Article

Area Properties of Strictly Convex Curves

Dong-Soo Kim ${ }^{1}$, Young Ho Kim ${ }^{2, *}$ and Yoon-Tae Jung ${ }^{3}$
1 Department of Mathematics, Chonnam National University, Gwangju 61186, Korea; dosokim@chonnam.ac.kr
2 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea
3 Department of Mathematics, Chosun University, Gwangju 61452, Korea; ytajung@chosun.ac.kr
* Correspondence: yhkim@knu.ac.kr; Tel.: +82-53-950-5882

Received: 28 March 2019; Accepted: 21 April 2019; Published: 29 April 2019

Abstract

We study functions defined in the plane \mathbb{E}^{2} in which level curves are strictly convex, and investigate area properties of regions cut off by chords on the level curves. In this paper we give a partial answer to the question: Which function has level curves whose tangent lines cut off from a level curve segment of constant area? In the results, we give some characterization theorems regarding conic sections.

Keywords: Archimedes; level curve; chord; conic section; strictly convex plane curve; curvature; equiaffine transformation

1. Introduction

The most well-known plane curves are straight lines and circles, which are characterized as the plane curves with constant Frenet curvature. The next most familiar plane curves might be the conic sections: ellipses, hyperbolas and parabolas. They are characterized as plane curves with constant affine curvature ([1], p. 4).

The conic sections have an interesting area property. For example, consider the following two ellipses given by $X_{k}=g^{-1}(k)$ and $X_{l}=g^{-1}(l)$ with $l>k>0$, where

$$
g(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}, a, b>0
$$

For a fixed point p on X_{k}, we denote by A and B the points where the tangent to X_{k} at p meets X_{l}. Then the region D bounded by the ellipse X_{l} and the chord $A B$ outside X_{k} has constant area independent of the point $p \in X_{k}$.

In order to give a proof, consider a transformation T of the plane \mathbb{E}^{2} defined by

$$
T=\left(\begin{array}{cc}
b / \sqrt{a b} & 0 \\
0 & a / \sqrt{a b}
\end{array}\right) .
$$

Then X_{k} and X_{l} are transformed to concentric circles of radius $\sqrt{a b k}$ and $\sqrt{a b l}$, respectively; the tangent at p to the tangent at the corresponding point p^{\prime}. Since the transformation T is equiaffine (that is, area preserving), a well-known property of concentric circles completes the proof.

For parabolas and hyperbolas given by $g(x, y)=y^{2}-4 a x, a \neq 0$ and $g(x, y)=x^{2} / a^{2}-$ $y^{2} / b^{2}, a, b>0$, respectively, it is straightforward to show that they also satisfy the above mentioned area properties. For a proof using 1-parameter group of equiaffine transformations, see [1], pp. 6-7.

Conversely, it is reasonable to ask the following question.
Question. Are there any other level curves of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying the above mentioned area property?

A plane curve X in the plane \mathbb{E}^{2} is called 'convex' if it bounds a convex domain in the plane \mathbb{E}^{2} [2]. A convex curve in the plane \mathbb{E}^{2} is called 'strictly convex' if the curve has positive Frenet curvature κ with respect to the unit normal N pointing to the convex side. We also say that a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ is 'strictly convex' if the graph of f is strictly convex.

Consider a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We let R_{g} denote the set of all regular values of the function g. We suppose that there exists an interval $S_{g} \subset R_{g}$ such that for every $k \in S_{g}$, the level curve $X_{k}=g^{-1}(k)$ is a smooth strictly convex curve in the plane \mathbb{E}^{2}. We let S_{g} denote the maximal interval in R_{g} with the above property. If $k \in S_{g}$, then there exists a maximal interval $I_{k} \subset S_{g}$ such that each X_{k+h} with $k+h \in I_{k}$ lies in the convex side of X_{k}. The maximal interval I_{k} is of the form (k, a) or (b, k) according to whether the gradient vector ∇g points to the convex side of X_{k} or not.

As examples, consider the two functions $g_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}, i=1,2$ defined by $g_{i}(x, y)=y^{2}+\epsilon_{i} a^{2} x^{2}$ with positive constant $a, \epsilon_{i}=(-1)^{i}$. Then, for the function g_{1} we have $R_{g_{1}}=\mathbb{R}-\{0\}, S_{g_{1}}=(0, \infty)$ or $(-\infty, 0), I_{k}=(k, \infty)$ if $k>0$, and $I_{k}=(-\infty, k)$ if $k<0$. For g_{2}, we get $R_{g_{2}}=S_{g_{2}}=(0, \infty)$ and $I_{k}=(0, k)$ with $k \in S_{g_{2}}$.

For a fixed point $p \in X_{k}$ with $k \in S_{g}$ and a small h with $k+h \in I_{k}$, we consider the tangent line t to X_{k} at $p \in X_{k}$ and the closest tangent line ℓ to X_{k+h} at a point $v \in X_{k+h}$, which is parallel to the tangent line t. We let $\mathcal{A}_{p}^{*}(k, h)$ denote the area of the region bounded by X_{k} and the line ℓ (See Figure 1).

Figure 1. $\mathcal{A}_{p}^{*}(1,-3 / 4)$ for $p=(1, \sqrt{3} / 2), v=(1 / 2, \sqrt{3} / 4)$ and $g(x, y)=x^{2} / 4+y^{2}$.
In [3], the following characterization theorem for parabolas was established.
Proposition 1. We consider a strictly convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $g(x, y)=y-f(x)$. Then, the following conditions are equivalent.

1. For a fixed $k \in \mathbb{R}, \mathcal{A}_{p}^{*}(k, h)$ is a function $\phi_{k}(h)$ of only h.
2. Up to translations, the function $f(x)$ is a quadratic polynomial given by $f(x)=a x^{2}$ with $a>0$, and hence every level curve X_{k} of g is a parabola.

In the above proposition, we have $R_{g}=S_{g}=\mathbb{R}$ and $I_{k}=(k, \infty)$.
In particular, Archimedes proved that every level curve X_{k} (parabola) of the function $g(x, y)=$ $y-a x^{2}$ in the Euclidean plane \mathbb{E}^{2} satisfies $\mathcal{A}_{p}^{*}(k, h)=c h \sqrt{h}$ for some constant c which depends only on the parabola [4].

In this paper, we investigate the family of strictly convex level curves $X_{k}, k \in S_{g}$ of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which satisfies the following condition.
$\left(\mathcal{A}^{*}\right):$ For $k \in S_{g}$ with $k+h \in I_{k}, \mathcal{A}_{p}^{*}(k, h)$ with $p \in X_{k}$ is a function $\phi_{k}(h)$ of only k and h.
In order to investigate the family of strictly convex level curves $X_{k}, k \in S_{g}$ of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying condition $\left(\mathcal{A}^{*}\right)$, first of all, in Section 2 we introduce a useful lemma which reveals a relation between the curvature of level curves and the gradient of the function g (Lemma 3 in Section 2).

Next, using Lemma 3, in Section 3 we establish the following characterizations for conic sections.

Theorem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. We let g denote the function defined by $g(x, y)=y^{a}-f(x)$, where a is a nonzero real number with $a \neq 1$. Suppose that the level curves $X_{k}\left(k \in S_{g}\right)$ of g in the plane \mathbb{E}^{2} are strictly convex. Then the following conditions are equivalent.

1. The function g satisfies $\left(\mathcal{A}^{*}\right)$.
2. For $k \in S_{g}, \kappa(p)|\nabla g(p)|^{3}=c(k)$ is constant on X_{k}, where $\kappa(p)$ denotes the curvature of X_{k} at $p \in X_{k}$.
3. We have $a=2$ and the function f is a quadratic function. Hence, each X_{k} is a conic section.

In case the function $f(-f$, resp.) is itself a non-negative strictly convex function, Theorem 1 is a special case ($n=1$) of Theorem 2 (Theorem 3, resp.) in [5].

In Section 4 we prove the following.
Theorem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. For a rational function $j(y)$ in y, we let g denote the function defined by $g(x, y)=f(x)+j(y)$. Suppose that the level curves $X_{k}\left(k \in S_{g}\right)$ of g in the plane \mathbb{E}^{2} are strictly convex. Then the following conditions are equivalent.

1. The function g satisfies $\left(\mathcal{A}^{*}\right)$.
2. For $k \in S_{g}, \kappa(p)|\nabla g(p)|^{3}=c(k)$ is constant on X_{k}, where $\kappa(p)$ denotes the curvature of X_{k} at $p \in X_{k}$.
3. Both of the functions $j(y)$ and $f(x)$ are quadratic. Hence, each X_{k} is a conic section.

When the function g is homogeneous, in Section 5 we prove the following characterization theorem for conic sections.

Theorem 3. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth homogeneous function of degree d. Suppose that the level curves X_{k} of g with $k \in S_{g}$ in the plane \mathbb{E}^{2} are strictly convex. Then the following conditions are equivalent.

1. The function g satisfies $\left(\mathcal{A}^{*}\right)$.
2. For $k \in S_{g}, \kappa(p)|\nabla g(p)|^{3}=c(k)$ is constant on X_{k}, where $\kappa(p)$ denotes the curvature of X_{k} at $p \in X_{k}$.
3. The function g is given by

$$
g(x, y)=\left(a x^{2}+2 h x y+b y^{2}\right)^{d / 2}
$$

where a, b and h satisfy $a b-h^{2} \neq 0$. Thus, each X_{k} is either a hyperbola or an ellipse centered at the origin.
Finally, we prove the following in Section 6.
Proposition 2. There exists a function $g(x, y)=f(x)+j(y)$ which satisfies the following.

1. Every level curve of g is strictly convex with $S_{g}=\mathbb{R}$.
2. For $k \in S_{g}, \kappa(p)|\nabla g(p)|^{3}=c(k)$ is constant on X_{k}, where $\kappa(p)$ denotes the curvature of X_{k} at $p \in X_{k}$.
3. The function g does not satisfy $\left(\mathcal{A}^{*}\right)$.

A lot of properties of conic sections (especially, parabolas) have been proved to be characteristic ones [6-13]. For hyperbolas and ellipses centered at the origin, using the support function h and the curvature function κ of a plane curve, a characterization theorem was established [14], from which we get the proof of Theorem 3 in Section 5.

Some characterization theorems for hyperplanes, circular hypercylinders, hyperspheres, elliptic paraboloids and elliptic hyperboloids in the Euclidean space \mathbb{E}^{n+1} were established in $[5,15-19]$. For a characterization of hyperbolic space in the Minkowski space \mathbb{E}_{1}^{n+1}, we refer to [20].

In this article, all functions are smooth $\left(C^{(3)}\right)$.

2. Preliminaries

Suppose that X is a smooth strictly convex curve in the plane \mathbb{E}^{2} with the unit normal N pointing to the convex side. For a fixed point $p \in X$ and for a sufficiently small $h>0$, we take the line ℓ passing
through the point $p+h N(p)$ which is parallel to the tangent t to X at p. We denote by A and B the points where the line ℓ meets the curve X and put $\mathcal{L}_{p}(h)$ and $\mathcal{A}_{p}(h)$ the length of the chord $A B$ of X and the area of the region bounded by the curve and the line ℓ, respectively.

Without loss of generality, we may take a coordinate system (x, y) of \mathbb{E}^{2} with the origin p, the tangent line to X at p is the x-axis. Hence X is locally the graph of a strictly convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(p)=0$.

For a sufficiently small $h>0$, we get

$$
\begin{aligned}
\mathcal{A}_{p}(h) & =\int_{I_{p}(h)}\{h-f(x)\} d x \\
\mathcal{L}_{p}(h) & =\int_{I_{p}(h)} 1 d x
\end{aligned}
$$

where we put $I_{p}(h)=\{x \in \mathbb{R} \mid f(x)<h\}$ and $\mathcal{L}_{p}(h)$ is nothing but the length of $I_{p}(h)$. Note that we also have

$$
\mathcal{A}_{p}(h)=\int_{y=0}^{h} \mathcal{L}_{p}(y) d y=\int_{y=0}^{h}\left\{\int_{I_{p}(y)} 1 d x\right\} d y
$$

from which we obtain

$$
\mathcal{A}_{p}^{\prime}(h)=\mathcal{L}_{p}(h)
$$

We have the following [3]:
Lemma 1. Suppose that X is a smooth strictly convex curve in the plane \mathbb{E}^{2}. Then for a point $p \in X$ we have

$$
\lim _{t \rightarrow 0} \frac{1}{\sqrt{t}} \mathcal{L}_{p}(t)=\frac{2 \sqrt{2}}{\sqrt{\kappa(p)}}
$$

and

$$
\lim _{t \rightarrow 0} \frac{1}{t \sqrt{t}} \mathcal{A}_{p}(t)=\frac{4 \sqrt{2}}{3 \sqrt{\kappa(p)}}
$$

where $\kappa(p)$ is the curvature of X at p.
Now, we consider the family of strictly convex level curves $X_{k}=g^{-1}(k)$ of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $k \in S_{g}$.

Suppose that the function g satisfies condition $\left(\mathcal{A}^{*}\right)$. For each $k \in S_{g}$ and $p \in X_{k}$ we denote by $\kappa(p)$ the curvature of X_{k} at p

By considering $-g$ if necessary, we may assume that I_{k} is of the form (k, a) with $k<a$, and hence we have $N=\nabla g /|\nabla g|$ on X_{k}. For a fixed point $p \in X_{k}$ and a small $t>0$, we have

$$
\mathcal{A}_{p}(t)=\mathcal{A}_{p}^{*}(k, h(t))=\phi_{k}(h(t))
$$

where $h=h(t)$ is a function with $h(0)=0$. Differentiating with respect to t gives

$$
\mathcal{L}_{p}(t)=\mathcal{A}_{p}^{\prime}(t)=\phi_{k}^{\prime}(h) h^{\prime}(t)
$$

where $\phi_{k}^{\prime}(h)$ is the derivative of ϕ_{k} with respect to h. This shows that

$$
\begin{equation*}
\frac{1}{\sqrt{t}} \mathcal{L}_{p}(t)=\frac{\phi_{k}^{\prime}(h)}{\sqrt{h}} \sqrt{\frac{h(t)}{t}} h^{\prime}(t) \tag{1}
\end{equation*}
$$

Next, we use the following lemma for the limit of $h^{\prime}(t)$ as $t \rightarrow 0$.

Lemma 2. We have

$$
\begin{equation*}
\lim _{t \rightarrow 0} h^{\prime}(t)=|\nabla g(p)| \tag{2}
\end{equation*}
$$

Proof. See the proof of Lemma 8 in [5].
It follows from (2) that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sqrt{\frac{h(t)}{t}}=\sqrt{|\nabla g(p)|} \tag{3}
\end{equation*}
$$

Together with Lemma 1, (2) and (3), (1) implies that $\lim _{h \rightarrow 0} \phi_{k}^{\prime}(h) / \sqrt{h}$ exists (say, $\gamma(k)$), which is independent of $p \in X_{k}$. Furthermore, we also obtain

$$
\kappa(p)|\nabla g(p)|^{3}=\frac{8}{\gamma(k)^{2}}
$$

which is constant on the level curve X_{k}.
Finally, we obtain the following lemma which is useful in the proof of Theorems stated in Section 1.
Lemma 3. We suppose that a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies condition $\left(\mathcal{A}^{*}\right)$. Then, for each $k \in S_{g}$, on X_{k} the function defined by

$$
\kappa(p)|\nabla g(p)|^{3}=c(k)
$$

is constant on X_{k}, where $\kappa(p)$ is the curvature of X_{k} at p.
Remark 1. Lemma 3 is a special case $(n=1)$ of Lemma 8 in [5]. For conveniences, we gave a brief proof.

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1 stated in Section 1.
For a nonzero real number $a(\neq 1)$ and a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, we investigate the level curves of the function $g=g_{a}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $g_{a}(x, y)=y^{a}-f(x)$.

Suppose that the function g satisfies condition $\left(\mathcal{A}^{*}\right)$. Then, it follows from Lemma 3 that on the level curve $X_{k}=g^{-1}(k)$ with $k \in S_{g}$ we have

$$
\begin{equation*}
\kappa(p)|\nabla g(p)|^{3}=c(k) \tag{4}
\end{equation*}
$$

where $c(k)$ is a function of $k \in S_{g}$.
Note that for $p=(x, y) \in X_{k}$ with $y^{a}=f(x)+k$ we have

$$
|\nabla g(p)|^{3}=\left\{f^{\prime}(x)^{2}+a^{2}(f(x)+k)^{\frac{2 a-2}{a}}\right\}^{\frac{3}{2}}
$$

and hence

$$
\begin{equation*}
\kappa(p)|\nabla g(p)|^{3}=\left|a^{2}(f(x)+k)^{\frac{2 a-2}{a}} f^{\prime \prime}(x)+a(1-a)(f(x)+k)^{\frac{a-2}{a}} f^{\prime}(x)^{2}\right| \tag{5}
\end{equation*}
$$

Thus, it follows from (4) and (5) that for some nonzero $c=c(k)$ with $k \in S_{g}$, the function $f(x)$ satisfies

$$
a^{2}(f(x)+k)^{\frac{2 a-2}{a}} f^{\prime \prime}(x)+a(1-a)(f(x)+k)^{\frac{a-2}{a}} f^{\prime}(x)^{2}=c(k)
$$

which can be rewritten as

$$
\begin{equation*}
f^{\prime \prime}(x)+\frac{1-a}{a}(f(x)+k)^{-1} f^{\prime}(x)^{2}=\frac{c(k)}{a^{2}}(f(x)+k)^{\frac{2-2 a}{a}} \tag{6}
\end{equation*}
$$

By differentiating (6) with respect to k, we get

$$
\begin{equation*}
f^{\prime}(x)^{2}=\frac{c^{\prime}(k)}{a(a-1)}(f(x)+k)^{\frac{2}{a}}-2 \frac{c(k)}{a^{2}}(f(x)+k)^{\frac{2-a}{a}} \tag{7}
\end{equation*}
$$

Putting $u=f(x)+k$ and $v=d u / d x=f^{\prime}(x)$, we get from (6)

$$
\begin{equation*}
\frac{d v}{d u}+\frac{1-a}{a} u^{-1} v=\frac{c(k)}{a^{2}} u^{\frac{2-2 a}{a}} v^{-1} \tag{8}
\end{equation*}
$$

which is a Bernoulli equation. By letting $w=v^{2}$, we obtain

$$
\begin{equation*}
\frac{d w}{d u}+\frac{2-2 a}{a} u^{-1} w=\frac{2 c(k)}{a^{2}} u^{\frac{2-2 a}{a}} \tag{9}
\end{equation*}
$$

Since $u^{\frac{2-2 a}{a}}$ is an integrating factor of (9), we get

$$
\begin{equation*}
\frac{d}{d u}\left(w u^{\frac{2-2 a}{a}}\right)=\frac{2 c(k)}{a^{2}} u^{\frac{4-4 a}{a}} \tag{10}
\end{equation*}
$$

Now, in order to integrate (10), we divide by some cases as follows.
Case 1. Suppose that $a=\frac{4}{3}$. Then, from (10) we have

$$
\begin{equation*}
w=\left\{\frac{9 c(k)}{8} \ln u+b(k)\right\} \sqrt{u} \tag{11}
\end{equation*}
$$

where $b=b(k)$ is a constant. Since $u=f(x)+k$ and $w=f^{\prime}(x)^{2},(7)$ and (11) show that

$$
\begin{equation*}
c(k) \ln (f(x)+k)+\frac{8}{9} b(k)=2 c^{\prime}(k)(f(x)+k)-c(k) \tag{12}
\end{equation*}
$$

By differentiating (12) with respect to x, we obtain

$$
\begin{equation*}
2 c^{\prime}(k)(f(x)+k)=c(k) \tag{13}
\end{equation*}
$$

Since $c(k)$ is nonzero, (13) leads to a contradiction.
Case 2. Suppose that $a \neq \frac{4}{3}$. Then, from (8) we have

$$
\begin{equation*}
w=a(k) u^{\alpha}+b(k) u^{\beta}, a(k)=\frac{2 c(k)}{(4-3 a) a}, \alpha=\frac{2-a}{a}, \beta=\frac{2 a-2}{a} \tag{14}
\end{equation*}
$$

where $b=b(k)$ is a constant. Since $u=f(x)+k$ and $w=f^{\prime}(x)^{2}$, it follows from (7) and (14) that

$$
\begin{equation*}
b(k)(f(x)+k)^{\frac{3 a-4}{a}}=\frac{c^{\prime}(k)}{a(a-1)}(f(x)+k)-4 c(k) \frac{a-2}{a^{2}(3 a-4)} \tag{15}
\end{equation*}
$$

By differentiating (15) with respect to x, we get

$$
\begin{equation*}
b(k)(f(x)+k)^{\frac{2 a-4}{a}}=\frac{c^{\prime}(k)}{a(a-1)} \tag{16}
\end{equation*}
$$

If $b(k) \neq 0$, then (16) shows that $a=2$. If $b(k)=0$, then it follows from (15) and (16) that $c^{\prime}(k)=0$, and hence $a=2$.

Finally, we consider the remaining case as follows.
Case 3. Suppose that $a=2$. Then, it follows from (7) that for the constant $c=c(k)$

$$
\begin{equation*}
f^{\prime}(x)^{2}=\frac{c^{\prime}(k)}{2}(f(x)+k)-\frac{c(k)}{2} \tag{17}
\end{equation*}
$$

If $c^{\prime}(k)=0$, that is, c is independent of k, then (17) shows that $f(x)$ is a linear function. Hence each level curve X_{k} of the function $g(x, y)=y^{2}-f(x)$ is a parabola. If $c^{\prime}(k) \neq 0$, then differentiating both sides of (17) with respect to x shows

$$
4 f^{\prime \prime}(x)=c^{\prime}(k)
$$

This yields that $f(x)$ is a quadratic function and $c(k)$ is a linear function in k.
Combining Cases $1-3$, we proved the following:

$$
1) \Rightarrow 2) \Rightarrow 3)
$$

Conversely, suppose that the function g is given by

$$
g(x, y)=y^{2}-\left(a x^{2}+b x+c\right)
$$

where a, b and c are constants with $a^{2}+b^{2} \neq 0$. Then, each level curve X_{k} of g is an ellipse $(a<0)$, a hyperbola $(a>0)$ or a parabola $(a=0, b \neq 0)$. It follows from Section 1 or [4], pp. 6-7 that the function g satisfies condition $\left(\mathcal{A}^{*}\right)$.

This shows that Theorem 1 holds.
Remark 2. It follows from the proof of Theorem 1 that the constant $c=c(k)$ is independent of k if $g(x, y)=$ $y^{2}-4 a x, a \neq 0$ and it is a linear function in k if $g(x, y)=y^{2}-a x^{2}, a \neq 0$.

Finally, we note the following.
Remark 3. Suppose that a smooth function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies condition $\left(\mathcal{A}^{*}\right)$ with

$$
\kappa(p)|\nabla g(p)|^{3}=c(k)
$$

where $p \in X_{k}=g^{-1}(k)$ and $k \in S_{g}$. Then for any positive constant d, there exists a composite function $G=\phi \circ g$ satisfying condition $\left(\mathcal{A}^{*}\right)$ with

$$
\begin{equation*}
\kappa(p)|\nabla G(p)|^{3}=d \tag{18}
\end{equation*}
$$

Note that the function $G=\phi \circ g$ has the same level curves as the function g.
In order to prove (18), we denote by $\phi(t)$ an indefinite integral of the function $(d / c(t))^{1 / 3}$. Then for $p \in G^{-1}(k)=g^{-1}\left(\phi^{-1}(k)\right)$ we get

$$
|\nabla G(p)|=\phi^{\prime}(g(p))|\nabla g(p)| .
$$

Hence, on each level curve $G^{-1}(k)=g^{-1}\left(\phi^{-1}(k)\right)$ we obtain

$$
\kappa(p)|\nabla G(p)|^{3}=c\left(\phi^{-1}(k)\right) \phi^{\prime}\left(\phi^{-1}(k)\right)^{3}=d .
$$

4. Proof of Theorem 2

In this section, we give a proof of Theorem 2.
We consider a function g defined by $g(x, y)=f(x)+j(y)$ for some functions $f(x)$ and $j(y)$. Then at the point $p \in X_{k}=g^{-1}(k)$ we have

$$
\begin{aligned}
|\nabla g(p)|^{3} & =\left\{f^{\prime}(x)^{2}+j^{\prime}(y)^{2}\right\}^{\frac{3}{2}} \\
\kappa(p)|\nabla g(p)|^{3} & =\left|f^{\prime \prime}(x) j^{\prime}(y)^{2}+f^{\prime}(x)^{2} j^{\prime \prime}(y)\right| .
\end{aligned}
$$

Suppose that the function g satisfies condition $\left(\mathcal{A}^{*}\right)$. Then, it follows from Lemma 3 that on the level curve $X_{k}: f(x)+j(y)=k$ we get for some nonzero constant $c=c(k)$

$$
\begin{equation*}
f^{\prime \prime}(x) j^{\prime}(y)^{2}+f^{\prime}(x)^{2} j^{\prime \prime}(y)=c(k) \tag{19}
\end{equation*}
$$

which shows that the set $V=\left\{(x, y) \in X_{k} \mid f^{\prime}(x)=0 \quad\right.$ or $\left.\quad j^{\prime}(y)=0\right\}$ has no interior points in the level curve X_{k}. Hence by continuity, without loss of generality we may assume that V is empty.

First, we consider y as a function of x and k. Then, we rewrite (19) as follows

$$
\begin{equation*}
f^{\prime \prime}(x)+f^{\prime}(x)^{2} \frac{j^{\prime \prime}(y)}{j^{\prime}(y)^{2}}=\frac{c(k)}{j^{\prime}(y)^{2}}, \quad j(y)+f(x)=k \tag{20}
\end{equation*}
$$

Putting $u=-f(x)+k$ and $v=d u / d x=-f^{\prime}(x)$, we get

$$
\frac{d v}{d u}-\frac{j^{\prime \prime}(y)}{j^{\prime}(y)^{2}} v=-\frac{c(k)}{j^{\prime}(y)^{2}} v^{-1}
$$

which is a Bernoulli equation. By letting $w=v^{2}=f^{\prime}(x)^{2}$, we obtain

$$
\begin{equation*}
\frac{d w}{d u}-\frac{2 j^{\prime \prime}(y)}{j^{\prime}(y)^{2}} w=-\frac{2 c(k)}{j^{\prime}(y)^{2}} \tag{21}
\end{equation*}
$$

Since $u=j(y)$, we see that $j^{\prime}(y)^{-2}$ is an integrating factor of (21). Hence we get

$$
\frac{d}{d u}\left(w j^{\prime}(y)^{-2}\right)=-2 c(k) j^{\prime}(y)^{-4}
$$

Thus we obtain

$$
\begin{equation*}
f^{\prime}(x)^{2}=w=-2 c(k) j^{\prime}(y)^{2}\{\phi(y)+d(k)\} \tag{22}
\end{equation*}
$$

where $\phi(y)$ is a function of y satisfying $\phi^{\prime}(y)=j^{\prime}(y)^{-3}$ and $d=d(k)$ is a constant.
On the other hand, by differentiating (20) with respect to k, we get

$$
\begin{equation*}
f^{\prime}(x)^{2}\left\{j^{\prime}(y) j^{\prime \prime \prime}(y)-2 j^{\prime \prime}(y)^{2}\right\}=c^{\prime}(k) j^{\prime}(y)^{2}-2 c(k) j^{\prime \prime}(y) \tag{23}
\end{equation*}
$$

It follows from (22) and (23) that

$$
\begin{equation*}
a(k) j^{\prime}(y)^{2}-j^{\prime \prime}(y)=j^{\prime}(y)^{2}\left\{2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)\right\}\{\phi(y)+d(k)\} \tag{24}
\end{equation*}
$$

where we use $a(k)=\frac{c^{\prime}(k)}{2 c(k)}$. Or equivalently, we get

$$
\begin{equation*}
\phi(y)+d(k)=\frac{a(k) j^{\prime}(y)^{2}-j^{\prime \prime}(y)}{j^{\prime}(y)^{2}\left\{2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)\right\}^{\prime}} \tag{25}
\end{equation*}
$$

where the denominator does not vanish. Even though $j(y)$ was assumed to be $C^{(3)}$, (24) implies that the function $\left\{2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)\right\}$ is differentiable. By differentiating (25) with respect to x, it is straightforward to show that

$$
\begin{equation*}
\left\{a(k) j^{\prime}(y)^{2}-j^{\prime \prime}(y)\right\} \frac{d}{d y}\left\{2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)\right\}=0 \tag{26}
\end{equation*}
$$

Together with (24), (26) yields that $2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)$ is constant. Hence, for some constant α we have

$$
\begin{equation*}
2 j^{\prime \prime}(y)^{2}-j^{\prime}(y) j^{\prime \prime \prime}(y)=\alpha \tag{27}
\end{equation*}
$$

Next, interchanging the role of x and y in the above discussions, we consider x as a function of y and k. Then, (22) gives

$$
\begin{equation*}
j^{\prime}(y)^{2}=-2 c(k) f^{\prime}(x)^{2}\{\psi(x)+e(k)\} \tag{28}
\end{equation*}
$$

where $\psi(x)$ is a function of x satisfying $\psi^{\prime}(x)=f^{\prime}(x)^{-3}$ and $e=e(k)$ is a constant. In the same argument as the above, we obtain the corresponding equations from (23)-(27). For example, we get from (26)

$$
\begin{equation*}
\left\{a(k) f^{\prime}(x)^{2}-f^{\prime \prime}(x)\right\} \frac{d}{d x}\left\{2 f^{\prime \prime}(x)^{2}-f^{\prime}(x) f^{\prime \prime \prime}(x)\right\}=0 \tag{29}
\end{equation*}
$$

Thus, for some constant β, we also get

$$
\begin{equation*}
2 f^{\prime \prime}(x)^{2}-f^{\prime}(x) f^{\prime \prime \prime}(x)=\beta \tag{30}
\end{equation*}
$$

By integrating (24) and (30) respectively, we obtain for some constants γ and δ

$$
\begin{equation*}
2 j^{\prime \prime}(y)^{2}=\gamma j^{\prime}(y)^{4}+\alpha \tag{31}
\end{equation*}
$$

and its corresponding equation

$$
\begin{equation*}
2 f^{\prime \prime}(x)^{2}=\delta f^{\prime}(x)^{4}+\beta \tag{32}
\end{equation*}
$$

Differentiating (19) with respect to x, we have

$$
\begin{equation*}
\frac{1}{j^{\prime}(y)}\left\{f^{\prime \prime \prime}(x) j^{\prime}(y)^{3}-f^{\prime}(x)^{3} j^{\prime \prime \prime}(y)\right\}=\frac{d}{d x}\left\{f^{\prime \prime}(x) j^{\prime}(y)^{2}+f^{\prime}(x)^{2} j^{\prime \prime}(y)\right\}=0 \tag{33}
\end{equation*}
$$

Together with (31) and (32), this shows that $j(y)$ is quadratic in y if and only if $f(x)$ is quadratic in x.
Hereafter, we assume that neither $f(x)$ nor $j(y)$ are quadratic. Then, combining (27), (30), (31) and (32), it follows from (33) that

$$
(\gamma-\delta) f^{\prime}(x)^{4} j^{\prime}(y)^{4}=0
$$

which shows that $\gamma=\delta$. Hence, for a nonzero constant γ the functions $f(x)$ and $j(y)$ satisfy, respectively

$$
\begin{equation*}
2 f^{\prime \prime}(x)^{2}=\gamma f^{\prime}(x)^{4}+\beta \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
2 j^{\prime \prime}(y)^{2}=\gamma j^{\prime}(y)^{4}+\alpha \tag{35}
\end{equation*}
$$

Differentiating (34) and (35) with respect to x and y, respectively, implies

$$
\begin{equation*}
f^{\prime \prime \prime}(x)=\gamma f^{\prime}(x)^{3}, \quad j^{\prime \prime \prime}(y)=\gamma j^{\prime}(y)^{3}, \tag{36}
\end{equation*}
$$

where γ is a nonzero constant.
Conversely, we prove the following for later use in Section 6.
Lemma 4. Suppose that the functions $f(x)$ and $j(y)$ satisfy (34) and (35) for some constants α and β, respectively. Then on each level curve X_{k} with $k \in S_{g}$ of the function $g(x, y)=f(x)+j(y), \kappa(p)|\nabla g(p)|^{3}$ is constant.

Proof. Using (36), it follows from the first equality of (33) that on the level curve X_{k} of the function g, we have

$$
\frac{d}{d x}\left\{f^{\prime \prime}(x) j^{\prime}(y)^{2}+f^{\prime}(x)^{2} j^{\prime \prime}(y)\right\}=0
$$

This completes the proof of Lemma 4.
Finally, we proceed on our way. We divide by two cases as follows.

Case 1. Suppose that $j(y)$ is a polynomial of degree $\operatorname{deg} h=n \geq 3$. Then, by counting the degree of both sides of the second equation in (36) we see that the constant γ must vanish. This contradiction shows that the polynomial $j(y)$ is quadratic.
Case 2. Suppose that $j(y)$ is a rational function given by

$$
j(y)=\frac{s(y)}{q(y)},
$$

where q and s are relatively prime polynomials of degree $\operatorname{deg} q=m(\geq 1)$ and $\operatorname{deg} s=n(\geq 0)$, respectively.
Subcase 2-1. Suppose that $m \geq n$. Then we get from (35) that

$$
\begin{equation*}
\alpha q(y)^{8}=\gamma A(y)^{4}-2 B(y)^{2} \tag{37}
\end{equation*}
$$

where we put

$$
A(y)=s^{\prime}(y) q(y)-s(y) q^{\prime}(y), B(y)=A^{\prime}(y) q(y)^{2}-2 q(y) q^{\prime}(y) A(y)
$$

Since the degree of the right hand side of (37) is less than or equal to $8 m-4$, (37) shows that α must vanish. By integrating (30^{\prime}) with $\alpha=0$, we obtain for some constant a and b

$$
j(y)=\frac{1}{a} \ln |a y+b|,
$$

which is a contradiction.
Subcase 2-2. Suppose that $m \leq n-2$. We put

$$
j(y)=\frac{s(y)}{q(y)}=r(y)+\frac{t(y)}{q(y)}
$$

where $\operatorname{deg} r=a=n-m \geq 2$ and $\operatorname{deg} t \leq m-1$. Then we get from (30^{\prime}) that

$$
\begin{equation*}
\gamma\left\{r^{\prime}(y) q(y)^{2}+A(y)\right\}^{4}=2\left\{r^{\prime \prime}(y) q(y)^{4}+B(y)\right\}^{2}-\alpha q(y)^{8} \tag{38}
\end{equation*}
$$

where we put

$$
A(y)=t^{\prime}(y) q(y)-t(y) q^{\prime}(y), B(y)=A^{\prime}(y) q(y)^{2}-2 q(y) q^{\prime}(y) A(y)
$$

Since the degree of the left hand side of (38) is $8 m+4 a-4$ and the degree of the right hand side of (38) is less than or equal to $8 m+2 a-4$, we see that γ must vanish, which is a contradiction. Hence this case cannot occur.

Subcase 2-3. Suppose that $m=n-1$. Then we have $r(y)=r_{0} y+r_{1}$ with $r_{0} \neq 0$,

$$
\begin{aligned}
& j^{\prime}(y)=r_{0}+\frac{A(y)}{q(y)^{2}}, \quad A(y)=t^{\prime}(y) q(y)-t(y) q^{\prime}(y) \\
& j^{\prime \prime}(y)=\frac{\bar{B}(y)}{q(y)^{3}}, \quad \bar{B}(y)=A^{\prime}(y) q(y)-2 A(y) q^{\prime}(y)
\end{aligned}
$$

and

$$
j^{\prime \prime \prime}(y)=\frac{C(y)}{q(y)^{6}}, \quad C(y)=\bar{B}^{\prime}(y) q(y)^{3}-3 \bar{B}(y) q(y)^{2} q^{\prime}(y)
$$

It follows from the second equation of (36) that

$$
\gamma\left\{r_{0} q(y)^{2}+A(y)\right\}^{3}=C(y)
$$

Note that the left hand side is of degree $6 m$, but the right hand side is of degree deg $C \leq 6 m-4$. Hence, the constant γ must vanish, which is a contradiction. Thus, this case cannot occur.

Combining Cases 1 and 2 , we see that the function $j(y)$ is a quadratic polynomial. Therefore, Theorem 1 completes the proof of Theorem 2.

5. Proof of Theorem 3

In this section, we give a proof of Theorem 3.
Consider a smooth homogeneous function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree d. Suppose that the function g satisfies $\left(\mathcal{A}^{*}\right)$. Then, it follows from Lemma 3 that on the level curve $X_{k}=g^{-1}(k)$ with $k \in S_{g}$ we have

$$
\begin{equation*}
\kappa(p)|\nabla g(p)|^{3}=c(k) \tag{39}
\end{equation*}
$$

where $c(k)$ is a nonzero function of $k \in S_{g}$.
We recall the support function $h(p)$ on the level curve X_{k}, which is defined by

$$
h(p)=\langle p, N(p)\rangle
$$

where $N(p)$ denotes the unit normal to X_{k}. Note that the unit normal $N(p)$ to X_{k} is given by

$$
N(p)=\frac{\nabla g(p)}{|\nabla g(p)|}
$$

Since the function g is homogeneous of degree d, by the Euler identity, on X_{k} we obtain

$$
\begin{equation*}
h(p)=\frac{\langle p, \nabla g(p)\rangle}{|\nabla g(p)|}=\frac{d k}{|\nabla g(p)|} \tag{40}
\end{equation*}
$$

Thus, it follows from (39) and (40) that X_{k} satisfies

$$
\kappa(p)=\frac{c(k)}{(d k)^{3}} h(p)^{3}
$$

Now, we use the following characterization theorem [14].
Proposition 3. Suppose that X is a smooth curve in the plane \mathbb{E}^{2} of which curvature κ does not vanish identically. Then X satisfies for some constant c

$$
\kappa(p)=\operatorname{ch}(p)^{3}
$$

if and only if X is a connected open arc of either a hyperbola or an ellipse centered at the origin.
The above proposition shows that for each $k \in S_{g}$, the level curve X_{k} is either a hyperbola centered at the origin or an ellipse centered at the origin. Without loss of generality, we may assume that $1 \in S_{g}$. Then, the level curve $X_{1}=g^{-1}(1)$ is given by

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}=1 \tag{41}
\end{equation*}
$$

where a, b and h satisfy $a b-h^{2} \neq 0$.
We claim that

$$
\begin{equation*}
g(x, y)=\left(a x^{2}+2 h x y+b y^{2}\right)^{d / 2} \tag{42}
\end{equation*}
$$

where a, b and h satisfy $a b-h^{2} \neq 0$.
In order to prove (42), for a fixed point $p=(x, y) \in \mathbb{R}^{2}$ we let $g(x, y)=k$, that is, $p=(x, y) \in X_{k}$. Then we have for $t=k^{-1 / d}$

$$
g(t x, t y)=1
$$

Hence we get from (41)

$$
a x^{2}+2 h x y+b y^{2}=t^{-2}=k^{2 / d}
$$

This shows that

$$
g(x, y)=k=\left(a x^{2}+2 h x y+b y^{2}\right)^{d / 2}
$$

which proves the above mentioned claim. Therefore, the proof of Theorem 3 was completed.

6. Proof of Proposition 2

In this section, we prove Proposition 2.
We denote by $\psi(t)$ the function defined by

$$
\psi^{\prime}(t)=\frac{1}{\sqrt{1+t^{4}}}, \quad \psi(0)=0
$$

and we put

$$
a=\int_{0}^{\infty}\left(t^{4}+1\right)^{-1 / 2} d t
$$

Then, both of $\psi:(-\infty, \infty) \rightarrow(-a, a)$ and $\psi^{-1}:(-a, a) \rightarrow(-\infty, \infty)$ are strictly increasing odd functions.

Now, we consider the function $g(x, y)=f(x)+j(y)$ defined on the domain $U=(0, a) \times(0, \infty) \subset \mathbb{R}^{2}$ with $j(y)=\ln y$ and

$$
f(x)=\ln \psi^{-1}(x)
$$

Then we have $S_{g}=R_{g}=\mathbb{R}$ and $I_{k}=(k, \infty)$. Furthermore, it is straightforward to show that the functions $f(x)$ and $j(y)$ satisfies (34) and (30') respectively, where we put $\gamma=2, \alpha=0$ and $\beta=-8$. Thus, Lemma 4 implies that on each level curve X_{k} of the function $g(x, y)=f(x)+j(y), \kappa(p)|\nabla g(p)|^{3}$ is constant.

However, we show that the function g cannot satisfy condition $\left(\mathcal{A}^{*}\right)$ as follows. For each $k \in S_{g}=$ \mathbb{R}, the level curve $X_{k}=g^{-1}(k)$ of g are given by

$$
y \psi^{-1}(x)=e^{k}, \quad x, y>0
$$

Note that X_{k} is the graph of the strictly convex function given by

$$
y=\frac{e^{k}}{\psi^{-1}(x)}, \quad x \in(0, a)
$$

which satisfies

$$
\frac{d y}{d x}<0, \quad \frac{d^{2} y}{d x^{2}}>0
$$

and

$$
\lim _{x \rightarrow 0} y=\infty, \quad \lim _{x \rightarrow 0} \frac{d y}{d x}=-\infty, \quad \lim _{x \rightarrow a} y=0, \quad \lim _{x \rightarrow a} \frac{d y}{d x}=-e^{k}
$$

Hence, each level curve X_{k} approaches the point $(a, 0)$ and the y-axis is an asymptote of X_{k}. For a fixed point v of X_{0} and a negative number $h<0$, let $p \in X_{h}$ be the point where the tangent t to X_{h} is parallel to the tangent ℓ to X_{0} at v. We denote by $A(h)$ and $B(h)$ the points where the tangent ℓ to X_{0} at v intersects the level curve X_{h}.

Suppose that the function g satisfies condition $\left(\mathcal{A}^{*}\right)$. Then, the area of the region enclosed by X_{h} and the chord $A(h) B(h)$ of X_{h} is $\mathcal{A}_{p}^{*}(h,-h)=\phi_{h}(-h)$, which is independent of v. We also denote by A and B the points where the tangent ℓ to X_{0} at v meets the coordinate axes, respectively. Then, $A(h)$ and $B(h)$ tend to A and B, respectively, as h tends to $-\infty$. Furthermore, as h tends to $-\infty, \phi_{h}(-h)$ goes to the area of the triangle $O A B$, where O denotes the origin. Thus, the area of the triangle $O A B$ is independent of the point $v \in X_{0}$. This contradicts the following lemma, which might be well known. Therefore the function $g(x, y)=f(x)+j(y)$ does not satisfy condition $\left(\mathcal{A}^{*}\right)$. This gives a proof of Proposition 2.

Lemma 5. Suppose that X denotes the graph of a strictly convex function $f: I \rightarrow \mathbb{R}$ defined on an open interval I. Then X satisfies the following condition (A) if and only if X is a part of the hyperbola given by $x y=c$ for some nonzero c.
(A): For a point $v \in X$, we put A and B at the points where the tangent ℓ to X at v intersects coordinate axes, respectively. Then the area of the triangle $O A B$ is independent of the point $v \in X$.

Proof. Suppose that X satisfies condition (A). Then, $f^{\prime}(x)$ vanishes nowhere on the interval I. For a point $v=(x, f(x))$, the area $A(x)$ of the triangle $O A B$ is given by

$$
\begin{equation*}
A(x)=\frac{-1}{2 f^{\prime}(x)}\left\{x f^{\prime}(x)-f(x)\right\}^{2} \tag{43}
\end{equation*}
$$

Differentiating (43) with respect to x gives

$$
\begin{equation*}
\frac{-1}{2 f^{\prime}(x)^{2}}\left\{x^{2} f^{\prime}(x)^{2}-f(x)^{2}\right\} f^{\prime \prime}(x)=0 \tag{44}
\end{equation*}
$$

By assumption, $f^{\prime \prime}(x)>0$. Hence, we get from (44)

$$
x^{2} f^{\prime}(x)^{2}-f(x)^{2}=0
$$

which shows that X is a hyperbola given by $x y=c$ for some nonzero c.
It is trivial to prove the converse.
Remark 4. For some higher dimensional analogues of Lemma 5, see [19].

Author Contributions: D.-S.K. and Y.H.K. set up the problem and computed the details and Y.-T.J. checked and polished the draft.

Funding: The first named author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B05050223). The second named author was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) grant number 2016R1A2B1006974.
Acknowledgments: We would like to thank the referee for the careful review and the valuable comments to improve the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nomizu, K.; Sasaki, T. Affine Differential Geometry: Geometry of Affine Immersions. Cambridge Tracts in Mathematics, 111; Cambridge University Press: Cambridge, UK, 1994.
2. Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, USA, 1976.
3. Kim, D.-S.; Kim, Y.H. On the Archimedean characterization of parabolas. Bull. Korean Math. Soc. 2013, 50, 2103-2114. [CrossRef]
4. Stein, S. Archimedes: What Did He Do Besides Cry Eureka? Mathematical Association of America: Washington, DC, USA, 1999.
5. Kim, D.-S. Ellipsoids and elliptic hyperboloids in the Euclidean space \mathbb{E}^{n+1}. Linear Algebra Appl. 2015, 471, 28-45. [CrossRef]
6. Bényi, Á.; Szeptycki, P.; Van Vleck, F. Archimedean Properties of Parabolas. Am. Math. Mon. 2000, 107, 945-949.
7. Bényi, Á.; Szeptycki, P.; Van Vleck, F. A generalized Archimedean property. Real Anal. Exch. 2003, 29, 881-889. [CrossRef]
8. Kim, D.-S.; Kang, S.H. A characterization of conic sections. Honam Math. J. 2011, 33, 335-340. [CrossRef]
9. Kim, D.-S.; Kim, Y.H.; Park, J.H. Some characterizations of parabolas. Kyungpook Math. J. 2013, 53, 99-104. [CrossRef]
10. Kim, D.-S.; Shim, K.-C. Area of triangles associated with a curve. Bull. Korean Math. Soc. 2014, 51, 901-909. [CrossRef]
11. Krawczyk, J. On areas associated with a curve. Zesz. Nauk. Uniw. Opol. Mat. 1995, 29, 97-101.
12. Richmond, B.; Richmond, T. How to recognize a parabola. Am. Math. Mon. 2009, 116, 910-922. [CrossRef]
13. Yu, Y.; Liu, H. A characterization of parabola. Bull. Korean Math. Soc. 2008, 45, 631-634. [CrossRef]
14. Kim, D.-S.; Kim, Y.H. A characterization of ellipses. Am. Math. Mon. 2007, 114, 66-70. [CrossRef]
15. Kim, D.-S.; Kim, Y.H. New characterizations of spheres, cylinders and W-curves. Linear Algebra Appl. 2010, 432, 3002-3006. [CrossRef]
16. Kim, D.-S.; Kim, Y.H. Some characterizations of spheres and elliptic paraboloids. Linear Algebra Appl. 2012, 437, 113-120. [CrossRef]
17. Kim, D.-S.; Kim, Y.H. Some characterizations of spheres and elliptic paraboloids II. Linear Algebra Appl. 2013, 438, 1356-1364. [CrossRef]
18. Kim, D.-S.; Kim, Y.H. A characterization of concentric hyperspheres in \mathbb{R}^{n}. Bull. Korean Math. Soc. 2014, 51, 531-538. [CrossRef]
19. Kim, D.-S.; Song, B. A characterization of elliptic hyperboloids. Honam Math. J. 2013, 35, 37-49. [CrossRef]
20. Kim, D.-S.; Kim, Y.H.; Yoon, D.W. On standard imbeddings of hyperbolic spaces in the Minkowski space. C. R. Math. Acad. Sci. Paris 2014, 352, 1033-1038. [CrossRef]
