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Abstract: We study functions defined in the plane E2 in which level curves are strictly convex, and
investigate area properties of regions cut off by chords on the level curves. In this paper we give
a partial answer to the question: Which function has level curves whose tangent lines cut off from
a level curve segment of constant area? In the results, we give some characterization theorems
regarding conic sections.

Keywords: Archimedes; level curve; chord; conic section; strictly convex plane curve; curvature;
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1. Introduction

The most well-known plane curves are straight lines and circles, which are characterized as the
plane curves with constant Frenet curvature. The next most familiar plane curves might be the conic
sections: ellipses, hyperbolas and parabolas. They are characterized as plane curves with constant
affine curvature ([1], p. 4).

The conic sections have an interesting area property. For example, consider the following two
ellipses given by Xk = g−1(k) and Xl = g−1(l) with l > k > 0, where

g(x, y) =
x2

a2 +
y2

b2 , a, b > 0.

For a fixed point p on Xk, we denote by A and B the points where the tangent to Xk at p meets Xl .
Then the region D bounded by the ellipse Xl and the chord AB outside Xk has constant area
independent of the point p ∈ Xk.

In order to give a proof, consider a transformation T of the plane E2 defined by

T =

(
b/
√

ab 0
0 a/

√
ab

)
.

Then Xk and Xl are transformed to concentric circles of radius
√

abk and
√

abl, respectively; the tangent
at p to the tangent at the corresponding point p′. Since the transformation T is equiaffine (that is, area
preserving), a well-known property of concentric circles completes the proof.

For parabolas and hyperbolas given by g(x, y) = y2 − 4ax, a 6= 0 and g(x, y) = x2/a2 −
y2/b2, a, b > 0, respectively, it is straightforward to show that they also satisfy the above mentioned
area properties. For a proof using 1-parameter group of equiaffine transformations, see [1], pp. 6–7.

Conversely, it is reasonable to ask the following question.
Question. Are there any other level curves of a function g : R2 → R satisfying the above mentioned
area property?
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A plane curve X in the plane E2 is called ‘convex’ if it bounds a convex domain in the plane E2

[2]. A convex curve in the plane E2 is called ‘strictly convex’ if the curve has positive Frenet curvature
κ with respect to the unit normal N pointing to the convex side. We also say that a convex function
f : R→ R is ‘strictly convex’ if the graph of f is strictly convex.

Consider a smooth function g : R2 → R. We let Rg denote the set of all regular values of the
function g. We suppose that there exists an interval Sg ⊂ Rg such that for every k ∈ Sg, the level curve
Xk = g−1(k) is a smooth strictly convex curve in the plane E2. We let Sg denote the maximal interval
in Rg with the above property. If k ∈ Sg, then there exists a maximal interval Ik ⊂ Sg such that each
Xk+h with k + h ∈ Ik lies in the convex side of Xk. The maximal interval Ik is of the form (k, a) or (b, k)
according to whether the gradient vector ∇g points to the convex side of Xk or not.

As examples, consider the two functions gi : R2 → R, i = 1, 2 defined by gi(x, y) = y2 + εia2x2

with positive constant a, εi = (−1)i. Then, for the function g1 we have Rg1 = R− {0}, Sg1 = (0, ∞)

or (−∞, 0), Ik = (k, ∞) if k > 0, and Ik = (−∞, k) if k < 0. For g2, we get Rg2 = Sg2 = (0, ∞) and
Ik = (0, k) with k ∈ Sg2 .

For a fixed point p ∈ Xk with k ∈ Sg and a small h with k + h ∈ Ik, we consider the tangent line
t to Xk at p ∈ Xk and the closest tangent line ` to Xk+h at a point v ∈ Xk+h, which is parallel to the
tangent line t. We letA∗p(k, h) denote the area of the region bounded by Xk and the line ` (See Figure 1).

Figure 1. A∗p(1,−3/4) for p = (1,
√

3/2), v = (1/2,
√

3/4) and g(x, y) = x2/4 + y2.

In [3], the following characterization theorem for parabolas was established.

Proposition 1. We consider a strictly convex function f : R → R and the function g : R2 → R given by
g(x, y) = y− f (x). Then, the following conditions are equivalent.

1. For a fixed k ∈ R, A∗p(k, h) is a function φk(h) of only h.

2. Up to translations, the function f (x) is a quadratic polynomial given by f (x) = ax2 with a > 0, and hence
every level curve Xk of g is a parabola.

In the above proposition, we have Rg = Sg = R and Ik = (k, ∞).
In particular, Archimedes proved that every level curve Xk (parabola) of the function g(x, y) =

y− ax2 in the Euclidean plane E2 satisfies A∗p(k, h) = ch
√

h for some constant c which depends only
on the parabola [4].

In this paper, we investigate the family of strictly convex level curves Xk, k ∈ Sg of a function
g : R2 → R which satisfies the following condition.

(A∗): For k ∈ Sg with k + h ∈ Ik, A∗p(k, h) with p ∈ Xk is a function φk(h) of only k and h.
In order to investigate the family of strictly convex level curves Xk, k ∈ Sg of a function g : R2 → R

satisfying condition (A∗), first of all, in Section 2 we introduce a useful lemma which reveals a relation
between the curvature of level curves and the gradient of the function g (Lemma 3 in Section 2).

Next, using Lemma 3, in Section 3 we establish the following characterizations for conic sections.



Mathematics 2019, 7, 391 3 of 14

Theorem 1. Let f : R→ R be a smooth function. We let g denote the function defined by g(x, y) = ya− f (x),
where a is a nonzero real number with a 6= 1. Suppose that the level curves Xk(k ∈ Sg) of g in the plane E2 are
strictly convex. Then the following conditions are equivalent.

1. The function g satisfies (A∗).
2. For k ∈ Sg, κ(p)|∇g(p)|3 = c(k) is constant on Xk, where κ(p) denotes the curvature of Xk at p ∈ Xk.
3. We have a = 2 and the function f is a quadratic function. Hence, each Xk is a conic section.

In case the function f (− f , resp.) is itself a non-negative strictly convex function, Theorem 1 is a
special case (n = 1) of Theorem 2 (Theorem 3, resp.) in [5].

In Section 4 we prove the following.

Theorem 2. Let f : R→ R be a smooth function. For a rational function j(y) in y, we let g denote the function
defined by g(x, y) = f (x) + j(y). Suppose that the level curves Xk(k ∈ Sg) of g in the plane E2 are strictly
convex. Then the following conditions are equivalent.

1. The function g satisfies (A∗).
2. For k ∈ Sg, κ(p)|∇g(p)|3 = c(k) is constant on Xk, where κ(p) denotes the curvature of Xk at p ∈ Xk.
3. Both of the functions j(y) and f (x) are quadratic. Hence, each Xk is a conic section.

When the function g is homogeneous, in Section 5 we prove the following characterization
theorem for conic sections.

Theorem 3. Let g : R2 → R be a smooth homogeneous function of degree d. Suppose that the level curves Xk
of g with k ∈ Sg in the plane E2 are strictly convex. Then the following conditions are equivalent.

1. The function g satisfies (A∗).
2. For k ∈ Sg, κ(p)|∇g(p)|3 = c(k) is constant on Xk, where κ(p) denotes the curvature of Xk at p ∈ Xk.
3. The function g is given by

g(x, y) = (ax2 + 2hxy + by2)d/2,

where a, b and h satisfy ab− h2 6= 0. Thus, each Xk is either a hyperbola or an ellipse centered at the origin.

Finally, we prove the following in Section 6.

Proposition 2. There exists a function g(x, y) = f (x) + j(y) which satisfies the following.

1. Every level curve of g is strictly convex with Sg = R.
2. For k ∈ Sg, κ(p)|∇g(p)|3 = c(k) is constant on Xk, where κ(p) denotes the curvature of Xk at p ∈ Xk.
3. The function g does not satisfy (A∗).

A lot of properties of conic sections (especially, parabolas) have been proved to be characteristic
ones [6–13]. For hyperbolas and ellipses centered at the origin, using the support function h and the
curvature function κ of a plane curve, a characterization theorem was established [14], from which we
get the proof of Theorem 3 in Section 5.

Some characterization theorems for hyperplanes, circular hypercylinders, hyperspheres, elliptic
paraboloids and elliptic hyperboloids in the Euclidean space En+1 were established in [5,15–19]. For a
characterization of hyperbolic space in the Minkowski space En+1

1 , we refer to [20].
In this article, all functions are smooth (C(3)).

2. Preliminaries

Suppose that X is a smooth strictly convex curve in the plane E2 with the unit normal N pointing
to the convex side. For a fixed point p ∈ X and for a sufficiently small h > 0, we take the line ` passing
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through the point p + hN(p) which is parallel to the tangent t to X at p. We denote by A and B the
points where the line ` meets the curve X and put Lp(h) and Ap(h) the length of the chord AB of X
and the area of the region bounded by the curve and the line `, respectively.

Without loss of generality, we may take a coordinate system (x, y) of E2 with the origin p,
the tangent line to X at p is the x-axis. Hence X is locally the graph of a strictly convex function
f : R→ R with f (p) = 0.

For a sufficiently small h > 0, we get

Ap(h) =
∫

Ip(h)
{h− f (x)}dx,

Lp(h) =
∫

Ip(h)
1dx,

where we put Ip(h) = {x ∈ R| f (x) < h} and Lp(h) is nothing but the length of Ip(h). Note that we
also have

Ap(h) =
∫ h

y=0
Lp(y)dy =

∫ h

y=0
{
∫

Ip(y)
1dx}dy,

from which we obtain
A′p(h) = Lp(h).

We have the following [3]:

Lemma 1. Suppose that X is a smooth strictly convex curve in the plane E2. Then for a point p ∈ X we have

lim
t→0

1√
t
Lp(t) =

2
√

2√
κ(p)

and

lim
t→0

1
t
√

t
Ap(t) =

4
√

2
3
√

κ(p)
,

where κ(p) is the curvature of X at p.

Now, we consider the family of strictly convex level curves Xk = g−1(k) of a function g : R2 → R
with k ∈ Sg.

Suppose that the function g satisfies condition (A∗). For each k ∈ Sg and p ∈ Xk we denote by
κ(p) the curvature of Xk at p

By considering −g if necessary, we may assume that Ik is of the form (k, a) with k < a, and hence
we have N = ∇g/|∇g| on Xk. For a fixed point p ∈ Xk and a small t > 0, we have

Ap(t) = A∗p(k, h(t)) = φk(h(t)),

where h = h(t) is a function with h(0) = 0. Differentiating with respect to t gives

Lp(t) = A′p(t) = φ′k(h)h
′(t),

where φ′k(h) is the derivative of φk with respect to h. This shows that

1√
t
Lp(t) =

φ′k(h)√
h

√
h(t)

t
h′(t). (1)

Next, we use the following lemma for the limit of h′(t) as t→ 0.



Mathematics 2019, 7, 391 5 of 14

Lemma 2. We have
lim
t→0

h′(t) = |∇g(p)|. (2)

Proof. See the proof of Lemma 8 in [5]. �

It follows from (2) that

lim
t→0

√
h(t)

t
=
√
|∇g(p)|. (3)

Together with Lemma 1, (2) and (3), (1) implies that limh→0 φ′k(h)/
√

h exists (say, γ(k)), which is
independent of p ∈ Xk. Furthermore, we also obtain

κ(p)|∇g(p)|3 =
8

γ(k)2 ,

which is constant on the level curve Xk.
Finally, we obtain the following lemma which is useful in the proof of Theorems stated in Section 1.

Lemma 3. We suppose that a function g : R2 → R satisfies condition (A∗). Then, for each k ∈ Sg, on Xk the
function defined by

κ(p)|∇g(p)|3 = c(k)

is constant on Xk, where κ(p) is the curvature of Xk at p.

Remark 1. Lemma 3 is a special case (n = 1) of Lemma 8 in [5]. For conveniences, we gave a brief proof.

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1 stated in Section 1.
For a nonzero real number a( 6= 1) and a smooth function f : R → R, we investigate the level

curves of the function g = ga : R2 → R defined by ga(x, y) = ya − f (x).
Suppose that the function g satisfies condition (A∗). Then, it follows from Lemma 3 that on the

level curve Xk = g−1(k) with k ∈ Sg we have

κ(p)|∇g(p)|3 = c(k), (4)

where c(k) is a function of k ∈ Sg.
Note that for p = (x, y) ∈ Xk with ya = f (x) + k we have

|∇g(p)|3 = { f ′(x)2 + a2( f (x) + k)
2a−2

a }
3
2 ,

and hence
κ(p)|∇g(p)|3 = |a2( f (x) + k)

2a−2
a f ′′(x) + a(1− a)( f (x) + k)

a−2
a f ′(x)2|. (5)

Thus, it follows from (4) and (5) that for some nonzero c = c(k) with k ∈ Sg, the function f (x) satisfies

a2( f (x) + k)
2a−2

a f ′′(x) + a(1− a)( f (x) + k)
a−2

a f ′(x)2 = c(k),

which can be rewritten as

f ′′(x) +
1− a

a
( f (x) + k)−1 f ′(x)2 =

c(k)
a2 ( f (x) + k)

2−2a
a . (6)

By differentiating (6) with respect to k, we get

f ′(x)2 =
c′(k)

a(a− 1)
( f (x) + k)

2
a − 2

c(k)
a2 ( f (x) + k)

2−a
a . (7)
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Putting u = f (x) + k and v = du/dx = f ′(x), we get from (6)

dv
du

+
1− a

a
u−1v =

c(k)
a2 u

2−2a
a v−1, (8)

which is a Bernoulli equation. By letting w = v2, we obtain

dw
du

+
2− 2a

a
u−1w =

2c(k)
a2 u

2−2a
a . (9)

Since u
2−2a

a is an integrating factor of (9), we get

d
du

(wu
2−2a

a ) =
2c(k)

a2 u
4−4a

a . (10)

Now, in order to integrate (10), we divide by some cases as follows.

Case 1. Suppose that a = 4
3 . Then, from (10) we have

w = {9c(k)
8

ln u + b(k)}
√

u, (11)

where b = b(k) is a constant. Since u = f (x) + k and w = f ′(x)2, (7) and (11) show that

c(k) ln( f (x) + k) +
8
9

b(k) = 2c′(k)( f (x) + k)− c(k). (12)

By differentiating (12) with respect to x, we obtain

2c′(k)( f (x) + k) = c(k). (13)

Since c(k) is nonzero, (13) leads to a contradiction.

Case 2. Suppose that a 6= 4
3 . Then, from (8) we have

w = a(k)uα + b(k)uβ, a(k) =
2c(k)

(4− 3a)a
, α =

2− a
a

, β =
2a− 2

a
, (14)

where b = b(k) is a constant. Since u = f (x) + k and w = f ′(x)2, it follows from (7) and (14) that

b(k)( f (x) + k)
3a−4

a =
c′(k)

a(a− 1)
( f (x) + k)− 4c(k)

a− 2
a2(3a− 4)

. (15)

By differentiating (15) with respect to x, we get

b(k)( f (x) + k)
2a−4

a =
c′(k)

a(a− 1)
. (16)

If b(k) 6= 0, then (16) shows that a = 2. If b(k) = 0, then it follows from (15) and (16) that c′(k) = 0,
and hence a = 2.

Finally, we consider the remaining case as follows.

Case 3. Suppose that a = 2. Then, it follows from (7) that for the constant c = c(k)

f ′(x)2 =
c′(k)

2
( f (x) + k)− c(k)

2
. (17)
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If c′(k) = 0, that is, c is independent of k, then (17) shows that f (x) is a linear function. Hence
each level curve Xk of the function g(x, y) = y2 − f (x) is a parabola. If c′(k) 6= 0, then differentiating
both sides of (17) with respect to x shows

4 f ′′(x) = c′(k).

This yields that f (x) is a quadratic function and c(k) is a linear function in k.
Combining Cases 1–3, we proved the following:

1)⇒ 2)⇒ 3).

Conversely, suppose that the function g is given by

g(x, y) = y2 − (ax2 + bx + c),

where a, b and c are constants with a2 + b2 6= 0. Then, each level curve Xk of g is an ellipse (a < 0),
a hyperbola (a > 0) or a parabola (a = 0, b 6= 0). It follows from Section 1 or [4], pp. 6–7 that the
function g satisfies condition (A∗).

This shows that Theorem 1 holds.

Remark 2. It follows from the proof of Theorem 1 that the constant c = c(k) is independent of k if g(x, y) =
y2 − 4ax, a 6= 0 and it is a linear function in k if g(x, y) = y2 − ax2, a 6= 0.

Finally, we note the following.

Remark 3. Suppose that a smooth function g : R2 → R satisfies condition (A∗) with

κ(p)|∇g(p)|3 = c(k),

where p ∈ Xk = g−1(k) and k ∈ Sg. Then for any positive constant d, there exists a composite function
G = φ ◦ g satisfying condition (A∗) with

κ(p)|∇G(p)|3 = d. (18)

Note that the function G = φ ◦ g has the same level curves as the function g.
In order to prove (18), we denote by φ(t) an indefinite integral of the function (d/c(t))1/3. Then for

p ∈ G−1(k) = g−1(φ−1(k)) we get

|∇G(p)| = φ′(g(p))|∇g(p)|.

Hence, on each level curve G−1(k) = g−1(φ−1(k)) we obtain

κ(p)|∇G(p)|3 = c(φ−1(k))φ′(φ−1(k))3 = d.

4. Proof of Theorem 2

In this section, we give a proof of Theorem 2.
We consider a function g defined by g(x, y) = f (x) + j(y) for some functions f (x) and j(y).

Then at the point p ∈ Xk = g−1(k) we have

|∇g(p)|3 = { f ′(x)2 + j′(y)2}
3
2 ,

κ(p)|∇g(p)|3 = | f ′′(x)j′(y)2 + f ′(x)2 j′′(y)|.
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Suppose that the function g satisfies condition (A∗). Then, it follows from Lemma 3 that on the
level curve Xk : f (x) + j(y) = k we get for some nonzero constant c = c(k)

f ′′(x)j′(y)2 + f ′(x)2 j′′(y) = c(k), (19)

which shows that the set V = {(x, y) ∈ Xk| f ′(x) = 0 or j′(y) = 0} has no interior points in the
level curve Xk. Hence by continuity, without loss of generality we may assume that V is empty.

First, we consider y as a function of x and k. Then, we rewrite (19) as follows

f ′′(x) + f ′(x)2 j′′(y)
j′(y)2 =

c(k)
j′(y)2 , j(y) + f (x) = k. (20)

Putting u = − f (x) + k and v = du/dx = − f ′(x), we get

dv
du
− j′′(y)

j′(y)2 v = − c(k)
j′(y)2 v−1,

which is a Bernoulli equation. By letting w = v2 = f ′(x)2, we obtain

dw
du
− 2j′′(y)

j′(y)2 w = − 2c(k)
j′(y)2 . (21)

Since u = j(y), we see that j′(y)−2 is an integrating factor of (21). Hence we get

d
du

(wj′(y)−2) = −2c(k)j′(y)−4.

Thus we obtain
f ′(x)2 = w = −2c(k)j′(y)2{φ(y) + d(k)}, (22)

where φ(y) is a function of y satisfying φ′(y) = j′(y)−3 and d = d(k) is a constant.

On the other hand, by differentiating (20) with respect to k, we get

f ′(x)2{j′(y)j′′′(y)− 2j′′(y)2} = c′(k)j′(y)2 − 2c(k)j′′(y). (23)

It follows from (22) and (23) that

a(k)j′(y)2 − j′′(y) = j′(y)2{2j′′(y)2 − j′(y)j′′′(y)}{φ(y) + d(k)}, (24)

where we use a(k) = c′(k)
2c(k) . Or equivalently, we get

φ(y) + d(k) =
a(k)j′(y)2 − j′′(y)

j′(y)2{2j′′(y)2 − j′(y)j′′′(y)} , (25)

where the denominator does not vanish. Even though j(y) was assumed to be C(3), (24) implies that
the function {2j′′(y)2 − j′(y)j′′′(y)} is differentiable. By differentiating (25) with respect to x, it is
straightforward to show that

{a(k)j′(y)2 − j′′(y)} d
dy
{2j′′(y)2 − j′(y)j′′′(y)} = 0. (26)

Together with (24), (26) yields that 2j′′(y)2 − j′(y)j′′′(y) is constant. Hence, for some constant α

we have
2j′′(y)2 − j′(y)j′′′(y) = α. (27)
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Next, interchanging the role of x and y in the above discussions, we consider x as a function of y
and k. Then, (22) gives

j′(y)2 = −2c(k) f ′(x)2{ψ(x) + e(k)}, (28)

where ψ(x) is a function of x satisfying ψ′(x) = f ′(x)−3 and e = e(k) is a constant. In the same
argument as the above, we obtain the corresponding equations from (23)–(27). For example, we get
from (26)

{a(k) f ′(x)2 − f ′′(x)} d
dx
{2 f ′′(x)2 − f ′(x) f ′′′(x)} = 0. (29)

Thus, for some constant β, we also get

2 f ′′(x)2 − f ′(x) f ′′′(x) = β. (30)

By integrating (24) and (30) respectively, we obtain for some constants γ and δ

2j′′(y)2 = γj′(y)4 + α (31)

and its corresponding equation
2 f ′′(x)2 = δ f ′(x)4 + β. (32)

Differentiating (19) with respect to x, we have

1
j′(y)

{ f ′′′(x)j′(y)3 − f ′(x)3 j′′′(y)} = d
dx
{ f ′′(x)j′(y)2 + f ′(x)2 j′′(y)} = 0. (33)

Together with (31) and (32), this shows that j(y) is quadratic in y if and only if f (x) is quadratic in x.
Hereafter, we assume that neither f (x) nor j(y) are quadratic. Then, combining (27), (30), (31)

and (32), it follows from (33) that
(γ− δ) f ′(x)4 j′(y)4 = 0,

which shows that γ = δ. Hence, for a nonzero constant γ the functions f (x) and j(y) satisfy,
respectively

2 f ′′(x)2 = γ f ′(x)4 + β (34)

and
2j′′(y)2 = γj′(y)4 + α. (35)

Differentiating (34) and (35) with respect to x and y, respectively, implies

f ′′′(x) = γ f ′(x)3, j′′′(y) = γj′(y)3, (36)

where γ is a nonzero constant.
Conversely, we prove the following for later use in Section 6.

Lemma 4. Suppose that the functions f (x) and j(y) satisfy (34) and (35) for some constants α and β,
respectively. Then on each level curve Xk with k ∈ Sg of the function g(x, y) = f (x) + j(y), κ(p)|∇g(p)|3
is constant.

Proof. Using (36), it follows from the first equality of (33) that on the level curve Xk of the function g,
we have

d
dx
{ f ′′(x)j′(y)2 + f ′(x)2 j′′(y)} = 0.

This completes the proof of Lemma 4. �

Finally, we proceed on our way. We divide by two cases as follows.
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Case 1. Suppose that j(y) is a polynomial of degree deg h = n ≥ 3. Then, by counting the degree of
both sides of the second equation in (36) we see that the constant γ must vanish. This contradiction
shows that the polynomial j(y) is quadratic.

Case 2. Suppose that j(y) is a rational function given by

j(y) =
s(y)
q(y)

,

where q and s are relatively prime polynomials of degree deg q = m(≥ 1) and deg s = n(≥ 0),
respectively.

Subcase 2-1. Suppose that m ≥ n. Then we get from (35) that

αq(y)8 = γA(y)4 − 2B(y)2, (37)

where we put

A(y) = s′(y)q(y)− s(y)q′(y), B(y) = A′(y)q(y)2 − 2q(y)q′(y)A(y).

Since the degree of the right hand side of (37) is less than or equal to 8m− 4, (37) shows that α must
vanish. By integrating (30′) with α = 0, we obtain for some constant a and b

j(y) =
1
a

ln |ay + b|,

which is a contradiction.

Subcase 2-2. Suppose that m ≤ n− 2. We put

j(y) =
s(y)
q(y)

= r(y) +
t(y)
q(y)

,

where deg r = a = n−m ≥ 2 and deg t ≤ m− 1. Then we get from (30′) that

γ{r′(y)q(y)2 + A(y)}4 = 2{r′′(y)q(y)4 + B(y)}2 − αq(y)8, (38)

where we put

A(y) = t′(y)q(y)− t(y)q′(y), B(y) = A′(y)q(y)2 − 2q(y)q′(y)A(y).

Since the degree of the left hand side of (38) is 8m + 4a− 4 and the degree of the right hand side
of (38) is less than or equal to 8m + 2a− 4, we see that γ must vanish, which is a contradiction. Hence
this case cannot occur.

Subcase 2-3. Suppose that m = n− 1. Then we have r(y) = r0y + r1 with r0 6= 0,

j′(y) = r0 +
A(y)
q(y)2 , A(y) = t′(y)q(y)− t(y)q′(y),

j′′(y) =
B̄(y)
q(y)3 , B̄(y) = A′(y)q(y)− 2A(y)q′(y)

and

j′′′(y) =
C(y)
q(y)6 , C(y) = B̄′(y)q(y)3 − 3B̄(y)q(y)2q′(y).
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It follows from the second equation of (36) that

γ{r0q(y)2 + A(y)}3 = C(y).

Note that the left hand side is of degree 6m, but the right hand side is of degree deg C ≤ 6m− 4.
Hence, the constant γ must vanish, which is a contradiction. Thus, this case cannot occur.

Combining Cases 1 and 2, we see that the function j(y) is a quadratic polynomial. Therefore,
Theorem 1 completes the proof of Theorem 2.

5. Proof of Theorem 3

In this section, we give a proof of Theorem 3.
Consider a smooth homogeneous function g : R2 → R of degree d. Suppose that the function g

satisfies (A∗). Then, it follows from Lemma 3 that on the level curve Xk = g−1(k) with k ∈ Sg we have

κ(p)|∇g(p)|3 = c(k), (39)

where c(k) is a nonzero function of k ∈ Sg.
We recall the support function h(p) on the level curve Xk, which is defined by

h(p) = 〈p, N(p)〉 ,

where N(p) denotes the unit normal to Xk. Note that the unit normal N(p) to Xk is given by

N(p) =
∇g(p)
|∇g(p)| .

Since the function g is homogeneous of degree d, by the Euler identity, on Xk we obtain

h(p) =
〈p,∇g(p)〉
|∇g(p)| =

dk
|∇g(p)| . (40)

Thus, it follows from (39) and (40) that Xk satisfies

κ(p) =
c(k)
(dk)3 h(p)3.

Now, we use the following characterization theorem [14].

Proposition 3. Suppose that X is a smooth curve in the plane E2 of which curvature κ does not vanish
identically. Then X satisfies for some constant c

κ(p) = ch(p)3.

if and only if X is a connected open arc of either a hyperbola or an ellipse centered at the origin.

The above proposition shows that for each k ∈ Sg, the level curve Xk is either a hyperbola centered
at the origin or an ellipse centered at the origin. Without loss of generality, we may assume that 1 ∈ Sg.
Then, the level curve X1 = g−1(1) is given by

ax2 + 2hxy + by2 = 1, (41)

where a, b and h satisfy ab− h2 6= 0.
We claim that

g(x, y) = (ax2 + 2hxy + by2)d/2. (42)



Mathematics 2019, 7, 391 12 of 14

where a, b and h satisfy ab− h2 6= 0.
In order to prove (42), for a fixed point p = (x, y) ∈ R2 we let g(x, y) = k, that is, p = (x, y) ∈ Xk.

Then we have for t = k−1/d

g(tx, ty) = 1.

Hence we get from (41)
ax2 + 2hxy + by2 = t−2 = k2/d.

This shows that
g(x, y) = k = (ax2 + 2hxy + by2)d/2,

which proves the above mentioned claim. Therefore, the proof of Theorem 3 was completed.

6. Proof of Proposition 2

In this section, we prove Proposition 2.
We denote by ψ(t) the function defined by

ψ′(t) =
1√

1 + t4
, ψ(0) = 0

and we put

a =
∫ ∞

0
(t4 + 1)−1/2dt.

Then, both of ψ : (−∞, ∞) → (−a, a) and ψ−1 : (−a, a) → (−∞, ∞) are strictly increasing odd
functions.

Now, we consider the function g(x, y) = f (x)+ j(y) defined on the domain U = (0, a)× (0, ∞) ⊂ R2

with j(y) = ln y and
f (x) = ln ψ−1(x).

Then we have Sg = Rg = R and Ik = (k, ∞). Furthermore, it is straightforward to show that the
functions f (x) and j(y) satisfies (34) and (30′) respectively, where we put γ = 2, α = 0 and β = −8.
Thus, Lemma 4 implies that on each level curve Xk of the function g(x, y) = f (x) + j(y), κ(p)|∇g(p)|3
is constant.

However, we show that the function g cannot satisfy condition (A∗) as follows. For each k ∈ Sg =

R, the level curve Xk = g−1(k) of g are given by

yψ−1(x) = ek, x, y > 0.

Note that Xk is the graph of the strictly convex function given by

y =
ek

ψ−1(x)
, x ∈ (0, a),

which satisfies
dy
dx

< 0,
d2y
dx2 > 0

and
lim
x→0

y = ∞, lim
x→0

dy
dx

= −∞, lim
x→a

y = 0, lim
x→a

dy
dx

= −ek.

Hence, each level curve Xk approaches the point (a, 0) and the y-axis is an asymptote of Xk. For a
fixed point v of X0 and a negative number h < 0, let p ∈ Xh be the point where the tangent t to Xh is
parallel to the tangent ` to X0 at v. We denote by A(h) and B(h) the points where the tangent ` to X0 at
v intersects the level curve Xh.
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Suppose that the function g satisfies condition (A∗). Then, the area of the region enclosed by
Xh and the chord A(h)B(h) of Xh is A∗p(h,−h) = φh(−h), which is independent of v. We also denote
by A and B the points where the tangent ` to X0 at v meets the coordinate axes, respectively. Then,
A(h) and B(h) tend to A and B, respectively, as h tends to −∞. Furthermore, as h tends to −∞, φh(−h)
goes to the area of the triangle OAB, where O denotes the origin. Thus, the area of the triangle OAB is
independent of the point v ∈ X0. This contradicts the following lemma, which might be well known.
Therefore the function g(x, y) = f (x) + j(y) does not satisfy condition (A∗). This gives a proof of
Proposition 2.

Lemma 5. Suppose that X denotes the graph of a strictly convex function f : I → R defined on an open interval
I. Then X satisfies the following condition (A) if and only if X is a part of the hyperbola given by xy = c for
some nonzero c.

(A): For a point v ∈ X, we put A and B at the points where the tangent ` to X at v intersects coordinate axes,
respectively. Then the area of the triangle OAB is independent of the point v ∈ X.

Proof. Suppose that X satisfies condition (A). Then, f ′(x) vanishes nowhere on the interval I. For a
point v = (x, f (x)), the area A(x) of the triangle OAB is given by

A(x) =
−1

2 f ′(x)
{x f ′(x)− f (x)}2. (43)

Differentiating (43) with respect to x gives

−1
2 f ′(x)2 {x

2 f ′(x)2 − f (x)2} f ′′(x) = 0. (44)

By assumption, f ′′(x) > 0. Hence, we get from (44)

x2 f ′(x)2 − f (x)2 = 0,

which shows that X is a hyperbola given by xy = c for some nonzero c.
It is trivial to prove the converse. �

Remark 4. For some higher dimensional analogues of Lemma 5, see [19].
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