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Abstract: In this manuscript, the optimal design of geometry for a forced sloshing in a rigid container
based on the entropy generation minimization (EGM) method is presented. The geometry of the
vessel considered here is two dimensional rectangular. Incompressible inviscid fluid undergoes
horizontal harmonic motion by interaction with a rigid tank. The analytical solution of a fluid
stream function is obtained and benchmarked by Finite element results. A parameter study of the
aspect ratio, amplitude, and frequency of the horizontal harmonic motion is performed. As well,
an analytical solution for the total entropy generation in the volume is presented and discussed.
The total entropy generation is compared with the results of the Reynolds-Averaged Navier–Stokes
(RANS) solver and the Volume-of-Fluid (VOF) method). Then, the effect of parameters is studied on
the total entropy generated by sway motion. Finally, the results show that, based on the excitation
frequency, an optimal design of the tank could be found.

Keywords: fluid structure-interaction; vibration suppression; entropy generation minimization;
sloshing; damping factor

1. Introduction

The ship maneuver-induced motion in the partially-filled tanks by liquid, sloshing poses a
thoughtful danger to the controllability and stability of this phenomenon. The entropy generation
minimization method is used for the design of fluid flow motion system [1] as well as thermal
systems [2–4] in recent years. Although the method is applied to the thermodynamic optimization
of many finite-size systems and finite-time processes [5], the application in isothermal fluid flow is
rare [6]. For the specific case of sloshing, as such systems are used to damping the solid motion [7],
the minimization of entropy could not be a true objective function for optimization. Even if a new
engineering application has emerged in the future where the minimization of the entropy in sloshing
fluid is the aim, the fluid cannot consider as a complete thermodynamic system. The fluid motion is
caused by a solid structure consists of internal damping which causes entropy generation. The entropy
generation in an isothermal wall container could be a measure of viscous dissipation which produces
heat and could cause to danger in flammable liquids.

The analytical solution of a similar problem was presented by Ibrahim [8]. The liquid sloshing
dynamics of a liquid in a vessel with horizontal excitation was presented Ibrahim [8] while the entropy
generation was not discussed. Ikegawa studied the fluid flow problem motion of a rigid container
excited by a horizontal harmonic acceleration with Finite Element Methods [9]. His results used in
many texts as a benchmark [1]. Damping of surface waves in an incompressible liquid is studied by
Case and Parkinson [10].

Jamalabadi et al. [11] found the optimal design of circular baffles in the sloshing problem occurred
in a rectangular tank which is horizontally coupled by a one-story structure. Their method was
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pure numeric, and the optimization was based on the vibration suppression of the liquid motion.
Although the problem is a classic case [12–25], the study of its exergy is discussed comprehensively in
rare studies [1,26]. The entropy analysis of the flow systems is performed in many flow motions [27–34],
as well and the recent developments in fluid modeling [35–39].

The aim of the current paper is to derive an analytical expression for entropy generation
isothermal sloshing phenomenon and discuss the use of entropy generation minimization for such
systems. The analytical expression for entropy generation in the rectangular tanks is obtained for the
first time in the rectangular storage tank.

2. Mathematical Modeling

Consider a rigid rectangular tank as the physical domain of this research with length L, base at y
= −h, free surface y = 0. Figure 1 shows the schematic of the problem with Coordinate system. As a
first approximation the fluid motion can considered by the use of velocity potential. The replace of
velocity potential in the continuity Equation (∇.V = ∂u

∂x + ∂v
∂y = 0) leads to Laplace equation as, (see

Equation 1.23 in [8])
∂2φ

∂x2 +
∂2φ

∂y2 = 0 . (1)
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The boundary condition of the fluid domain in the right wall is the no-slip condition.

∂φ

∂x

∣∣∣∣∣∣
x=L

= 0 (2)

where L is the tank length. The no-slip condition at the left wall is

∂φ

∂x

∣∣∣∣∣∣
x=0

= 0 (3)

and the no-slip condition at the bottom wall is

∂φ

∂y

∣∣∣∣∣∣
y=−h

= 0 (4)

where h is the fluid height. At the free surface, the kinematic boundary is

∂φ

∂y

∣∣∣∣∣∣
y=η

=
∂η

∂t
+
∂η

∂x
∂φ

∂x

∣∣∣∣∣∣
y=η

(5)
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and the total pressure equation (neglecting the surface tension) from the Bernoulli equation is

P = −ρ

∂φ∂t
+

1
2


(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
+ gy +

..
Xx

 (6)

where g is the gravity acceleration. The pressure at the free surface can be derived from the Equation
of the motion (ρ

(
∂V
∂t + (V.∇)V

)
= −∇p + ρ

(
→
g −

→
a
)
+∇.

(
µ
(
∇V +∇VT

))
) by the aid of fluid density (ρ)

and viscosity (µ) as well. The linearized surface conditions (leads to linear wave theory) are

φy(y = 0) = ηt, (7)

which is the kinematic condition for free surface elevation (η) and

φt(y = 0) + gη+ x
..
X = 0 (8)

for kinetic condition. Combining the kinematic and dynamic free-surface conditions leads to
the equation

φtt(y = 0) + gφy(y = 0) = x
...
X. (9)

The solution satisfying Equation (l) with the rigid wall boundary conditions, Equations (2)–(4) is
obtained in a general form as a sum of infinite sloshing modes as

φ =
∞∑

i=1

ai(t) cos(
iπx
L

)
cosh

(
iπ(y+h)

L

)
iπ
L sinh

(
iπh
L

) (10)

where ai(t) is an arbitrary time function and its related spatial function characterizes the velocity
potential function of the nth sloshing mode and the dot notation (.) represents d( )/dt. The free surface
profile associated with Equation (10) with the boundary condition of Equation (7) is

η =
∞∑

i=1

ai(t) cos(
iπx
L

). (11)

The surface condition of Equation (9) can be used to determine the coefficients ai(t), which appears
in Equation (10) and Equation (11) for the external acceleration of

..
X as

..
ai(t) + g

iπ
L

tanh(
iπh
L

)ai(t) +
4
iπ

tanh(
iπh
L

)
..
X = 0 (12)

where the cosine expansion of the x is used as

x =
L
2
+ 2L

∞∑
i=1

cos(
iπx
L

)
(−1)i

− 1

(iπ)2 (13)

to derive Equation (11). The fundamental sloshing frequency (i = 1) of the liquid inside the rectangular
tank could be obtained by considering the free oscillation in Equation (11) as

fw =
1

2π

√
πg
L

tanh
(
πh
L

)
(14)

and replacing the X = Xmax cos(ωt) in Equation (11) for the external motion gives

..
ai(t) + g

iπ
L

tanh(
iπh
L

)ai(t) = −
4
iπ

tanh(
iπh
L

)ω2Xmax sin(ωt) (15)
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where ω2
i = g iπ

L tanh( iπh
L ). The steady-state solution of Equation (15) is

ai(t) = tanh(
iπh
L

)
4Xmax

iπ
ω2

ω2 −ω2
i

sin(ωt). (16)

The final linearize solutions are

η = Xmax

∞∑
i=1

tanh(
iπh
L

)
4
iπ

ω2

ω2 −ω2
i

sin(ωt) cos(
iπx
L

) (17)

φ = LXmaxω
∞∑

i=1

(
2ω
iπ

)2

ω2 −ω2
i

cos(ωt) cos(
iπx
L

)
cosh

(
iπ(y+h)

L

)
cosh

(
iπh
L

) . (18)

The entropy generated can be calculated by [5]

S′′′ g =
µ

T
ϕ+

k
T2

(∇T)2 (19)

where the dot notation (′”) represents the value per volume. The dissipation function in Equation (19)
is calculated from

ϕ = 2

(∂u
∂x

)2

+

(
∂v
∂y

)2+ (
∂u
∂y

+
∂v
∂x

)2

. (20)

The total entropy generated in the volume of the fluid in the case of an isothermal condition
(∇T = 0) is calculated from Equation (18) as

Sg =

∫ ∫
µ

T
ϕ dxdy. (21)

By substituting the analytical solution in the definition of entropy generation we get:

Sg =
16πµX2

maxω
2

T

∞∑
i=1

 ω2

ω2 −ω2
i

cos(ωt)

2 tanh
(

iπh
L

)
i

. (22)

The entropy appearing in Equation (22) is the total entropy generated by the fluid, and since the
energy exchanged with the moving wall has been considered as a thermodynamic system, the entropy
of the working fluid is well established and can be used as an objective function. The entropy generation
in an isothermal wall container could be a representation of viscous dissipation that could lead to
explosion in liquids with flammable materials.

3. Results and Discussion

The analytical solution of Equation (17) is benchmarked with a finite element method (FEM)
solution obtained by Ikegawa [9], whose dimensions of the liquid container are h = 0.6 m and L = 0.9 m.
The vessel is exposed to the forced horizontal motion as given by X = 0.002 sin(5.5t). Figure 2 presents
the time history of η (x = + L, t). The numerical result is denoted by circles and the analytical solution
is denoted by a solid line. As shown, there is a good agreement between the analytical solution and
numerical result with FEM.

An inspection of the analytical solution of Equation (22) is performed in Figure 3. The maximum
distribution of the dimensionless entropy generation rate through the volume, with respect to time, is a

plot for various aspect ratios in that figure, according to (Sg =
(ω2
−ω2

i )
2
TSg

16πµX2
maxω

4 ). The axes in Figure 3 are
Cartesian coordinate system of the vessel in accordance with Figure 1. The dimensions of rectangular
storage tanks for each aspect ratio are L = (0.54α) 0.5 and h = (0.54/α) 0.5. As shown by the increase of
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the aspect ratio, the amount of entropy generated through the volume decreased. Further, the position
of maximum entropy changed from the free surface to the side walls. It was expected that by an
increase of the aspect ratio, the length of the tanks would increase and the dimensionless penetration

length (
√

υ
L2ω

) would decrease. An increase of the aspect ratio made the dampening effects of sidewalls

and bottom dominant in comparison with the free surface effects [10].
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Horizontal periodic sway motions as X = Am sin (ω t) were applied to the rectangular storage
tanks with different aspect ratios, namely the ratios of height to length of the rectangular storage
tank (AR). Then, the effect of Am and ω was studied on the results. The oscillations of total entropy
generation rate in the volume for the aspect ratio of α = 2.05 are plotted in Figure 4a. Similar to the
time history of the wave, the entropy generation rate reaches its maximum after 10 periods of motion
and decreases. The beating behavior of the entropy profile repeats as times goes on. To demonstrate
the capability and accuracy of the present method, the results of the generated waves are compared
with the available numerical calculations. Figure 4b takes from the results of [1]. Results from [1] are
opposed to those stemming from this study, where Figure 4a should be compared with AR = 2.05
Figure 4b. The true unit for Sg obtained by the surface integration of volumetric entropy generation is
(W/Km). However, in reference [1], as they considered the two-dimensional case with a 1 m depth,
the unit appeared as (W/K). Moreover, the results show that an increase in the AR causes a decrease in
the total entropy generation rate in the volume.
Mathematics 2019, 7, x 7 of 11 

 
(a) 

 
(b) 

Figure 4. Entropy generation versus time for α = 2.05 (a) current study, (b) Reference [1]. 

Finally, Figure 5 reveals the value of the total entropy generation rate versus aspect ratio for α = 
3. As shown, the trend of maximum entropy generation versus aspect ratio decreasing expects a 
peak point, which is caused by approaching the natural frequency of the system to the external 
forced frequency. Such phenomena lead to a local minimum point before the resonance, since the α = 
1.4–1.5 is a candidate for the entropy minimization point. Generally, the overall function has no 
optimum and a higher aspect ratio leads to lower values of entropy generation. 

Figure 4. Entropy generation versus time for α = 2.05 (a) current study, (b) Reference [1].

Figure 4b was obtained by using the Reynolds-Averaged Navier–Stokes (RANS) and the
Volume-of-Fluid (VOF) methods, together, in a commercial software solver [1]. The RANS equations
were discretized and solved using the staggered grid finite difference and simplified marker and cell
(SMAC) methods, and the available data were used for the model validation. By comparing the case of
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α = 2.05, it is clear that the trend and the order of magnitude of a maximum of entropy (2 × 10−2) are
the same. Since the current analytical solution is a suitable measure to decide on optimization based
on the entropy generation, the entropy generation distribution offers designers with valuable data
about the reasons for the energy loss.

Finally, Figure 5 reveals the value of the total entropy generation rate versus aspect ratio for α = 3.
As shown, the trend of maximum entropy generation versus aspect ratio decreasing expects a peak
point, which is caused by approaching the natural frequency of the system to the external forced
frequency. Such phenomena lead to a local minimum point before the resonance, since the α = 1.4–1.5
is a candidate for the entropy minimization point. Generally, the overall function has no optimum and
a higher aspect ratio leads to lower values of entropy generation.Mathematics 2019, 7, x 8 of 11 
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As shown in reference [7] (see Figure 3c), 80 percent of energy of the fluid could be dissipated for
the dimensionless frequencies in the range 0.95–1.05 (f’ = f /fn), since the engineers try to design the
sloshing vessels with the frequencies near to the structure frequency for highest energy absorbance
rate. If the value of the energy of the fluid is symbolized by

E f =
1
2

m f (2ξ fω)X2
maxω

2 (23)

and the work of no-conservative damping of the coupling structure are

Es =
1
2

ms(2ξsω)X2
maxω

2 (24)

then the ratio of structure energy loss to the fluid loss is

γ =
ξsms

ξ f m f
. (25)

The damping of the fluid could be estimated by the inverse of square root of the Galileo number
(ratio of gravity forces and viscous forces)

ξ f =
υ1/2

L3/4g1/4
(26)
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where υ is the kinematic viscosity. The damping factor of 1–2% is predicted for fluids [10] (logarithmic
decrement ≈ 6ξ) and 0.32% for solids [7], since the ratio of structural energy loss to fluid loss is
approximated by 0.1–1 of the ratio of structural mass to fluid mass. As an example for engineering
applications, the mass ratio of the tuned liquid damper to the solid structure is 1.05% [7], and then the
amount of structure energy loss to the fluid loss is about 10–100. Subsequently, most of the energy
dissipated in the solid part, which is not considered for optimization.

Since, as stated in the introduction section, for the specific case of sloshing, as such systems are
used for the damping of the solid motion entropy of only fluid, they could not be a true objective
function, and the energy dissipation in the structure should be considered, too. Today’s practical
meaning of EGM is very low. Although today engineers in the field of large vessels are mostly focused
on frequency response design and exergy efficiency is not considered in engineering code, the entropy
minimization method is a growing topic in literature. In the current study, fluid entropy generation
used as a measure of optimization of the sloshing phenomenon that is classified among free surface
flows. The current research proposes future studies performing experiments for coupled cases with
the sum energy dissipation of fluid and structure as an objective function.

4. Conclusions

In this manuscript, the entropy generation rate in a forced sloshing rigid tank was studied
analytically. The analytical solution of the fluid was obtained and benchmarked. The following points
were concluded:

• By the increase of the aspect ratio, the amount of entropy generated through the volume decreased.
• By the increase of the aspect ratio, the position of maximum entropy is changed from the free

surface to the side walls.
• As the order of magnitude of the maximum of entropy for the analytical case and numerical results

are the same, the analytical solution is a suitable measure for entropy generation minimization.
• The minimum entropy generation point for the sloshing problem is local and general; the entropy

generation has no optimum as a function of aspect ratio.
• The ratio of structural energy loss to fluid loss is approximated by the ratio of structural mass to

fluid mass.
• The energy dissipation in the structure coupled with sloshing fluids should be considered for

entropy generation minimization.
• The current research proposes to do experiments for coupled cases with total dissipation function

(i.e., sum energy dissipation of fluids and structures) as an objective function in future studies.
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