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Abstract: In this paper we consider some integral representations for the evaluation of the coefficients
of the Taylor series for the Riemann zeta function about a point in the complex half-plane <(s) > 1.
Using the standard approach based upon the Euler-MacLaurin summation, we can write these
coefficients as Γ(n + 1) plus a relatively smaller contribution, ξn. The dominant part yields the
well-known Riemann’s zeta pole at s = 1. We discuss some recurrence relations that can be proved
from this standard approach in order to evaluate ζ ′′(2) in terms of the Euler and Glaisher-Kinkelin
constants and the Meijer G-functions.
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1. Introduction

The Riemann zeta function, ζ(s), is holomorphic in the open half-plane [1–4], <(s) > 1, and,
consequently, it can be expanded using the Talyor series about a point s0, with <(s0) > 1, as follows:

ζ(s) =
∞

∑
n=1

1
ns =

∞

∑
n=1

1
ns0

e−(s−s0) ln n =
∞

∑
k=0

(−1)k zk

k!
Sk(s0) , (1)

where Sk(s0), k = 0, 1, 2, . . . are Dirichlet sums given by:

Sk(s0) =
∞

∑
n=1

(ln n)k

ns0
, (2)

whose convergence for any k = 0, 1, . . . can be proven using the integral test. For s0 = 2, k = 0 and
k = 1 these sums are known explicitly in terms of classical constants:

S0(2) =
∞

∑
n=1

1
n2 =

π2

6
, (3)

S1(2) =
∞

∑
n=1

ln n
n2 =

π2

6
[12 ln A− γ− ln(2π)] , (4)

where A is the Glaisher-Kinkelin constant [5–7] given by the limit:

A = lim
n→∞

n

∏
k=1

kk

nn2/2+n/2+1/12e−n2/4
. (5)
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The first sum in Equation (3) is the solution of the Basel problem by Euler (1741) and the second
one corresponds to an identity proved by Glaisher (1894). For k = 0 and s0 = 2m, m = 1, 2, . . . we
have also a well-known explicit expression relating these sums to Bernouilli numbers, B2n:

∞

∑
n=1

1
n2m = (−1)m+1 (2π)2mB2m

2(2m)!
, (6)

but, apart from these classical results [1,2], it is still interesting to find closed expressions or algorithms
for the general case of Sk(s0), specially for large values of k. Moreover, as these Dirichlet sums provide
the coefficients for the Taylor series of ζ(s) at points s0 with real part <(s0) > 1, they have an intrinsic
interest for the theory of the Riemann zeta function. Obviously a brute-force algorithm to estimate
Sk(s0) for large k is not possible because the complex function over the reals:

fk(x) =
(ln x)k

xs0
, (7)

achieves its maximum’s modulus for x = ek/<(s0), so the number of terms in these sums, to be taken
into account in any reasonable approximation, goes beyond present computational capabilities with
the exception of the lowest values of k. For example, for s0 = 2 and k = 50 the maximum is achieved
at n = 72,004,899,337 which makes a direct evaluation, term by term, unattainable.

The standard procedure to evaluate these sums is Euler-MacLaurin’s formula, a favourite tool of
Ramanujan as pointed out by Berndt [8] and also one of the first to be used in the numerical evaluation
of the Riemann zeta function [9]. We will revisit this approach in Section 2. The equivalence with
Riemann’s integral analytic continuation for ζ(s) provides another method by which we will find a
recurrence relation for Sk(s0) at any point s0. This method is developed in Section 3. As a corollary of
this recurrence’s relation we find an explicit expression for S2(s0 = 2) in terms of Glaisher’s constant
and a convergent series involving Meijer G-functions [10]. The paper is ended with some conclusions
in Section 4.

2. Euler-MacLaurin’s Summation Approach

Euler-MacLaurin’s summation has been used for a long time to obtain approximations of the
Riemann zeta function [9]. High-precision computation of the Hurwitz zeta function and its derivatives
has also been obtained thanks to these techniques [11]. The objective of this section is to provide only
a brief background to the analytical relations of the Riemann zeta derivatives discussed in the next
section. For the moment, and without comprimising the generality of our approach, we will focus on
the case s0 = 2. For the corresponding sums, that we will denote by SN , we will show the following:

Theorem 1. The Dirichlet series SN , which appear in the Taylor expansion of Riemann’s zeta function for
s0 = 2, are given by SN = Γ(N + 1) + ξN where:

ξN =
∫ ∞

1
f ′N(x)P1(x)dx = − 1

N!

∫ ∞

1
f (N)
N (x)PN(x)dx . (8)

Here we have assumed that N is an even integer, the prime denote the first derivative and the upper index,
(N), denotes the Nth derivative. The functions Pi(x), i = 1, . . ., N are the Bernoulli periodic functions defined
in terms of the Bernoulli polynomials by Pi(x) = Bi(x− [x]). For N odd the result is similar but replacing N
in the right-hand side of Equation (8), by N − 1.

Proof. To prove this we recall the classical Euler-MacLaurin summation formula [12,13]:
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n

∑
i=m+1

f (i) =
∫ n

m
f (x) dx +

f (n)− f (m)

2

+
[p/2]

∑
k=1

B2k
(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
+ Rp ,

(9)

with the remainder term given by:

Rp = (−1)p+1
∫ n

m
f (p)(x)

Pp(x)
p!

dx , (10)

where Pp(x) are Bernoulli periodic functions of order p and B2k denotes the 2k-th Bernoulli number as
usual. The brackets [. . .] stand for the integer part.

The first identity in Equation (8) is obtained from Equations (9) and (10) by taking p = 1 with
m = 1 and n→ ∞. For obtaining the second identity we notice that limx→∞ f (j)

N (x) = 0 for any order

of the derivative, j ≥ 0 and that f (j)
N (x = 1) = 0 for 0 ≤ j ≤ N − 1 and, as a consequence, the sum

involving the Bernouilli numbers vanishes. Notice also that:

∫ ∞

1

(ln x)N

x2 dx =
∫ ∞

0
yNe−ydy = Γ (N + 1) . (11)

In the course of the calculation we also find:

Corollary 1. The difference SN − N! = ξN is given by the series:

ξN =
∞

∑
j=1

[
1
2

(
(ln j)N

j2
+

(ln(j + 1))N

(j + 1)2

)
− Γ (N + 1, ln j, ln(j + 1))

]
, (12)

where Γ(n, a, b) denotes a generalized incomplete Gamma function:

Γ(x, a, b) =
∫ b

a
tn−1 e−t dt . (13)

Proof. This follows from the definition of P1(x) = x− [x]− 1/2 and the first identity in Equation (8)
rewritten as the series:

ξN =
∞

∑
n=1

∫ n+1

n
f ′N(x)

(
x− n− 1

2

)
dx . (14)

Then, integration by parts of Equation (12) and the definition in Equation (13) lead to the statement
in the corollary.

However, we must point out that the series in Equation (14) converges only very slowly for large
N. The identity of the two expressions for ξN in Equation (8) also implies the following result:

Corollary 2. For N being even and a function fN(x) as given by Equation (7) we have:

∞

∑
n=1

N−1

∑
k=1

(−1)k
{

f (N−k)
N (n + 1)− f (N−k)

N (n)
} BN−k+1

(N − k + 1)!
= 0 , (15)

with Bk denoting the k-th Bernouilli number.
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Proof. From Theorem 1 and for N being even we have that:

ξN = − 1
N!

∞

∑
n=1

∫ n+1

n
f (N)
N (x)BN(x− n) dx . (16)

Integration by parts yields:

N! ξN = −
∞

∑
n=1

[
f (N−1)
N (n + 1)− f (N−1)

N (n)
]

BN

+ N
∞

∑
n=1

∫ n+1

n
f (N−1)
N (x) BN−1(x− n) dx .

(17)

Now repeating the procedure of integrating by parts a total of N − 2 times we arrive at:

ξN =
∞

∑
n=1

N−1

∑
k=1

(−1)k
[

f (N−k)
N (n + 1)− f (N−k)

N (n)
] BN−k+1
(N − k + 1)!

+
∞

∑
n=1

(−1)N
∫ n+1

n
f ′(x) B1(x− n) dx ,

(18)

but, taking into account that N is even, the second summatory over n in the right-hand side of
Equation (18) is precisely ξN , according to Theorem 1, and the corollary follows.

Finally, we should point out that the second identity in Theorem 1 is far more convenient for
computing ξN numerically than the first one because f (N)

N (x) = O((ln x)N/xN+2) as x → ∞.

3. Recurrence Relations and Explicit Evaluations of SN

In his historic paper on number theory, Riemann deduced a functional equation for ζ(s) and an
integral representation for its analytic continuation over the whole complex plane [2]. A combination
of these two results suggests the definition of a function, H(s), holomorphic on C, as follows:

H(s) =
1
2

s(s− 1)
Γ
( s

2

)
πs/2 ζ(s) , (19)

with H(s) given by:

2H(s) = 1 + s(s− 1)
∫ ∞

1

(
xs/2−1 + x−s/2−1/2

) [ϑ(x)− 1
2

]
dx . (20)

Here, ϑ(x) is Jacobi’s ϑ-function defined as:

ϑ(x)− 1
2

=
∞

∑
n=1

e−n2πx = J(x) . (21)

In this section we will use the analytic continuation of ζ(s) to find a recurrence relation for
SN(s0 = 2) stated as follows:

Theorem 2. The Dirichlet series SN(s0), with s0 = 2, satisfies a recurrence relation:

SN = π

[
N!
(

1− 1
2N+1

)
+ (−1)NHN

−
N−1

∑
j=0

(
N
j

)
(−1)N+j qN−j Sj

]
,

(22)
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where:

HN =
1

2N

∫ ∞

1
(ln x)N

[
1 + (−1)N x−3/2

]
J(x) d x (23)

qN =
1

2N

∫ ∞

0
(ln x)N e−πx dx , (24)

for any integer N ≥ 0. The recurrence in Equation (22) would be applied for N > 0 starting with S0 = π2/6.

Proof. We start with the definition of the complex analytic function H(s) in Equation (20) and rewrite
it in the form:

2H(s)
s(s− 1)

=
1

s(s− 1)
+
∫ ∞

1

xs0/2−1e
z ln x

2 + x−s0/2−1/2e
−z ln x

2

 J(x) dx , (25)

where s0 is a point with <(s0) > 1 and z = s− s0. By Taylor expansion of the exponentials in the
integral we have:

2H(s)
s(s− 1)

=
1

s(s− 1)
+

∞

∑
n=0

HN(s0)

n!
zn , (26)

with:
Hn(s0) =

1
2n

∫ ∞

1
(ln x)n

[
xs0/2−1 + (−1)nx−s0/2−1/2

]
J(x) dx . (27)

Alternatively, from Equations (26) and (27) we obtain the following Taylor series:

2H(s)
s(s− 1)

=
∞

∑
n=0

zn

{
(−1)n

(s0 − 1)n+1 −
(−1)n

sn+1
0

+
Hn(s0)

n!

}
. (28)

We notice also that the function Q(s) = Γ(s/2)/πs/2 can be expanded in a similar way:

Q(s) =
∫ ∞

0
xs/2−1 e−πx dx =

∞

∑
n=0

qn(s0)
zn

n!
, (29)

where:
qn(s0) =

1
2n

∫ ∞

0
xs0/2−1 (ln x)n e−πx dx . (30)

If we consider the Taylor series for ζ(s) about a point s0, as given in Equation (1), and the series
for Q(s) defined above in Equations (29) and (30), then the series for the product Q(s)ζ(s) ensues:

Q(s)ζ(s) =
∞

∑
n=0

zn

n!
qn(s0)

∞

∑
m=0

(−1)m zm

m!
Sm(s0)

=
∞

∑
n=0

zn

(
n

∑
k=0

(−1)k

k!(n− k)!
qn−k(s0)Sk(s0)

)
,

(31)

in terms of the Cauchy product of the succession of coefficients, qn(s0) and Sn(s0), n = 0, 1, . . .. Now,
from Riemann’s functional equation in Equation (19) and the convergent series in Equations (28) and
(31) we obtain, by identifying the coefficients of the same order, that:

n

∑
k=0

(−1)k

k!(n− k)!
qn−k(s0) Sk(s0) =

(−1)n

(s0 − 1)n+1 −
(−1)n

sn+1
0

+Hn(s0) . (32)
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But, noticing that q0(s0) = Γ(s0/2)/πs0/2, we find that this expression can be rewritten as:

Sn(s0) =
πs0/2

Γ(s0/2)

[
n!

(
1

(s0 − 1)n+1 −
1

sn+1
0

)
+ (−1)nHn(s0)

−
n−1

∑
k=0

(
n
k

)
(−1)n+k qn−k(s0)Sk(s0)

]
,

(33)

which allows for the calculation of Sn(s0) for any n > 0 in terms of S0(s0), S1(s0), . . ., Sn−1(s0). The
initial condition for the iteration is S0(s0) = ζ(s0). The recurrence relation in Equation (22) is a
particular case of Equation (33) for s0 = 2.

The integrals defining the coefficients of the Taylor expansion for Q(s) as given in Equation (30)
can be explicitly evaluated for s0 = 2. For example, we have:

q0 =
1
π

, (34)

q1 = −γ + ln π

2π
, (35)

q2 =
π

24
+

(γ + ln π)2

4π
, (36)

and we can apply these results and the recurrence relation in Equation (22) to obtain the following
expressions:

Corollary 3. For s0 = 2 we have that:

H1(s0 = 2) =
3
2
− 4π ln A +

π

6
(γ + ln(4π)) , (37)

and:

S2(s0 = 2) =
7π

4
− π4

144
− 2π2 (γ + ln π)

(
ln A− ln 2

12

)
+

π2

8
(γ + ln π)2 +

π

4
H2(s0 = 2)

(38)

where A is Glaisher’s constant and γ is Euler’s constant. The coefficientH2(s0 = 2) can be expressed in terms
of Meijer G-functions:

H2(s0 = 2) =
∞

∑
n=1

2
n2π
G3,0

2,3

(
{} {1, 1}

{0, 0, 0} {}

∣∣∣∣∣ n2π

)

+ 2
√

π
∞

∑
n=1

n G4,0
3,4

(
{} {1, 1, 1}

{−1/2, 0, 0, 0} {}

∣∣∣∣∣ n2π

)
.

(39)

Proof. The first result is obtained from the recurrence relation in Equation (22), the explicit expression
for S1(s0 = 2) in Equation (4) and the initial condition S0(s0 = 2) = π2/6. The second one in
Equation (38) follows from the application of the recurrence relation for n = 2, Equations (35) and (36)
and the representation ofH2(s0 = 2) as a Mellin-Barnes integral [14].

4. Conclusions

The problem of the analytical properties or, even the evaluation, of the Riemann zeta function
has been proven to be very complicated. The explicit evaluation of this function began before the
time of Riemann, with the solution of the so-called Basel problem by Euler and the calculation of
ζ(2) [15]. However, the first derivative, ζ ′(2), was only found in connection with the definition of
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Glaisher-Kinkelin’s constant at the turn of the XIXth century [5,6]. In the XXth century, Vinogradov’s
method for evaluating Weyl’s sums and trigonometric sums were also proved to be useful for obtaining
new results in the neighbourhood of the line σ = 1 [1,16]. Important results on the mean-value of
the Riemann zeta function at the critical line were also obtained by Atkinson and they provide
some insight on the behaviour of the function in the region in which it shows its richer structure [1].
Emphasis has been in numerical calculations of zeros since the advent of modern powerful computers.
These started with Riemann-Siegel’s formula in the thirties of the past century, although it was
improved by Odlyzko and Schönhage in the late eighties [17]. Notwithstanding these important
developments, it seems useful to explore new connections analytically to other special functions as the
one shown in this paper. Representations in asymptotic limits could also be helpful in getting a better
understanding on the behaviour of ζ(s) or its extensions. A more general approach along this line will
be published elsewhere.
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