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Abstract: This article intends to initiate the study of Pompeiu–Hausdorff distance induced by an
M-metric. The Nadler and Kannan type fixed point theorems for set-valued mappings are also
established in the said spaces. Moreover, the discussion is supported with the aid of competent
examples and a result on homotopy. This approach improves the current state of art in fixed
point theory.

Keywords: homotopy; M-metric; M-Pompeiu–Hausdorff type metric; multivalued mapping; fixed
point

MSC: Primary 47H10; Secondary 54H25, 05C40

1. Introduction

With the introduction of Banach’s contraction principle (BCP), the fixed point theory advanced in
various directions. Nadler [1] obtained the fundamental fixed point result for set-valued mappings
using the notion of Pompeiu–Hausdorff metric which is an extension of the BCP. Later on, many fixed
point theorists followed the findings of Nadler and contributed significantly to the development of
theory (cf. S. Reich [2,3]).

On the other hand, in order to investigate the semantics of data flow networks; Matthews [4]
coined the concept called as partial metric spaces which are used efficiently while building models
in computation theory. On the inclusion of partial metric spaces into literature, many fixed point
theorems were established in this setting, see [5–16]. Recently, Asadi et al. [17] brought the notion
of an M-metric as a real generalization of a partial metric into the literature. They also obtained the
M-metric version of the fixed point results of Banach and Kannan. Also, some fixed point theorems
have been established in M-metric spaces endowed with a graph, see [18].

In this work, we introduce the M-Pompeiu–Hausdorff type metric. Furthermore, we extend the
fixed point theorems of Nadler and Kannan to M-metric spaces for set-valued mappings. Finally,
homotopy results for M-metric spaces are discussed.
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2. Preliminaries

The symbols N, R and R+ represent respectively set of all natural numbers, real numbers and
nonnegative real numbers. Let us recall some of the concepts for simplicity in understanding.

Definition 1 ([4]). Let X be a nonempty set. Then a partial metric is a function p : X× X → R+ satisfying
following conditions:

(p1) a = b⇐⇒ p(a, a) = p(a, b) = p(b, b);
(p2) p(a, a) ≤ p(a, b);
(p3) p(a, b) = p(b, a);
(p4) p(a, b) ≤ p(a, c) + p(c, b)− p(c, c);

for all a, b, c ∈ X. The pair (X, p) is called a partial metric space.

The concept of an M-metric [17] defined in following definition extends and generalize the notion
of partial metric.

Definition 2 ([17]). Let X be a non empty set. Then an M-metric is a function m : X× X → R+ satisfying
the following conditions:

(m1) m(a, a) = m(b, b) = m(a, b)⇔ a = b;
(m2) mab ≤ m(a, b) where mab := min{m(a, a), m(b, b)};
(m3) m(a, b) = m(b, a);
(m4) (m(a, b)−mab) ≤ (m(a, c)−mac) + (m(c, b)−mcb);

for all a, b, c ∈ X. The pair (X, m) is called an M-metric space.

Remark 1 ([17]). Let us denote Mab := max{m(a, a), m(b, b)}, where m is an M-metric on X. Then for
every a, b ∈ X, we have

(1) 0 ≤ Mab + mab = m(a, a) + m(b, b),
(2) 0 ≤ Mab −mab = |m(a, a)−m(b, b)|,
(3) Mab −mab ≤ (Mac −mac) + (Mcb −mcb).

Example 1 ([17]). Let m be an M-metric on X. Then

(1) mw(a, b) = m(a, b)− 2mab + Mab,

(2) ms(a, b) =


m(a, b)−mab if a 6= b,

0 if a = b,

are ordinary metrics on X.

Two new examples of M-metrics are as follows:

Example 2. Let X = [0, ∞). Then

(a) m1(a, b) = |a− b|+ a+b
2 ,

(b) m2(a, b) = |a− b|+ a+b
3

are M-metrics on X.

Let Bm(a, η) = {b ∈ X : m(a, b) < mab + η} be the open ball with center a and radius η > 0 in
M-metric space (X, m). The collection {Bm(a, η) : a ∈ X, η > 0}, acts as a basis for the topology τm

(say) on M-metric X.
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Remark 2 ([17]). τm is T0 but not Hausdorff.

Definition 3 ([17]). Let {ak} be a sequence in M-metric spaces (X, m).

(1) {ak} is called M-convergent to a ∈ X if and only if

lim
k→∞

(m(ak, a)−maka) = 0.

(2) If lim
k,j→∞

(m(ak, aj)−makaj) and lim
k,j→∞

(Makaj −makaj) exist and finite then the sequence {ak} is called

M-Cauchy.
(3) If every M-Cauchy sequence {ak} is M-convergent, with respect to τm, to a ∈ X such that lim

k→∞
(m(ak, a)−

maka) = 0 and lim
k→∞

(Maka −maka) = 0 then (X, m) is called M-complete.

Lemma 1 ([17]). Let {ak} be a sequence in M-metric spaces (X, m). Then

(i) {ak} is M-Cauchy if and only if it is a Cauchy sequence in the metric space (X, mw).
(ii) (X, m) is M-complete if and only if (X, mw) is complete.

Example 3. Let X and m1, m2 : X × X → [0, ∞) be as defined in Example 2 for all a, b ∈ X. Then (X, m1)

and (X, m2) are M-complete. Indeed, (X, mw) = ([0, ∞), k|x− y|) is a complete metric space, where k = 5
2 for

m1 and k = 2 for m2.

Lemma 2 ([17]). Let ak → a and bk → b as k → ∞ in (X, m). Then as k → ∞, (m(ak, bk)− makbk
) →

(m(a, b)−mab).

Lemma 3 ([17]). Let ak → a as k → ∞ in (X, m). Then (m(ak, b)− makb) → (m(a, b)− mab), k → ∞,
for all b ∈ X.

Lemma 4 ([17]). Let ak → a and ak → b as k → ∞ in (X, m). Then m(a, b) = mab. Further, if m(a, a) =
m(b, b), then a = b.

Lemma 5 ([17]). Let {ak} be a sequence in (X, m) such that for some r ∈ [0, 1), m(ak+1, ak) ≤ rm(ak, ak−1),
k ∈ N then

(a) lim
k→∞

m(ak, ak−1) = 0;

(b) lim
k→∞

m(ak, ak) = 0;

(c) lim
k,j→∞

mak ,aj = 0;

(d) {ak} is M-Cauchy.

3. M-Pompeiu–Hausdorff Type Metric

The concept of a partial Hausdorff metric is defined in [19,20]. Following them we initiate the
notion of an M-Pompeiu–Hausdorff type metric induced by an M-metric in this section. Let us begin
with the following definition.

Definition 4. A subset A of an M-metric space (X, m) is called bounded if for all a ∈ A, there exist b ∈ X
and K ≥ 0 such that a ∈ Bm(b, K), that is, m(a, b) < mba + K.

Let CBm(X) denotes the family of all nonempty, bounded, and closed subsets in (X, m). For
P, Q ∈ CBm(X), define

Hm(P, Q) = max{δm(P, Q), δm(Q, P)},

where δm(P, Q) = sup{m(a, Q) : a ∈ P} and m(a, Q) = inf{m(a, b) : b ∈ Q}.
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Let P denote the closure of P with respect to M-metric m. Note that P is closed in (X, m) if and
only if P = P.

Lemma 6. Let P be any nonempty set in an M-metric space (X, m), then a ∈ P if and only if m(a, P) =

supx∈P max.

Proof.

a ∈ P⇔ Bm(a, η) ∩ P 6= ∅, for all η > 0

⇔ m(a, x) < max + η, for some x ∈ P

⇔ m(a, x)−max < η

⇔ inf{m(a, x)−max : x ∈ P} = 0

⇔ inf{m(a, x) : x ∈ P} = sup{max : x ∈ P}
⇔ m(a, P) = sup

x∈P
max.

Proposition 1. Let P, Q, R ∈ CBm(X), then we have

(a) δm(P, P) = sup
a∈P
{sup

b∈P
mab};

(b) (δm(P, Q)− sup
a∈P

sup
b∈Q

mab) ≤ (δm(P, R)− inf
a∈P

inf
c∈R

mac) + (δm(R, Q)− inf
c∈R

inf
b∈Q

mcb).

Proof.

(a) Since P ∈ CBm(X), P = P. Then from Lemma 6, m(a, P) = sup
x∈P

max. Therefore, δm(P, P) =

sup
a∈P
{m(a, P)} = sup

a∈P
{sup

x∈P
max}.

(b) For any a ∈ P, b ∈ Q and c ∈ R, we have

m(a, b)−mab ≤ m(a, c)−mac + m(c, b)−mcb.

We rewrite it as
m(a, b)−mab + mac + mcb ≤ m(a, c) + m(c, b).

Since b is arbitrary element in Q, we have

m(a, Q)− sup
b∈Q

mab + mac + inf
b∈Q

mcb ≤ m(a, c) + m(c, Q).

Since m(c, Q) ≤ δm(R, Q), we can write above inequality as

m(a, Q)− sup
b∈Q

mab + mac + inf
b∈Q

mcb ≤ m(a, c) + δm(R, Q).

As c is arbitrary in R, we have

m(a, Q)− sup
b∈Q

mab + inf
c∈R

mac + inf
c∈R

inf
b∈Q

mcb ≤ m(a, R) + δm(R, Q).

We rewrite the above inequality as

m(a, Q) + inf
c∈R

inf
b∈Q

mcb ≤ m(a, R) + δm(R, Q) + sup
b∈Q

mab − inf
c∈R

mac.
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Again, as a is arbitrary in P, we get

δm(P, Q) + inf
c∈R

inf
b∈Q

mcb ≤ δm(P, R) + δm(R, Q) + sup
a∈P

sup
b∈Q

mab − inf
a∈P

inf
c∈R

mac.

Proposition 2. For any P, Q, R ∈ CBm(X) following are true

(i) Hm(P, P) = δm(P, P) = sup
a∈P
{sup

b∈P
mab};

(ii) Hm(P, Q) = Hm(Q, P);
(iii) Hm(P, Q)− sup

a∈P
sup
b∈Q

mab ≤ Hm(P, R) +Hm(Q, R)− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb.

Proof.

(i) From (a) of Proposition 1, we writeHm(P, P) = δm(P, P) = sup
a∈P
{sup

b∈P
mab}.

(ii) It follows from (m2) of Definition 2.
(iii) Using (b) of Proposition 1, we have

Hm(P, Q) = max{δm(P, Q), δm(Q, P)}

≤ max

{
[δm(P, R)− inf

a∈P
inf
c∈R

mac + δm(R, Q)− inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab],

[δm(Q, R)− inf
a∈P

inf
c∈R

mac + δm(R, P)− inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab]

}
≤ max{δm(P, R), δm(R, P)}+ max{δm(Q, R), δm(R, Q)}

− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab

≤ Hm(P, R) +Hm(R, Q)− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab.

Remark 3. In general,Hm(A, A) 6= 0 for A ∈ CBm(X). It can be verified through the following example.

Example 4. Let X = [0, ∞) and m(a, b) = a+b
2 , then clearly (X, m) is an M-metric space. In view of (a) of

Proposition 1, we have

Hm([1, 2], [1, 2]) = δm([1, 2], [1, 2]) = sup
p∈[1,2]

sup
q∈[1,2]

mpq = sup
p∈[1,2]

sup
q∈[1,2]

min{p, q} 6= 0.

In view of Proposition 2, we callHm : CBm(X)× CBm(X)→ [0,+∞) an M-Pompeiu–Hausdorff
type metric induced by m.

Lemma 7. Let P, Q ∈ CBm(X) and q > 1. Then for every a ∈ P, there is at least one b ∈ Q such that
m(a, b) ≤ qHm(P, Q).

Proof. Assume that there exists an a ∈ P such that m(a, b) > qHm(P, Q) for all b ∈ Q. This implies that

inf
b∈Q
{m(a, b)} ≥ qHm(P, Q),

that is,
m(a, Q) ≥ qHm(P, Q).
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Note that
Hm(P, Q) ≥ δm(P, Q) = sup

x∈P
m(x, Q) ≥ m(a, Q) ≥ qHm(P, Q).

SinceHm(P, Q) 6= 0, q ≤ 1, which is a contradiction.

Lemma 8. Let P, Q ∈ CBm(X) and r > 0. For any a ∈ P, there is at least one b ∈ Q such that
m(a, b) ≤ Hm(P, Q) + r.

Proof. Assume that there exists a ∈ P such that m(a, b) > Hm(P, Q) + r for all b ∈ Q. This implies that

inf
b∈Q
{m(a, b)} ≥ Hm(P, Q) + r,

that is,
m(a, Q) ≥ Hm(P, Q) + r.

Now,
Hm(P, Q) + r ≤ m(a, Q) ≤ δm(P, Q) ≤ Hm(P, Q).

Thus, r ≤ 0, which is a contradiction.

4. Fixed Point Results

First, we state the Nadler fixed point theorem in the class of M-metric spaces.

Theorem 1. Let M-metric space (X, m) be M-complete and F : X → CBm(X) be a multivalued mapping.
Suppose there exists λ ∈ (0, 1) such that

Hm(Fa, Fb) ≤ λm(a, b), (1)

for all a, b ∈ X. Then F admits a fixed point.

Proof. Choose q = 1√
λ

and r =
√

λ. Clearly, q > 1 and r < 1. Let a0 ∈ X be arbitrary and a1 ∈ Fa0.

From Lemma 7, for q = 1√
λ

, there exists a2 ∈ Fa1 such that

m(a1, a2) ≤
1√
λ
Hm(Fa0, Fa1). (2)

AsHm(Fa0, Fa1) ≤ λm(a0, a1), so from (2) we have

m(a1, a2) ≤
1√
λ

λm(a0, a1) =
√

λm(a0, a1) = rm(a0, a1).

Now, from Lemma 7, there exists a3 ∈ Fa2 such that

m(a2, a3) ≤ rm(a1, a2).

Continuing in this way, we get a sequence {ak} of points in X such that ak+1 ∈ Fak and for k ≥ 1,

m(ak, ak+1) ≤ rm(ak−1, ak), (3)

that is,
m(ak, ak+1) ≤ rkm(a0, a1). (4)

By Lemma 5, we have
lim
k→∞

m(ak, ak+1) = 0, (5)
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lim
k→∞

m(ak, ak) = 0, (6)

and
lim

k,j→∞
m(ak, aj) = 0. (7)

Also the sequence {ak} is M-Cauchy. Thus, M-completeness of X yields existence of a ∈ X
such that

lim
k→∞

(m(ak, a)−maka) = 0.

Since lim
k→∞

m(ak, ak) = 0, we have

lim
k→∞

m(ak, a) = 0. (8)

From (1) and (8), we have
lim
k→∞
Hm(Fak, Fa) = 0. (9)

Now, since ak+1 ∈ Fak, m(ak+1, Fa) ≤ Hm(Fak, Fa). Taking limit as k→ ∞ and using (8), we get

lim
k→∞

m(ak+1, Fa) = 0. (10)

As mak+1Fa ≤ m(ak+1, Fa), so we have

lim
k→∞

mak+1Fa = 0. (11)

Using (m4), we have

m(a, Fa)− sup
b∈Fa

mab ≤ m(a, Fa)−maFa

≤ m(a, ak+1)−maak+1 + m(ak+1, Fa)−mak+1Fa.

Varying limit as k→ ∞ and using (8)–(11), we get

m(a, Fa) ≤ sup
b∈Fa

mab. (12)

Since mab ≤ m(a, b) for every b ∈ Fa, this implies that

mab −m(a, b) ≤ 0.

Thus
sup{mab −m(a, b) : b ∈ Fa} ≤ 0,

that is,
sup
b∈Fa

mab − inf
b∈Fa

m(a, b) ≤ 0.

This gives
sup
b∈Fa

mab ≤ m(a, Fa). (13)

From (12) and (13), we have
m(a, Fa) = sup

b∈Fa
mab.

Thus, by Lemma 6, a ∈ Fa = Fa.
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Example 5. Let X = [0, 2] be endowed with m-metric m(a, b) = |a − b| + a+b
2 . Then (X, m) is an

M-complete M-metric space (as in Example 3). Let F : X → CBm(X) be a mapping defined as

F(a) =
[

0,
1
7

a2
]

for all a ∈ X.

We shall show that for λ ∈ (0, 1),Hm(Fa, Fb) ≤ λm(a, b), i.e., (1) holds for all a, b ∈ X. We have
following three possible cases:

Case I: a = b = p. Then Fa = [0, 1
7 p2] = Fb. Here, for λ ≥ 2

7 ,

Hm(Fa, Fb) =
1
7

p2 ≤ λp = λm(p, p) = λm(a, b).

Case II: a < b. Then Fa = [0, 1
7 a2], Fb = [0, 1

7 b2] and Fa ⊆ Fb. In this case,

Hm(Fa, Fb) = max
{1

7
a2, |1

7
a2 − 1

7
b2|+

1
7 a2 + 1

7 b2

2

}
.

Since a < b, 1
7 a2 < | 17 a2 − 1

7 b2|+
1
7 a2+ 1

7 b2

2 . So we get

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

and m(a, b) = |a− b|+ (a+b)
2 . Then one can see that

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

=
1
7
|(a− b)(a + b)|+ 1

7
a2 + b2

2

=
1
7

[
|a− b|(a + b) +

(a + b)2 − 2ab
2

]
≤ 1

7

[
|a− b|+ (a + b)

2

]
(a + b)

=
(a + b)

7
m(a, b).

Case III: a > b. Then Fa = [0, 1
7 a2], Fb = [0, 1

7 b2] and Fb ⊆ Fa. In this case,

Hm(Fa, Fb) = max
{1

7
b2, |1

7
a2 − 1

7
b2|+

1
7 a2 + 1

7 b2

2

}
.

Since b < a, 1
7 b2 < | 17 a2 − 1

7 b2|+
1
7 a2+ 1

7 b2

2 . So, we get

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

and m(a, b) = |a− b|+ (a+b)
2 . Following Case II, one can easily show that

Hm(Fa, Fb) ≤ (a + b)
7

m(a, b).

From above three cases, it is clear that (1) is satisfied for λ ≥ 4
7 . Thus, all the required conditions

of Theorem 1 are satisfied. Hence F admits a fixed point, which is a = 0.
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Next, we present our fixed point result corresponding to multivalued Kannan contractions in
M-metric spaces.

Theorem 2. Let M-metric space (X, m) be M-complete and F : X → CBm(X) be a multivalued mapping.
Suppose there exists λ ∈ (0, 1

2 ) such that

Hm(Fa, Fb) ≤ λ[m(a, Fa) + m(b, Fb)], (14)

for all a, b ∈ X. Then F admits a fixed point in X.

Proof. Let a0 ∈ X be arbitrary. Fix an element a1 ∈ Fa0. We can now choose a2 ∈ Fa1 such that

m(a1, a2) = m(a1, Fa1) ≤ Hm(Fa0, Fa1).

Again, we can choose a3 ∈ Fa2 such that

m(a2, a3) ≤ Hm(Fa1, Fa2).

Continuing in this way, we get a sequence {ak} such that ak+1 ∈ Fak with

m(ak, ak+1) ≤ Hm(Fak−1, Fak). (15)

Using (14) in (15), we get

m(ak, ak+1) ≤ λ[m(ak−1, Fak−1) + m(ak, Fak)]

≤ λ[m(ak−1, ak) + m(ak, ak+1)].

Thus,

m(ak, ak+1) ≤
λ

1− λ
m(ak−1, ak).

Let r = λ
1−λ . Since λ < 1

2 , we have r < 1. So,

m(ak, ak+1) ≤ rm(ak−1, ak). (16)

Thus, from Lemma 5, we have
lim
k→∞

m(ak, ak+1) = 0, (17)

lim
k→∞

m(ak, ak) = 0, (18)

and
lim

k,j→∞
m(ak, aj) = 0. (19)

Moreover, the sequence {ak} is a M-Cauchy. M-completeness of X yields existence of a∗ ∈ X
such that

lim
k→∞

(m(ak, a∗)−maka∗) = 0 and lim
k→∞

(Maka∗ −maka∗) = 0.

Due to (18), we get
lim
k→∞

m(ak, a∗) = 0 and lim
k→∞

Maka∗ = 0.

Thus, we have
lim
k→∞

[Maka∗ + maka∗ ] = 0.

This implies that
m(a∗, a∗) = 0 and hence ma∗Fa∗ = 0. (20)
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We shall show that a∗ ∈ Fa∗. Since

m(ak+1, Fa∗) ≤ Hm(Fak, Fa∗) ≤ λ[m(ak, Fak) + m(a∗, Fa∗)].

Taking limit as k→ ∞, we get

lim
k→∞

m(ak+1, Fa∗) = 2λm(a∗, Fa∗). (21)

Suppose m(a∗, Fa∗) > 0, then we have

m(a∗, Fa∗)−ma∗Fa∗ ≤ m(a∗, ak+1)−ma∗ak+1 + m(ak+1, Fa∗)−mak+1Fa∗ .

Taking limit as k→ ∞ and using (21), we get m(a∗, Fa∗) ≤ 2λm(a∗, Fa∗), which is a contradiction
(as 2λ < 1). So

m(a∗, Fa∗) = 0. (22)

Also, using (20), we have

sup
b∈Fa

ma∗b = sup
b∈Fa

min{m(a∗, a∗), m(b, b)} = 0. (23)

From (22) and (23), we get
m(a∗, Fa∗) = sup

b∈Fa
ma∗b.

Thus, from Lemma 6, we get a∗ ∈ Fa∗ = Fa∗.

Example 6. Let X = [0, 1] and m : X× X → [0, ∞) be defined as

m(a, b) =
a + b

2
.

Then (X, m) is an M-complete M-metric space. Let F : X → CBm(X) be a mapping defined as

F(a) =


[0, a2] if a ∈ [0, 1

2 ],[ a
3

,
a
2

]
if a ∈ [ 1

2 , 1].

Then one can easily verify that there exists some λ in (0, 1
2 ) such that

Hm(Fa, Fb) ≤ λ
[
m(a, Fa) + m(b, Fb)

]
.

Thus F satisfies all the conditions in Theorem 2 and hence it has a fixed point (namely 0) in X.

Example 7. Let X = [0, 1] be endowed with m-metric m(x, y) = x+y
2 . Then (X, m) is an M-complete

M-metric space. We define the mapping F : X → CBm(X) as

F(a) =


{1

5
} if a = 0,

[
a

8(1 + a2)
,

a
4(1 + a2)

]
if a > 0.
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For a = 0 and b = 1
10 , there does not exist any λ in (0, 1

2 ) such that

Hm(F(0), F(
1
10

)) ≤ λ
[
m(0, F(0)) + m(

1
10

, F(
1
10

))
]
.

Thus F does not satisfy (14) in Theorem 2. Evidently, F has no fixed point in X.

5. Homotopy Results in M-Metric Spaces

The following result is required in the sequel while proving a homotopy result in M-metric spaces.

Proposition 3. Let F : X → CBm(X) be a multivalued mapping satisfying (1) for all a, b in M-metric space
(X, m). If c ∈ Fc for some c ∈ X, then m(a, a) = 0 for a ∈ Fc.

Proof. Let c ∈ Fc. Then m(c, Fc) = sup
b∈Fc

mc,b = sup
b∈Fc

mbb. Also

Hm(Fc, Fc) = δm(Fc, Fc) = sup
b∈Fc

mbb.

Assume that m(c, c) > 0. We have

sup
b∈Fc

mbb = Hm(Fc, Fc) ≤ λm(c, c),

that is,
sup
b∈Fc

mbb ≤ λm(c, c).

Since c ∈ Fc, it is a contradiction. So m(a, a) = 0 for every a ∈ Fc.

Theorem 3. Let O (resp. C ) be an open (resp. closed) subset in an M-complete M-metric space (X, m) such
that O ⊂ C. Let G : C × [µ, ν]→ CBm(X) be a mapping satisfying the following conditions:

(a) a /∈ G(a, t) for all a ∈ C \ O and each t ∈ [µ, ν];
(b) there exists λ ∈ (0, 1) such that for every t ∈ [µ, ν] and all a, b ∈ C we have

Hm(G(a, t),G(b, t)) ≤ λm(a, b);

(c) there exists a continuous mapping ψ : [µ, ν]→ R satisfying

Hm(G(a, t),G(a, s)) ≤ λ|ψ(t)− ψ(s)|;

(d) if c ∈ G(c, t) then G(c, t) = {c}.

If G(., t1) admits a fixed point in C for at least one t1 ∈ [µ, ν], then G(., t) admits a fixed point in O for all
t ∈ [µ, ν]. Moreover, the fixed point of G(., t) is unique for any fixed t ∈ [µ, ν].

Proof. Consider, the set

W = {t ∈ [µ, ν]|a ∈ G(a, t) for some a ∈ O}.

ThenW is nonempty, because G(., t1) has a fixed point in C for at least one t1 ∈ [µ, ν], that is,
there exists a ∈ C such that a ∈ G(a, t1) and as (a) holds, we have a ∈ O.

We will show thatW is both closed and open in [µ, ν]. First, we show that it is open.
Let t0 ∈ W and a0 ∈ O with a0 ∈ G(a0, t0). As O is open subset of X, Bm(a0, r) ⊆ O for some

r > 0. Let ε = r + maa0 − λ(r + maa0) > 0. As ψ is continuous on [µ, ν], there exists δ > 0 such that

|ψ(t)− ψ(t0)| < ε, for all t ∈ Sδ(t0),
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where Sδ(t0) = (t0 − δ, t0 + δ).
Since a0 ∈ G(a0, t0), by Proposition 3, m(c, c) = 0 for every c ∈ G(a0, t0). Keeping this fact in view,

we have
mpc = 0, for every p ∈ X. (24)

Now, using (iii) of Proposition 2 and (24), we have

m(G(a, t), a0) = Hm(G(a, t),G(a0, t0))

≤ Hm(G(a, t),G(a, t0)) +Hm(G(a, t0),G(a0, t0))

− inf
p∈G(a,t)

inf
q∈G(a,t0)

mpq − inf
q∈G(a,t0)

inf
c∈G(a0,t0)

mqc + sup
p∈G(a,t)

sup
c∈G(a0,t0)

mpc

≤ Hm(G(a, t),G(a, t0)) +Hm(G(a, t0),G(a0, t0))

≤ λ|ψ(t)− ψ(t0)|+ λm(a, a0)

≤ λε + λ(maa0 + r)

= λ(r + maa0 − λ(r + maa0)) + λ(maa0 + r)

≤ r + maa0 − λ(r + maa0) + λ(maa0 + r)

≤ r + maa0 .

Thus for each fixed t ∈ Sδ(t0), G(., t) : Bm(a0, r)→ CBm(Bm(a0, r)) satisfies all the hypotheses of
Theorem 1 and so G(., t) admits a fixed point in Bm(a0, r) ⊆ C. But this fixed point must be in O to
satisfy (a). Therefore, Sδ(t0) ⊆ W and henceW is open in [µ, ν].

Next, we show thatW is closed in [µ, ν]. Let {tk} be a convergent sequence inW to some s ∈ [µ, ν].
We need to show that s ∈ W .

The definition of the setW implies that for all k ∈ N \ {0}, there exists ak ∈ O with ak ∈ G(ak, tk).
Then using (d), (iii) of Proposition 2 and the outcome of Proposition 3, we have

m(ak, aj) = Hm(G(ak, tk),G(aj, tj))

≤ Hm(G(ak, tk),G(ak, tj)) +Hm(G(ak, tj),G(aj, tj))

≤ λ|ψ(tk)− ψ(tj)|+ λm(ak, aj).

This gives us

m(ak, aj) ≤
λ

1− λ
|ψ(tk)− ψ(tj)|.

Since ψ is continuous and {tk} converges to s, varying k, j→ ∞ in the above inequality, we get

lim
k,j→∞

m(ak, aj) = 0.

As makaj ≤ m(ak, aj), so
lim

k,j→∞
makaj = 0.

Also lim
k→∞

m(ak, ak) = 0 = lim
k→∞

m(aj, aj).

Therefore
lim

k,j→∞
(m(ak, aj)−makaj) = 0 and lim

k,j→∞
(Makaj −makaj) = 0.

Thus {ak} is an M-Cauchy sequence. Using (iii) of Definition 3, there exists a∗ ∈ X such that

lim
k→∞

(m(ak, a∗)−maka∗) = 0 and lim
k→∞

(Mak ,a∗ −maka∗) = 0.
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But lim
k→∞

m(ak, ak) = 0, so

lim
k→∞

m(ak, a∗) = 0 and lim
k→∞

Maka∗ = 0.

Thus, we get m(a∗, a∗) = 0. We shall prove a∗ ∈ G(a∗, t∗). We have

m(ak,G(a∗, t∗)) ≤ Hm(G(ak, tk),G(a∗, t∗))

≤ Hm(G(ak, tk),G(ak, t∗)) +Hm(G(ak, t∗),G(a∗, t∗))

≤ λ|ψ(ak)− ψ(t∗)|+ λm(ak, a∗).

Varying k→ ∞ in above inequality, we get

lim
k→∞

m(ak,G(a∗, t∗)) = 0.

Hence
m(a∗,G(a∗, t∗)) = 0. (25)

Since m(a∗, a∗) = 0, we have

sup
b∈G(a∗ ,t∗)

ma∗b = sup
b∈G(a∗ ,t∗)

min{m(a∗, a∗), m(b, b)} = 0. (26)

From (25) and (26), we get

m(a∗,G(a∗, t∗)) = sup
b∈G(a∗ ,t∗)

ma∗b.

Therefore, from Lemma 6, we have a∗ ∈ G(a∗, t∗). Thus a∗ ∈ O. Hence t∗ ∈ W andW is closed
in [µ, ν].

As [µ, ν] is connected andW is both open and closed in it, soW = [µ, ν]. Thus G(., t) admits a
fixed point in O for all t ∈ [µ, ν].

For uniqueness, fix t ∈ [µ, ν], then there exists a ∈ O such that a ∈ G(a, t). Suppose b is another
fixed point of G(b, t), then from (d) we have

m(a, b) = Hm(G(a, t),G(b, t)) ≤ λm(a, b),

a contradiction. Thus, the fixed point of G(., t) is unique for any t ∈ [µ, ν].

Author Contributions: All authors contributed equally to this paper. All authors have read and approved the
final manuscript.

Funding: This research received no external funding.

Acknowledgments: The fifth author would like to thank Prince Sultan University for funding this work
through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number
RG-DES-2017-01-17.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [CrossRef]
2. Reich, S. Fixed points of contractive functions. Boll. dell’Unione Mat. Ital. 1972, 5, 17–31.
3. Reich, S. Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl.

1978, 62, 104–113. [CrossRef]
4. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [CrossRef]

http://dx.doi.org/10.2140/pjm.1969.30.475
http://dx.doi.org/10.1016/0022-247X(78)90222-6
http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x


Mathematics 2019, 7, 373 14 of 14

5. Aydi, H.; Barakat, M.; Felhi, A.; Isik, H. On phi-contraction type couplings in partial metric spaces. J. Math.
Anal. 2017, 8, 78–89.

6. Ciric, L.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric
spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406.

7. Abodayeh, K.; Mliaki, N.; Abdeljawad, T.; Shatanawi, W. Relation Between Partial Metric Spaces and
M-Metric Spaces, Caristi Kirk’s Theorem in M-Metric Type Spaces. J. Math. Anal. 2016, 7, 1–12.

8. Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappings
in αK-complete partial b-metric spaces and applications. Symmetry 2019, 11, 86. [CrossRef]

9. Aydi, H.; Felhi, A.; Karapinar, E.; Sahmim, S. A Nadler-type fixed point theorem in dislocated spaces and
applications. Miscolc Math. Notes 2018, 19, 111–124. [CrossRef]

10. Karapinar, E.; Shatanawi, W.; Tas, K. Fixed point theorem on partial metric spaces involving rational
expressions. Miskolc Math. Notes 2013, 14, 135–142. [CrossRef]

11. Shatanawi, W.; Pitea, A. Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point
Theory Appl. 2013, 2013, 153. [CrossRef]

12. Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ciric type contractions on partial metric
spaces. Mathematics 2018, 6, 256. [CrossRef]

13. Shatanawi, W.; Postolache, M. Coincidence and fixed point results for generalized weak contractions in the
sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 2013, 54. [CrossRef]

14. Karapinar, E.; Shatanawi, W. On Weakly (C, ψ, φ)-Contractive Mappings in Ordered Partial Metric Spaces.
Abstr. Appl. Anal. 2012, 2012, 495892. [CrossRef]

15. Aydi, H.; Karapinar, E.; Shatanawi, W. Coupled fixed point results for (ψ, ϕ)-weakly contractive condition in
ordered partial metric spaces. Comput. Math. Appl. 2011, 62, 4449–4460. [CrossRef]

16. Shatanawi, W.; Nashine, H.K.; Tahat, N. Generalization of some coupled fixed point results on partial metric
spaces. Int. J. Math. Math. Sci. 2012, 2012, 686801. [CrossRef]

17. Asadi, M.; Karapinar, E.; Salimi, P. New extension of p-metric spaces with fixed-point results on M-metric
spaces. J. Inequal. Appl. 2014, 2014, 18. [CrossRef]

18. Souayah, N.; Mlaiki, N.; Mrad, M. The GM−Contraction Principle for Mappings on M−Metric Spaces
Endowed With a Graph and Fixed Point Theorems. IEEE Access 2018, 6, 25178–25184. [CrossRef]

19. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric
spaces. Topol. Appl. 2012, 159, 3234–3242. [CrossRef]

20. Aydi, H.; Abbas, M.; Vetro, C. Common Fixed points for multivalued generalized contractions on partial
metric spaces, RACSAM—Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales Serie A
Matematicas 2014, 108, 483–501.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym11010086
http://dx.doi.org/10.18514/MMN.2018.1652
http://dx.doi.org/10.18514/MMN.2013.471
http://dx.doi.org/10.1186/1687-1812-2013-153
http://dx.doi.org/10.3390/math6110256
http://dx.doi.org/10.1186/1687-1812-2013-54
http://dx.doi.org/10.1155/2012/495892
http://dx.doi.org/10.1016/j.camwa.2011.10.021
http://dx.doi.org/10.1155/2012/686801
http://dx.doi.org/10.1186/1029-242X-2014-18
http://dx.doi.org/10.1109/ACCESS.2018.2833147
http://dx.doi.org/10.1016/j.topol.2012.06.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	M-Pompeiu–Hausdorff Type Metric
	Fixed Point Results
	Homotopy Results in M-Metric Spaces
	References

