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Abstract: Linguistic neutrosophic numbers (LNNs) include single-value neutrosophic numbers and
linguistic variable numbers, which have been proposed by Fang and Ye. In this paper, we define
the linguistic neutrosophic number Einstein sum, linguistic neutrosophic number Einstein product,
and linguistic neutrosophic number Einstein exponentiation operations based on the Einstein operation.
Then, we analyze some of the relationships between these operations. For LNN aggregation problems,
we put forward two kinds of LNN aggregation operators, one is the LNN Einstein weighted average
operator and the other is the LNN Einstein geometry (LNNEWG) operator. Then we present a
method for solving decision-making problems based on LNNEWA and LNNEWG operators in the
linguistic neutrosophic environment. Finally, we apply an example to verify the feasibility of these
two methods.

Keywords: multiple attribute group decision making (MAGDM); Linguistic neutrosophic;
LNN Einstein weighted-average operator; LNN Einstein weighted-geometry (LNNEWG) operator

1. Introduction

Smarandache [1] proposed the neutrosophic set (NS) in 1998. Compared with the intuitionistic
fuzzy sets (IFSs), the NS increases the uncertainty measurement, from which decision makers can use
the truth, uncertainty and falsity degrees to describe evaluation, respectively. In the NS, the degree of
uncertainty is quantified, and these three degrees are completely independent of each other, so, the NS
is a generalization set with more capacity to express and deal with the fuzzy data. At present, the study
of NS theory has been a part of research that mainly includes the research of the basic theory of NS,
the fuzzy decision of NS, and the extension of NS, etc. [2-14]. Recently, Fang and Ye [15] presented
the linguistic neutrosophic number (LNN). Soon afterwards, many research topics about LNN were
proposed [16-18].

Information aggregation operators have become an important research topic and obtained a
wide range of research results. Yager [19] put forward the ordered weighted average (OWA) operator
considering the data sorting position. Xu [20] presented the arithmetic aggregation (AA) of IFS.
Xu and Yager [21] presented the geometry aggregation (GA) operator of IFS. Zhao [22] proposed
generalized aggregation operators based on IFS and proved that AA and GA were special cases
of generalized aggregation operator. The operators mentioned above are established based on the
algebraic sum and the algebraic product of number sets. They are respectively referred to as a special
case of Archimedes t-conorm and t-norm to establish union or intersection operation of the number set.
The union and intersection of Einstein operation is a kind of Archimedes t-conorm and t-norm with
good smooth characteristics [23]. Wang and Liu [24] built some IF Einstein aggregation operators and
proved that the Einstein aggregation operator has better smoothness than the arithmetic aggregation
operator. Zhao and Wei [25] put forward the IF Einstein hybrid-average (IFEHA) operator and IF
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Einstein hybrid-geometry (IFEHG) operator. Further, Guo etc. [26] applied the Einstein operation to
a hesitate fuzzy set. Lihua Yang etc. [27] put forward novel power aggregation operators based on
Einstein operations for interval neutrosophic linguistic sets. However, neutrosophic linguistic sets are
different from linguistic neutrosophic sets. The former still use two values to describe the evaluation
value, while the latter can use a pure language value to describe the evaluation value. As far as we know,
this is the first work on Einstein aggregation operators for LNN. It must be noticed that the aggregation
operators in References [15-18] are almost based on the most commonly used algebraic product and
algebraic sum of LNNs for carrying the combination process, which is not the only operation law that
can be chosen to model the intersection and union on LNNs. Thus, we establish the operation rules of
LNN based on Einstein operation and put forward the LNN Einstein weighted-average (LNNEWA)
operator and LNN Einstein weighted-geometry (LNNEWG) operator. These operators are finally
utilized to solve some relevant problems.

The other organizations: in Section 2, concepts of LNN and Einstein are described, operational
laws of LNNs based on Einstein operation are defined, and their performance is analyzed. In Section 3,
LNNEWA and LNNEWG operators are proposed. In Section 4, multiple attribute group decision
making (MAGDM) methods are built based on LNNEWA and LNNEWG operators. In Section 5, an
instance is given. In Section 6, conclusions and future research are given.

2. Basic Theories

2.1. LNN and Its Operational Laws

Definition 1. [15] Set a finite language set ¥ = {z,bt ] }, where ; is a linguistic variable, k +1 is the
cardinality of Y. Then, we define u = (g, Yy, Ps), in which g, Py, s € ¥ and B,y,6 € [0, k], g, Y5 and 1y
expresse truth, falsity and indeterminacy degree, respectively, we call u an LNN.

Definition 2. [15] Set three LNNs u = (g, ¥y, ¥s), ur = (g, ¥y, ¥s,) and ua = (p,, ¥y, ¥s,)
in'Y and A > 0, then, the operational rules are as following:

dup; = <11)[51,1|)y1,1l)51>®<¢32,¢y2,1b52> = <¢Bl+ﬁ2_@lw%1¢$>; (1)

up R®upy = <1b[31/11)‘y111b51>®<ll)[52/1-p‘y2/1b52> = <¢%r¢y +vs _]7”,11)5 45— 8152> (2)
A= Mg, Py bs,) = <‘ab K-t /\/lpk(y)ﬂ 1/1 K(2) A 3

= W) = W b @)

Definition 3. [15] Set an LNN u = (g, Py, Ps) in Y, we define C(u) as the expectation and n(u) as
the accuracy:
¢(u)= (2k + B—y—38)/3k @)

n(u) = (B-0)/k (6)

Definition 4. [15]: Set two LNNs uy = (g, Py, Yo, ) and uz = (Pp,, Py, s, ) in ¥, then
If C(uq) > C(up), then uy > up;
If C(uq) = C(up) then
If n(uy) > n(uz), then uy > uy;
If n(u1) = n(uy), then uy ~ uy.
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2.2. Einstein Operation

Definition 5. [28,29] For any two real Numbers a, be [0,1], Einstein @, is an Archimedes t-conorms,
Einstein ®, is an Archimedes t-norms, then

a+b ab
o A&b = T T ATy

@)

2.3. Einstein Operation Under the Linguistic Neutrosophic Number

Definition 6. Set u = (g, Py, Ys), ur = (Pp,, Yy, Yo, ) and uy = (YPp,, Py, , s, ) as three LNNsin ¥, A > 0,
the operation of Einstein ®, and Einstein ®, under the linguistic neutrosophic number are defined as follows:

Uy @, Up= <¢k2<ﬁl+ﬁz) P ky172 P kbd16y ) ®)
26162 K24 (k=y1)(k=yp) K2+ (k=57)(k=07)
m =Y sy PRy VR 40 ©)
K2-+(k=p1) (k=B2) K2+7172 k24618,
A= waphupt ¥y 2A Py )i (10)
() +pt | @epTh T @keotrot
A_
= <¢k* AN AR /I#k* er0) o )+ (11)

@-pripr k)P () (k+3) X4 (k=0)

Theorem 1. Set u (= Yp, Uy, Yo), u1 = (Y, Pyy, Po,) and u, = Wy, Pyy, s, ) s three LNNsin ¥,A >0,
then, the operation of Einstein &, and Einstein ®, have the following performance:

Uy ®e Up = Up e Uy; (12)
U1 ®e Up = U B U7; (13)
/\(ul ©De 1/[2) = Auq &, Auy; (14)
(11 ® up)" = ur’ @ 1" (15)

Proof. Performance (1) and (2) are easy to be obtained, so we omit it; Now we prove the performance (3):
According to Definition 6, we can get

O w1 @ty =Wpp) ¥ bn Y k%

2apipy  Roy)(koy)  K(k=dp) (k=52)

@ A(ug @ up)

= (B0 P py) ry 2wy trira ¥ PR S )
k246162 K2+B16o ke K2+ (k=y1) (k=y2) & K2+ (k=07 ) (k=)
A A A A
RBy+2)."  K2(B4py) N e ky17p ky17p _ kb18y ko156
(it kzilﬂlﬁ; i % ) R Ay Ty L Ay Ty P ooy iy T G0y (t)
=W s g g oy W 20172 24 20100)" ”
(e+p) N (k) + (k=) A (k=) (=) A @k=y2) M)+ (r172)" ((2k=01)" 2k=09)1) +(3182)
©) /\u] = <ll)k <k+,31)A*(k*ﬁ1)/\ ,wk* 217 /17b . 2517 >,
*
(k+87) M+ (k=) (@k=y1) 49717 (2k=57) 61
® Auz = <‘Pk* (st -p)t ¥ 2t W gk )

(k)™ + (k=) (@k=yp) M 727 (2k=-07) 07
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® A @, Aup

=y 2 s =gt <k+ﬁ2> ~lpp) 24 (ke 2}1 O L 2 Kb ZM o ZM )
(BN +(k=p)t  (ktpp)t+ (k=) @r=yptir A <2k—>fz>"+rz" @k=dp) ot (2k=0p) +02A
) (k+ﬁ1) ~U=p) (k) (k)" 2o 1" i 2»2 2 ke ZDN _ 262
e (kB (k=) (et )+ (k- z)‘)) ot (2“*)’1)’\+‘/1") ( (@k-yp) 72t ) (et (2k=01) +<‘1A) e (2k=09)1 0y
_<‘P (k)R i)t (k*ﬁl)’\(k*ﬁz)’\’ll}k 2172 24 207y 09)" )
(e+p1) () + (k=pp) M (k=p) ((2k=y) k=) M)+ (17201 ((2K-07) (k=0 )+(510p)*

So, we can get A(u; @ up) = Auj @e AUy.
Now, we prove the performance (4):

A _
Qu” = @}k* 0 v 4 (k) ==yt 7 Y

@) A (k) )Y

A
@ uz :Wk* R e T e

k
@) iR by M+ ko)

(k7 ) = (k=7 )

ke
(k-89 ) 1+ (k=611

(kg ()

K
(k+09) M+ (k=5)

Vo et 28 ’
k=g 411 (2k—pp) +ﬁz"
A
2t (ke —2B1 k—(k 26, 2
=t (2k=py )M +p17 T p2)+p27
ll’;@((z@("*?/) o) )
®ut @ uyt = ¢ ety oyt @k=pp) ot )

@ B o)ty ot
(ky )+ (k=y)A 7 (k=) 27

170 (k+o 5.\ s \A
2 ‘1) ~(k=5)* L (k+0p)" ~ (k=)
s ooyt ™ o Tr Gt
K2 (ke (k+e>1) —(k ol) -y (k+62)/\_(k—62)/\ :
(k+-07) M (k=07)N T (k+6p) M+ (k=)
- Wk* 218" ’ '#k* (et ) etyp) =y Gemyp) 7 ﬁbk* oy M ) ~(h-y M) )
((2k=p1) N (2k—p2) M)+ (812" (k1) etyg) M+ (k=g ) (k=p) (k1) (k) A+ (k=01 ) (k=0)

Qui@uz =W _ w1py V20190 VR0 109

k2+(k’/51>(k’ﬁ2) k2+)/1y2 k2+6102
A
® (8 uw)" = YL T W ¥ @Bt o) oy (B0 _k2<ﬁ1+éz>)”
. “2+(k*/3% ) (k=p2) " K2+y170 K417 e K2+610, K2+6107

Wk Ky ) Riptr) Y ROy R(6146) K206 455)

R L L el B =7l B G rror el e G vorogl

= <¢k (/nﬁz) P ey ety A koyp k)t ‘l’k (k+ol)‘(k+bz)A—(k—01)}‘(k—bz)’\ %
(2k=p1)" (2Kk=pp) ")+ (B182) (ey) N (k)M (k1) (k=) (k+07)} (ke09) (k=01 )4 (k=09

So, we can get (11 @, uz)" = u1 @, ux*. O
3. Einstein Aggregation Operators

3.1. LNNEWA Operator
Definition 7. Set a LNN u; = (g, by, s,y in'¥, fori=1,2, ..., z, we define the LNNEWA operator:

LNNEWA(uy,up, ... u;) = egg €il;, (16)
i=1

with the relative weight vector € = (€1, €3, .. .,ez)T, ,ei=1lande; €[0,1].

Theorem 2. Set a collection u; = (g, ¥y, Ys;) in ¥, fori =1,2, ... z, then according to the LNNEWA
aggregation operator, we can get the following result:

z

LNNEWA(uq,up, ...uz;) = D €1
_ = (17)
<1P TR (k) Gi-TI7_, (k fi)ei"7b 2012 ¥ P 2007, )

- o < -
sz 1( +Bi )elﬂ_[z (k=p;) i b Iy (2= 7/> I 7i [ @k )EHHZ o
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. . . T
with the relative weight vector € = (€1,€y,...,€;)" , Yi € = lande; € [0,1].
Proof.
@ €; ul - <17b €i_ (k—ﬁ]-)ei /17b . Zyiei ,I]Dk* 261-61' >r
(k+ﬁi)€i +(k=p;)<i (2k-y;) iy (2k—6;)%i 45,
2
@ z=2,LNNEWA(u1,up) = &, €
i=1
=@ 2 (e BB ()2 (k)2 Y (o —21° p 292 Y " M w2 )
Ut BD)T (k=)L (k) 2+ (k)2 @k )61 i (2k—12) 24,2 B o ey g
1 1 1 1 1
2 (e KB = (k=B )L | (k) 2~ (k=pp)2 2 2,° (K 22 2 (e 2011 26,2
Ko+ (e (k+B1)L+(k—=p1)L ( (k+ﬁ2)€2+(k—ﬂ2)52) LGt (2k—y7)°1 +y1€1 k=( (2k=y)2 +7,2 7)) Ko+ (i (2k=01)°1 +611 ) k= (ke (2k— 62)€2+§2€2 )
=Y, B )21 o2 27117, oy 25,16, )
(k+ﬁ1)€1 (kt2) 2 +(k=p1 )1 (k=p2)2 kDT @) 2 Ty, 2 (2k=01)T (2k=01)2 +01 16,2
=W 2 o2 g oY 2R i ,lPk 22 o ).
n?:1 (k+; >€f+n,.2:1 (k=p)%i T2 (k=) Si+TT2 7 M7, (2k-5; )ermz 5%

Suppose z = m, according t formula (17), we can get

m

LNNEWA((u1,up, ... uy) = @, €
i=1
18
:W’k T (k)i =TT (kpi)i P 2007, 7 ”abk 2007 8 » (18)
T, (kST (k=By)©i TI7 ) (@k=y)T+TT 7 nj"l(Zk—b >fx+n'" o

Then z = m + 1, the following can be found:

m
LNNEWA(uy,up, ... Uy, Ups1) = (@e €ill;i) Be €pry1Umi1

i=1
VT e i-TI e ) —_— S
& i=1 - oo LB ) L~ (kpy )
T, G T G (i) L+ g ) T
_ w 2 / s 1,0 2y €m+1 s
S T ECCY- G SN S G
T (2k=y)ST+TT (k=) M g L
'J’ 2 H,"il ‘si(’ !l}k 25m+1€m+1
;e
TI77 (2k-0p) S +1177 & (2k=0y.41) M1 46, M1

4

kz((k»;l T R oy Y ~lhpgy) L

)om

kL kB x+nk 1 (k= ﬁf (Hﬁmﬂ)e L (kpy 1) 7 H1
)
)

i
K24 TI7Z) ()i H;" k=BT o (BB )T —(kpy )
Bi)

Y Y e A T W T WL
i
'“P K 21_["x € i 2},m+]€m+1 ) ’
( 77 @y mn”’ VT @y ) T g T )
2117, yici 2
k2+ k_ k* 1:1‘z i k— k* m+1
( ( Htmzl (Zk—yi)el«l»n?‘:l yii ))( ( (2k=y 11 )5m+1 +7m+1€"’“ ))
m € < €,
Vo g2t Byt ")
TI72 g (2k=8) T TTF 17 (2k=0yyq) M+ 4844 i1
m s € €
IR 1 ) By MLy
TI7 (k=05 +1177 &7 (2k=0yyy 4 1) M+ 45, A1
= w’k Y ()= (ep) i 7 Y 2117y ’ #’k 201 o) ).
T ()T ()i Y @key) i+ Ty T k-0 i+ T 0,

So, Equation (17) is satisfied for any z according to the above results.
This proves Theorem 1. O

Theorem 3. (Idempotency). Set an LNN u = (g, ¥y, Ps) in Y, for every u; in u is equal to u, we can get:

LNNEWA(uy,up,...u;) = LNNEWA(u,u...u) = u.
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Proof. Foru; = u, then p; =B; i =v; 6, =0=(i=1, 2, ... z), the following result can be found:

LNNEWA(u1, 113, ... 1z) = LNNEWA (,u...1u) = (@eein1)
i=1

<1P 1'[ 1 (k+p) )€i— nz 1 (k= ﬁ)eilkb ZHIZ 17 1€i /lPk 21-[; lbez )
Hf 1(k+ﬁ)el+l'lz kP T, @i T3, (2~ b)esz
=W wp-tp) W Y, 2
e = M = r M =R

=(Yp, Py, Ys) =u

Theorem 4. (Monotonicity) set two collections of LNNs u; = (g, y,, Y5,y and ui” = (P, Yy, Ps) (i =1,
2,...,20inY, if u; <uy then

LNNEWA((uq,up,...u;) < LNNEWA(uy ,up’,...u;").

Proof. For u; < u/, then €;u; < e;u;’
So, we can easily obtain:
ée €iu; < Egeeiui'
i=1 i=1
For LNNEWA (uq,u,...u;) = EBeelul and LNNEWA (uy’,up’,...u;') = Egeeiu/, then we can get:
i=1
LNNEWA(ul, U, ... ) < LNNEWA(Ml ,un’, .. ,). O

Theorem 5. (Boundedness) Let a collection w; = (Yp, Yy, sy in ¥, u =
(min(pg,), max (), max(s,)) and u™ = (max(g,), min(y,), min(s,)), we can get:

u~ < LNNEWA((uq,up,...u;) <u'.
Proof. The following can be obtained by using Theorem 3:
u” =LNNEWA(u~,u ...u"), u" = LNNEWA(ut,u"...u").
The following can be obtained by using Theorem 4:
LNNEWA (u”,u”...u”) < LNNEWA(uj,up,...u;) < LNNEWA(ut,u™...u™).

Above all, we can get:
u” < LNNEWA (uj,uy,...u,) <u'.

3.2. LNNEWG Operators

Definition 8. Set a collection u; = (g, Py, Y5,y in'Y, fori=1,2,...,z, we define the LNNEWG operator:

LNNEWG(uy, g, ... 12) = ®e (1), (19)
i=1

with the relative weight vector € = (€1, €y, .. .,eZ)T Y €ei=1lande €[0,1].
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Theorem 6. Set a collection u; = (g, ¥y, Ps;) in¥, fori =12, ... z, then according to the LNNEWG
aggregation operator, we can get the following result:

z .
LNNEWG(uy, g, ... 1) = ® (1)
= (20)
=@ 24 Y T e T Gy W I G i-TEE (i )
T, @B G, B TT (e T, (e T, (era) o H I (-0

with the relative weight vector € = (€1, €3, .. .,ez)T, f,ei=1ande; €0,1].

Theorem 7. (Idempotency) Set a collection u; = (g, Py, Ys,) in¥, fori =12, ...z, for every u; in u is
equal to u, we can get
LNNEWG(uy,up,...u;) = LNNEWG(u,u...u) = u.

Theorem 8. (Monotonicity). Set two collections of LNNs u; = (g, ¥y, s, and ui” = (g, Py, o) (i =
1,2,...,2)inY, if u; <uy then

LNNEWG(uq,up, ... u;) < LNNEWG(uy',up’, ... u;").

Theorem 9. (Boundedness) Let a collection u; = (Yp., Py, ¥s,) in ¥, u =
(min(g;), max(y,), max(s,)) and u™ = (max(g,), min(y,), min(s,)), we can get:

u~ < LNNEWG(uy,up, ... u;) <ut
We omit the proof here because it is similar to Theorems 2-5.

4. Methods with LNNEWA or LNNEWG Operator

We introduce two MAGDM methods with the LNNEWA or LNNEWG operator in
LNN information.

Now, we suppose that a collection of alternatives is expressed ® = {01,0,,...,0,} and

a collection of attributes is expressed E = {Ej,Ey,...,E;}. Then, € = (61,62,...,€n)T with

.6 = 1and ¢ € [0,1] is the weight vector of E;(i=1,2,...,n). Establishing a set of

experts D = {D1,Dy,...,Dt} , p = (‘uLyZ...,yt)T with 1 > y; > 0 and Z;Zl pj = 1is the

weight vector of D;(i =1,2,...,t). Assuming that the expert Dy(y =1,2,...,t) uses the LNNs

to give out the assessed value ijy) for alternative ©; with the attribute E;, the value ijy ) can be
. W) _ oy v Y _ i ci oy Y

written as 61,], = (gbﬁij,gbyij,gbbij>(y =1,2,...,t;i=12,....mj=12,. ..,n),gbﬁij,lpyij,%ij € Y. Then,

the decision evaluation matrix can be found. Table 1 is the decision matrix.

Table 1. The decision matrix using linguistic neutrosophic numbers (LNN).

E1 e E,
Y Y Y y Y Y
@1 <¢}'§11/ 11[)});1]/1#(;11) e <¢§1”/ ¢;1)1/¢§1”>
@2 <17Z}ﬂ21’ 11[))/2] 7 ll}(jz] > cee <11D52”/ ll))/Zn 7 ¢5Zn>
O ATV 0 SO ) L

The decision steps are described as follows:
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Step 1: the integrated matrix can be obtained by the LNNEWA operator:

t
Oij = Wy ¥y ¥s,) = LNNEWA(OL, 07, ..., 01) = &.0,0};

i 2
21)
Iz Iz ! ! (
<4’ T G T gl l’lpk* 210, v} ’l’bk 20y 33t
Hz B N s O G Y

Step 2: the total collective LNN 6; (i=1,2,...,m) can be obtained by the LNNWEA or
LNNEWG operator.

0; =LNNEWA(6:,65,...,60i) = eagel]e,]
jf

N y 22
<17[} Hn (k+l31]> ij_ Hn (k ﬁl] z] 17[) 201" 1 Ez] /I]D 271" 1 I]€1/ ) ( )
Jer 5 Jer L
n;? (k+;))° f+n” i) T T @) J+H" T Iy @) T T
Or
n
0; = LNNEWG(60:,0sp,...,0i) = ®1(91])€”
]:
— y 23
=@ ZH}Llﬁif” 'y [Ty (k7)) il - 117 (k- <ij M_, (k46 i - I, (k-0; )€11> (23)
kex —— - Fex kex
Iy ki) T4 gy T (eby) ’J+H; (k- yq)f n;? (k+0;5 >’f+n" (k=0;) 1
Step 3: according to Definition 3, we can calculate (6;) and 1(6;) of every LNN ©;(i = 1,2,...,m).

Step 4: According to ¢(6;), then we can rank the alternatives and the best one can be chosen out.
Step 5: End.

5. Illustrative Examples

5.1. Numerical Example

Now, we adopt illustrative examples of the MAGDM problems to verify the proposed decision
methods. An investment company wants to find a company to invest. Now, there are four companies
© = {©1,0,, 03,04} to be considered as candidates, the first is for selling cars (©;), the second
is for selling food (®,), the third is for selling computers (®3), and the last is for selling arms
(®4). Next, three experts D = {DLDz,Dg,} are invited to evaluate these companies, their weight
vector is u = (0.37, 0.33,0.3)T. The experts make evaluations of the alternatives according to three
attributes E = {Eq, E, E3}, E; is the ability of risk, Ej; is the ability of growth, and Ej is the ability of
environmental impact, the weight vector of them is € = (0.35,0.25, 0.4)T. Then, the experts use LNNs
to make the evaluation values with a linguisticset Y = {9 = extremely poor, )y = very poor,
Yp = poor, 3 = slightly poor, ¢, = medium , 5 = slightlygood, ys = good, 7 = very good,
g = extremely good}.

Then, the decision evaluation matrix can be established, Tables 2—4 show them.

Table 2. The decision matrix based on the data of D;.

El E2 E3
O ? 1/1% <1;b7' 11[’2' 1/)% ? ‘/’2’ #’z
0, % % (¢7, El’% 4’2' ‘ﬁ
O3 Wl ,
? ek % ? 2 2
@4 1,l11, 1,02 <l1[}7r lzbzf ¢ 17[}2’ lPl
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Table 3. The decision matrix based on the data of D,.

151 E, E3
S R (O A |
O a Gty Gty
S e S A bt SR

Table 4. The decision matrix based on the data of Ds.

51 E2 153
O,
5 % % z ; 3 g % g
SO 4 G WRERES
° o g e > oy
N <¢3,¢2,¢ 1> <¢3, ,¢

Now, the proposed method is applied to manage this MAGDM problem and the computational
procedures are as follows:
Step 1: the overall decision matrix can be obtained by the LNNEWA operator in Table 5.

Table 5. The overall decision matrix.

Ey E; E3
0 (V6.3671, P1.4116, Y2.4888) (Ve6.7366, ¥1.8191, Y1.4116) (¥5.1343, ¥2.000, ¥3.0637)
0, (V6.7630, V1.7705, ¥2.2397) (6.2205, ¥1.5275, ¥1.5997) (6.0042, ¥2.000, ¥2.0355)
(OF) (¥6.1200, P1.5997, Y2.4888) (¥6.2067, P1.000, P'1.5564) (Y6.1200, V2.5427, 12 4888)
Oy (Ve6.7366, V1.2370, Y1.8191) (¥5.9645, ¥1.5997, ¥1.5275) (V6.2067, 11.6329, P1.4602)

Step 2: the total collective LNN 0;(i = 1,2,...,m) can be obtained by the LNNWEA operator:

01 = (Ye.0661, Y1.7313, V236447, 02 = {P6.0961, '1.7929, 1'1.9840),
03 = (VP5.7503, P1.7260, P2.2199), and O4 = (Y6 4198, Y'1.4753, P'1.5957)-

Step 3: according to Definition 3, the expected values of {(60;) for 6;(i = 1,2,3,4) can be calculated:
C(01) = 0.7488, {(07) = 0.7633, (03) = 0.7419, and ((64) = 0.8062.

Based on the expected values, four alternatives can be ranked @4 > ®; > ©; > @3, thus, company
©; is the optimal choice.

Now, the LNNEWG operator was used to manage this MAGDM problem:

Step 1’: the overall decision matrix can be obtained by the LNNEWA operator;

Step 2’: the total collective LNN 6; (i = 1,2,...,m) can be obtained by the LNNEWG operator,
which are as following:

01 = (YUs5.9491, Y1.7507, P2.4660), 02 = {YP6.5864, P1.8026, ¥2.0000), O3 = (YP6.8354, 1.8390, Y2.2614),
and 04 = (163950, 1'1.4868, 1'1.6033)-

Step 3’: according to Definition 3, the expected values of {(60;) for 0;(i = 1,2,3,4) can be calculated:
(61) = 0.7389, ((62) = 0.7827, (03) = 0.7806, and ((64) = 0.8043.

Based on the expected values, four alternatives can be ranked @4 > @, > @3 > O, thus, company
Oy is still the optimal choice.
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Clearly, there exists a small difference in sorting between these two kinds of methods. However,
we can get the same optimal choice by using the LNNEWA and LNNEWG operators. The proposed
methods are effective ranking methods for the MCDM problem.

5.2. Comparative Analysis

Now, we do some comparisons with other related methods for LNN, all the results are shown in
Table 6.

Table 6. The ranking orders by utilizing three different methods.

Method Result Ranking Order The Best Alternative
Meth"jvleffgsﬁé o [alri;]hmeﬁc 2(04) = 0.7528, £(05) = 0.7777, 4(03) = 0.7613, L(04) = 0.8060. 04> 0, > 03 > 0, 04
Me‘hosvi:i;;‘;‘i’g [g;‘imetric 4(01) = 0.7397, ¢(0,) = 0.7747, {(03) = 0.7531, ¢(04) = 0.8035. 04> 0, > 03 > 01 04
Me;\}/‘[‘;‘:jiia[sl‘f]l E’;f‘(’l“:felr;"“i £(01) = 0.7298, ¢(02) = 0.7508, &(03) = 0.7424 £(04) = 0.7864. 04> 0y > 03 > 04 04

The proposed method £(01) = 0.7488, £(0;) = 0.7633, £(03) = 0.7419 ¢(64) = 0.8062. 04> 0, > 01 > 03 0,

As shown in Table 6, we can see that company 0, is the best choice for investing by using four
methods. Many methods such as arithmetic averaging, geometric averaging, and Bonferroni mean can
all be used in LNN to handle the multiple attribute decision-making problems and can get similar
results. Additionally, The Einstein aggregation operator is smoother than the algebra aggregation
operator, which is used in the literature [15,16]. Compared to the existing literature [2-14], LNNs can
express and manage pure linguistic evaluation values, while other literature [2-14] cannot do that.
In this paper, a new MAGDM method was presented by using the LNNEWA or LNNEWG operator
based on LNN environment.

6. Conclusions

A new approach for solving MAGDM problems was proposed in this paper. First, we applied
the Einstein operation to a linguistic neutrosophic set and established the new operation rules of this
linguistic neutrosophic set based on the Einstein operator. Second, we combined some aggregation
operators with the linguistic neutrosophic set and defined the linguistic neutrosophic number Einstein
weight average operator and the linguistic neutrosophic number Einstein weight geometric (LNNEWG)
operator according the new operation rules. Finally, by using the LNNEWA and LNNEWG operator,
two methods for handling MADGM problem were presented. In addition, these two methods were
introduced into a concrete example to show the practicality and advantages of the proposed approach.
In future, we will further study the Einstein operation in other neutrosophic environment just like the
refined neutrosophic set [30]. At the same time, we will use these aggregation operators in many actual
fields, such as campaign management, decision making and clustering analysis and so on [31-33].
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