3 3] Non-Eulerian
2, 1 V′′2 = [4 4 4 4 3 3 3 3 3 3 3 3] Non-Eulerian

L(Zpm1
1 ×pm2

2 ×p3
)

...
...

...
m1, 1 V′′r = [4 4 . . . (4m1 − 4) times Non-Eulerian

4 3 3 3 3 3 3 3 3]
...

...
...

m1, m2 V′′t = [5 5 . . . ((m2 − 1) × Non-Eulerian
(2m1 − 2)) times 5 4 4 4 ... ∀m1, m2
(4m1 + 4m2 − 8) times 4 ...

3 3 3 3 3 3 3 3]

3. Conclusions

In this article, we discuss some metrical aspects of the lattice graphs of some families of finite
groups. We obtain the diameter and girth as well as many other aspects of these lattice graphs. Along
with many other results, the following are the main contributions of this article.

Theorem 4 (The Main Theorem). If G is the group Zp
m1
1 ×pm2

2 ×p
m3
3 ×...×p

mr−1
r−1 ×pmr

r
, then:

(a) The length of the maximal series of G is 1 +
r
∑

i=1
mi.

(b) The diameter of L(G) is
r
∑

i=1
mi.

(c) g
(

L(G)
)
=

{
∞ when r = 1
4 when r 6= 1



Mathematics 2019, 7, 398 11 of 11

and

Theorem 5.
(a) L(Zp1×p2×···×pm) is Eulerian if m is even and is non-Eulerian if m(> 1) is odd.
(b) L(Zp

m1
1 ×pm2

2
) is non-Eulerian if m1 6= 1, 2 and m2 6= 1.

(c) L(Zp
m1
1 ×pm2

2 ×p3
) is non-Eulerian.
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