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Abstract: Fuzzy convergence spaces are extensions of convergence spaces. >-convergence
spaces are important fuzzy convergence spaces. In this paper, p-regularity (a relative regularity)
in >-convergence spaces is discussed by two equivalent approaches. In addition, lower and upper
p-regular modifications in >-convergence spaces are further investigated and studied. Particularly,
it is shown that lower (resp., upper) p-regular modification and final (resp., initial) structures have
good compatibility.
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1. Introduction

Convergence spaces [1] are generalizations of topological spaces. Regularity is an important
property in convergence spaces. In general, there are two equivalent approaches to characterize
regularity. One approach is stated through a diagonal condition of filters [2,3], the other approach is
represented through a closure condition of filters [4]. In [5,6], for a pair of convergence structures p, q on
the same underlying set, Wilde-Kent-Richardson considered a relative regularity (called p-regularity)
both from two equivalent approaches. When p = q, p-regularity is nothing but regularity.
Wilde-Kent [6] further presented a theory of lower and upper p-regular modifications in convergence
spaces. Said precisely, for convergence structures p, q on a set X, the lower (resp., upper) p-regular
modification of q is defined as the finest (resp., coarsest) p-regular convergence structure coarser
(resp., finer) than q.

Fuzzy convergence spaces are natural extensions of convergence spaces. Quite recently, two types
of fuzzy convergence spaces received wide attention: (1) stratified L-generalized convergence spaces
(resp., stratified L-convergence spaces) initiated by Jäger [7] (resp., Flores [8]) and then developed by
many scholars [8–30]; and (2) >-convergence spaces introduced by Fang [31] and then discussed by
many researchers [32–36]. Regularity in stratified L-generalized convergence spaces (resp., stratified
L-convergence spaces) was studied by Jäger [37] (resp., Boustique-Richardson [38,39]), p-regularity
and p-regular modifications in stratified L-generalized convergence spaces and that in stratified
L-convergence spaces were discussed by Li [40,41]. Regularity in >-convergence spaces by different
diagonal conditions of >-filters were researched by Fang [31] and Li [42], respectively. Regularity in
>-convergence spaces by closure condition of >-filters were studied by Reid and Richardson [36].
In this paper, we shall discuss p-regularity and p-regular modifications in >-convergence spaces.

The contents are arranged as follows. Section 2 recalls some notions and notations for later use.
Section 3 presents p-regularity in >-convergence spaces by a diagonal condition of >-filters and a
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closure condition of >-filters, respectively. Section 4 mainly discusses p-regular modifications in
>-convergence spaces. The lower and upper p-regular modifications in >-convergence spaces are
investigated and researched. Especially, it is shown that lower (resp., upper) p-regular modification
and final (resp., initial) structures have good compatibility.

2. Preliminaries

In this paper, if not otherwise stated, L = (L,≤) is always a complete lattice with a top element >
and a bottom element ⊥, which satisfies the distributive law α ∧ (

∨
i∈I βi) =

∨
i∈I(α ∧ βi). A lattice

with these conditions is called a complete Heyting algebra. The operation→: L× L −→ L given by

α→ β =
∨
{γ ∈ L : α ∧ γ ≤ β}.

is called the residuation with respect to ∧. We collect here some basic properties of the binary operations
∧ and→ [43].

(1) a→ b = > ⇔ a ≤ b;
(2) a ∧ b ≤ c⇔ b ≤ a→ c;
(3) a ∧ (a→ b) ≤ b;
(4) a→ (b→ c) = (a ∧ b)→ c;
(5) (

∨
j∈J aj)→ b =

∧
j∈J(aj → b); (6) a→ (

∧
j∈J bj) =

∧
j∈J(a→ bj).

A function µ : X → L is said to be an L-fuzzy set in X, and all L-fuzzy sets in X are denoted as
LX. The operators ∨,∧,→ on L can be translated onto LX pointwisely. Precisely, for any µ, ν, µt(t ∈
T) ∈ LX ,

(
∨
t∈T

µt)(x) =
∨
t∈T

µt(x), (
∧
t∈T

µt)(x) =
∧
t∈T

µt(x), (µ→ ν)(x) = µ(x)→ ν(x).

Let f : X −→ Y be a function. We define f→ : LX −→ LY by f→(µ)(y) =
∨

f (x)=y µ(x) for µ ∈ LX

and y ∈ Y, and define f← : LY −→ LX by f←(ν)(x) = ν( f (x)) for ν ∈ LY and x ∈ X [43].
Let µ, ν be L-fuzzy sets in X. The subsethood degree of µ, ν, denoted as SX(µ, ν), is defined by

SX(µ, ν) = ∧
x∈X

(µ(x)→ ν(x)) [44–46]

Lemma 1. [31,42,47] Let f : X −→ Y be a function and µ1, µ2 ∈ LX , λ1, λ2 ∈ LY. Then

(1) SX(µ1, µ2) ≤ SY( f→(µ1), f→(µ2)),
(2) SY(λ1, λ2) ≤ SX( f←(λ1), f←(λ2)),
(3) SY( f→(µ1), λ1) = SX(µ1, f←(λ1)).

2.1. >-Filters and >-Convergence Spaces

Definition 1. [43,48] A nonempty subset F ⊆ LX is said to be a>-filter on the set X if it satisfies the following
three conditions:

(TF1) ∀λ ∈ F,
∨

x∈X
λ(x) = >,

(TF2) ∀λ, µ ∈ F, λ ∧ µ ∈ F,
(TF3) if

∨
µ∈F

SX(µ, λ) = >, then λ ∈ F.

The set of all >-filters on X is denoted by F>L (X).

Definition 2. [43] A nonempty subset B ⊆ LX is referred to be a >-filter base on the set X if it holds that:

(TB1) ∀λ ∈ B,
∨

x∈X
λ(x) = >,

(TB2) if λ, µ ∈ B, then
∨

ν∈B
SX(ν, λ ∧ µ) = >.
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Each >-filter base generates a >-filter FB by

FB := {λ ∈ LX |
∨

µ∈B
SX(µ, λ) = >}.

Example 1. [31,43] Let f : X −→ Y be a function.

(1) For any F ∈ F>L (X), the family { f→(λ)|λ ∈ F} forms a >-filter base on Y. The generated >-filter is
denoted as f⇒(F), called the image of F under f . It is known that µ ∈ f⇒(F)⇐⇒ f←(µ) ∈ F.

(2) For any G ∈ F>L (Y), the family { f←(µ)|µ ∈ G} forms a >-filter base on Y iff
∨

y∈ f (X)
µ(y) = > holds

for all µ ∈ G. The generated >-filter (if exists) is denoted as f⇐(G), called the inverse image of G under
f . It is known that G ⊆ f⇒( f⇐(G)) holds whenever f⇐(G) exists. Furthermore, f⇐(G) always exists
and G = f⇒( f⇐(G)) whenever f is surjective.

(3) For any x ∈ X, the family [x]> =: {λ ∈ LX |λ(x) = >} is a >-filter on X, and f⇒([x]>) = [ f (x)]>.

Lemma 2. Let f : X −→ Y be a function.

(1) If B is a >-filter base of F ∈ F>L (X), then { f→(λ)|λ ∈ B} is a >-filter base of f⇒(F), see Example 2.9
(1) in [31].

(2) If B is a>-filter base of G ∈ F>L (Y) and f⇐(G) exists, then { f←(µ)|µ ∈ B} is a>-filter base of f⇐(G),
see Example 2.9 (2) in [31].

(3) Let F,G ∈ F>L (X) and B be a >-filter base of F. Then B ⊆ G implies that F ⊆ G, see Lemma 2.5 (1)
in [42].

(4) Let F ∈ F>L (X) and B be a >-filter base of F. Then
∨

µ∈B
SX(µ, λ) =

∨
µ∈F

SX(µ, λ), see Lemma 3.1 in [36].

For each F ∈ F>L (X), we define Λ(F) : LX −→ L as

∀λ ∈ LX , Λ(F)(λ) =
∨

µ∈F
SX(µ, λ),

then Λ(F) is a tightly stratified L-filter on X [47].
In the following, we recall some notions and notations collected in [29].

Definition 3. [31] Let X be a nonempty set. Then a function q : F>L (X) −→ 2X is said to be a >-convergence
structure on X if it satisfies the following two conditions:

(TC1) ∀x ∈ X, [x]>
q−→ x;

(TC1) if F
q−→ x and F ⊆ G, then G

q−→ x.

where F
q−→ x is short for x ∈ q(F). The pair (X, q) is said to be a >-convergence space.

A function f : X −→ X′ between >-convergence spaces (X, q), (X′, q′) is said to be continuous if

f⇒(F)
q′−→ f (x) for any F

q−→ x.
We denote the category consisting of >-convergence spaces and continuous functions as >-CS .

It has been known that >-CS is topological over SET [31].

For a source (X
fi−→ (Xi, qi))i∈I , the initial structure, q on X is defined by

F
q−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)

qi−→ fi(x) [35,49].

For a sink ((Xi, qi)
fi−→ X)i∈I , the final structure, q on X is defined as

F
q→ x ⇐⇒

{
F ⊇ [x]>, x 6∈ ∪i∈I fi(Xi);

F ⊇ f⇒i (Gi), ∃i ∈ I, xi ∈ Xi,Gi ∈ F>L (Xi) s.t f (xi) = x,Gi
qi→ xi.
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When X = ∪i∈I fi(Xi), the final structure q can be characterized as

F
q→ x ⇐⇒ F ⊇ f⇒i (Gi) for some Gi

qi→ xi with f (xi) = x.

Let >(X) denote the set of all >-convergence structures on a set X. For p, q ∈ >(X), we say that q
is finer than p (or p is coarser than q), denoted as p ≤ q for short, if the identity idX : (X, q) −→ (X, p) is
continuous. It has been known that (>(X),≤) forms a completed lattice. The discrete (resp., indiscrete)

structure δ (resp., ι) is the top (resp., bottom) element of (T(X),≤), where δ is defined as F δ−→ x iff
F ⊇ [x]>; and ι is defined as F ι−→ x for all F ∈ F>L (X), x ∈ X [42].

Remark 1. When L = {⊥,>}, >-convergence spaces degenerate into convergence spaces. Therefore,
>-convergence spaces are natural generalizations of convergence spaces.

3. p-Regularity in >-Convergence Spaces

In this section, we shall discuss the p-regularity in >-convergence spaces. Two equivalent
approaches are considered, one approach using diagonal >-filter and the other approach using closure
of >-filter. Moreover, it will be proved that p-regularity is preserved under the initial and final
structures in the category >-CS.

At first, we recall the notions of diagonal >-filter and closure of >-filter to define p-regularity.
Let J, X be any sets and φ : J −→ F>L (X) be any function. Then we define a function

φ̂ : LX → LJ as
∀λ ∈ LX , ∀j ∈ J, φ̂(λ)(j) = Λ(φ(j))(λ) =

∨
µ∈φ(j)

SX(µ, λ).

For any F ∈ F>L (J), it is known that the subset of LX defined by

kφF := {λ ∈ LX |φ̂(λ) ∈ F}

forms a >-filter on X, called diagonal >-filter of F under φ [31]. It was shown that SX(λ, µ) ≤
SJ(φ̂(λ), φ̂(µ)) for any λ, µ ∈ LX .

Lemma 3. Let f : X −→ Y and φ : J −→ F>L (X) be functions. Then for any F ∈ F>L (J) we have
f⇒(kφF) = k( f⇒ ◦ φ)F.

Proof. f⇒(kφF) ⊆ k( f⇒ ◦ φ)F. By Lemma 2 (3) we need only check that f→(λ) ∈ k( f⇒ ◦ φ)F for any
λ ∈ kφF. Take λ ∈ kφF then φ̂(λ) ∈ F. Please note that ∀j ∈ J,

φ̂(λ)(j) =
∨

µ∈φ(j)

SX(µ, λ) ≤
∨

µ∈φ(j)

SY( f→(µ), f→(λ)) ≤
∨

ν∈ f⇒(φ(j))

SY(ν, f→(λ)) = f̂⇒ ◦ φ( f→(λ))(j),

i.e., φ̂(λ) ≤ f̂⇒ ◦ φ( f→(λ)), and so f̂⇒ ◦ φ( f→(λ)) ∈ F, i.e., f→(λ) ∈ k( f⇒ ◦ φ)F.
k( f⇒ ◦ φ)F ⊆ f⇒(kφF). For any λ ∈ k( f⇒ ◦ φ)F we have f̂⇒ ◦ φ(λ) ∈ F. By Lemma 2 (4), ∀j ∈ J,

f̂⇒ ◦ φ(λ)(j) =
∨

ν∈ f⇒(φ(j))

SY(ν, λ) =
∨

µ∈φ(j)

SY( f→(µ), λ) ≤
∨

µ∈φ(j)

SX(µ, f←(λ)) = φ̂( f←(λ))(j),

i.e., f̂⇒ ◦ φ(λ) ≤ φ̂( f←(λ)), and so φ̂( f←(λ)) ∈ F, i.e., f←(λ) ∈ kφF then λ ∈ f⇒(kφF).

Definition 4. [36] Let (X, p) be a >-convergence space. For each λ ∈ LX , the L-set λp ∈ LX defined by

∀x ∈ X, λp(x) =
∨

F
p−→x

Λ(F)(λ) =
∨

F
p−→x

∨
µ∈F

SX(µ, λ)
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is called closure of λ w.r.t p.
For any F ∈ F>L (X), the closure of F regarding p, denoted as clp(F), is defined to be the >-filter generated

by {λp|λ ∈ F} as a >-filter base.

Lemma 4. [36] Let (X, p) be a >-convergence space. Then for all λ, µ ∈ LX we get

(1) λ ≤ λp;
(2) λ ≤ µ implies λp ≤ µp;
(3) SX(λ, µ) ≤ SX(λ, µ).

Let N be the set of natural numbers containing 0 and let (X, p) be a >-convergence space. For any
F ∈ F>L (X), we define cl0

p(F) = F. Furthermore, for any n ∈ N, we define the n + 1 th iteration of the
closure >-filter of F as cln+1

p (F) = clp(cln
p(F)) if cln

p(F) has been defined.
The next proposition collects the properties of closure of >-filters. We omit the obvious proofs.

Proposition 1. Let (X, p) be a >-convergence space and F,G ∈ F>L (X). Then for any n ∈ N,

(1) cln
p(F) ⊆ F,

(2) if F ⊆ G, then cln
p(F) ⊆ cln

p(G),
(3) if p′ ∈ T(X) and p ≤ p′, then cln

p(F) ⊆ cln
p′(F).

Definition 5. A function f : (X, q) −→ (Y, p) between >-convergence spaces is said to be a closure function
if f→(λ)p ≤ f→(λq) for any λ ∈ LX .

Proposition 2. Suppose that f : (X, q) −→ (Y, p) is a function between >-convergence spaces and
F ∈ F>L (X), n ∈ N.

(1) If f is a continuous function, then f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)).
(2) If f is a closure function, then f⇒(cln

q (F)) ⊆ cln
p( f⇒(F)).

Proof. (1) Let’s prove it by mathematical induction.
Firstly, we check f←(λ)q ≤ f←(λp) for any λ ∈ LY. In fact, for any x ∈ X, by continuity of f

we obtain

f←(λ)q(x) =
∨

G
q−→x

∨
µ∈G

SX(µ, f←(λ)) =
∨

G
q−→x

∨
µ∈G

SY( f→(µ), λ)

≤
∨

f⇒(G)
p−→ f (x)

∨
f→(µ)∈ f⇒(G)

SY( f→(µ), λ) ≤
∨

H
p−→ f (x)

∨
ν∈H

SY(ν, λ) = f←(λp)(x).

Secondly, we prove f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)) when n = 1. Let λ ∈ f⇒(F), i.e., f←(λ) ∈ F.

Then by f←(λ)q ≤ f←(λp) we have f←(λp) ∈ clq(F), i.e., λp ∈ f⇒(clq(F)). It follows by Lemma 2 (3)
that f⇒(clq(F)) ⊇ clp( f⇒(F)).

Thirdly, we assume that f⇒(cln
q (F)) ⊇ cln

p( f⇒(F)) when n = k. Then we prove f⇒(cln
q (F)) ⊇

cln
p( f⇒(F)) when n = k + 1. In fact,

f⇒(clk+1
q (F)) = f⇒(clq(clk

q(F))) ⊇ clp( f⇒(clk
q(F))) ⊇ clp(clk

p( f⇒(F))) = clk+1
p ( f⇒(F)).

(2) We prove only that the inequality holds for n = 1, and the rest of the proof is similar to (1).
For any λ ∈ F, we have λq ∈ clq(F) and then f→(λ) ∈ f⇒(F). From f is a closure function, we

conclude that f→(λq) ≥ f→(λ)p ∈ clp( f⇒(F)) and so f→(λq) ∈ clp( f⇒(F)). By Lemma 2 (1), (3) we
obtain f⇒(clq(F)) ⊆ clp( f⇒(F)).

Now, we tend our attention to p-regularity and its equivalent characterization. In the following,
we shorten a pair of >-convergence spaces (X, p) and (X, q) as (X, p, q).
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Definition 6. Let (X, p, q) be a pair of >-convergence spaces. Then q is said to be p-regular if the following
condition p-(TC) is fulfilled.

p-(TC): ∀F ∈ F>L (X), ∀x ∈ X,F
q−→ x =⇒ clp(F)

q−→ x.

Remark 2. When L = {⊥,>}, a >-convergence space degenerates into a convergence space, and the condition
p-(TC) degenerates into the crisp p-regularity condition in [5]. When p = q, the condition p-(TC) is precisely
the regular characterization in [36].

We say a pair of >-convergence spaces (X, p, q) fulfill the Fischer >-diagonal condition whenever

p-(TR): Let J, X be any sets, ψ : J −→ X, and φ : J −→ F>L (X) such that φ(j)
p−→ ψ(j), for each

j ∈ J. Then for each F ∈ F>L (J) and each x ∈ X, kφF
q−→ x implies ψ⇒(F)

q−→ x.

Remark 3. When L = {⊥,>}, a >-convergence space degenerates into a convergence space, and the condition
p-(TC) degenerates into the Fischer diagonal condition Rp,q in [6]. When p = q, the condition p-(TR) is
precisely the diagonal condition (TR) in [31].

In the following, we shall show that p-regularity can be described by Fischer>-diagonal condition
p-(TR).

Lemma 5. Let (X, p, q) be a pair of >-convergence spaces and let J, X, φ, ψ be defined as in p-(TR).
Then SX(µp, λ) ≤ SJ(φ̂(µ), ψ←(λ)) for all λ, µ ∈ LX .

Proof. Let λ, µ ∈ LX .

SX(µp, λ) =
∧

x∈X
([

∨
G

p−→x

Λ(G)(µ)]→ λ(x)), by ψ(j) ∈ X, φ(j)
p−→ ψ(j)

≤
∧
j∈J

(Λ(φ(j))(µ)→ λ(ψ(j))) =
∧
j∈J

(φ̂(µ)(j)→ ψ←(λ)(j))

= SJ(φ̂(µ), ψ←(λ)).

Theorem 1. (Theorem 4.8 in [36] for p = q) Let (X, p, q) be a pair of >-convergence spaces.
Then p-(TC)⇐⇒p-(TR).

Proof. p-(TC)=⇒p-(TR). Let J, X, φ, ψ be defined as in p-(TR). Assume that F ∈ F>L (J) and kφF
q−→ x.

Then it follows by p-(TC) that clp(kφF)
q−→ x.

Next we prove that clp(kφF) ⊆ ψ⇒(F). Indeed, for any λ ∈ clp(kφF), we have

> =
∨

µ∈kφF
SX(µp, λ)

Lemma 5
≤

∨
µ∈kφF

SJ(φ̂(µ), ψ←(λ)) =
∨

φ̂(µ)∈F
SJ(φ̂(µ), ψ←(λ)) ≤

∨
ν∈F

SJ(ν, ψ←(λ)),

which means ψ←(λ) ∈ F, i.e., λ ∈ ψ⇒(F).
Now we have known that clp(kφF)

q−→ x and clp(kφF) ⊆ ψ⇒(F). Therefore, ψ⇒(F)
q−→ x,

as desired.
p-(TR)=⇒p-(TC). Let

J = {(G, y) ∈ F>L (X)× X|G p−→ y}; ψ : J −→ X, (G, y) 7→ y; φ : J −→ F>L (X), (G, y) 7→ G.

Then ∀j ∈ J, φ(j)
p−→ ψ(j). Please note that j = (G, y) ∈ J ⇐⇒ G = φ(j), y = ψ(j).
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(1) For any λ, µ ∈ LX , SX(µp, λ) = SJ(φ̂(µ), ψ←(λ)). Indeed,

SX(µp, λ) =
∧

y∈X
([

∨
G

p−→y

Λ(G)(µ)]→ λ(y)) =
∧

y∈X

∧
(G,y)∈J

(Λ(G)(µ)→ λ(y))

=
∧

j=(G,y)∈J

(Λ(φ(j))(µ)→ λ(ψ(j))) =
∧
j∈J

(φ̂(µ)(j)→ ψ←(λ)(j))

= SJ(φ̂(µ), ψ←(λ)).

(2) For each F ∈ F>L (X), the family {φ̂(λ)|λ ∈ F} forms a >-filter base on J. Indeed,

(TB1): For any λ ∈ F, by [y]>
p−→ y for any y ∈ X, we have∨

j∈J
φ̂(λ)(j) =

∨
j∈J

Λ(φ(j))(λ) =
∨

y∈X

∨
G

p−→y

Λ(G)(λ) ≥
∨

y∈X
Λ([y]>)(λ) =

∨
y∈X

λ(y) = >.

(TB2): For any λ, µ ∈ F, note that for any j ∈ J,

φ̂(λ)(j) ∧ φ̂(µ)(j) =
∨

λ1∈φ(j)

SX(λ1, λ) ∧
∨

µ1∈φ(j)

SX(µ1, µ)

≤
∨

λ1,µ1∈φ(j)

SX(λ1 ∧ µ1, λ ∧ µ)

≤
∨

ν∈φ(j)

SX(ν, λ ∧ µ) = φ̂(λ ∧ µ)(j),

i.e., φ̂(λ) ∧ φ̂(µ) ≤ φ̂(λ ∧ µ). It follows easily that (TB2) is satisfied. We denote the >-filter generated
by {φ̂(λ)|λ ∈ F} as Fφ.

(3) For each F ∈ F>L (X), kφFφ ⊇ F. Indeed, for any λ ∈ F, we have φ̂(λ) ∈ Fφ, i.e., λ ∈ kφFφ.
(4) For each F ∈ F>L (X), ψ⇒(Fφ) = clp(F). Indeed,

λ ∈ ψ⇒(Fφ) ⇐⇒ ψ←(λ) ∈ Fφ ⇐⇒
∨

µ∈F
SJ(φ̂(µ), ψ←(λ)) = > (1)⇐⇒

∨
µ∈F

SX(µp, λ) = > ⇐⇒ λ ∈ clp(F).

Assume that F
q−→ x, then by (3), we have kφFφ ⊇ F , and so kφFφ q−→ x. From p-(TR) and (4),

we get that clp(F) = ψ⇒(Fφ)
q−→ x. Therefore, the condition p-(TC) is satisfied.

The next theorem shows that p-regularity is preserved under initial structures.

Theorem 2. Let {(Xi, qi, pi)}i∈I be pairs of >-convergence spaces such that each qi is pi-regular. If q (resp., p)

is the initial structure on X regarding the source (X
fi−→ (Xi, qi))i∈I (resp., (X

fi−→ (Xi, pi))i∈I), then q is
also p-regular.

Proof. Let ψ : J −→ X and φ : J −→ F>L (X) be any function such that φ(j)
p−→ ψ(j) for any j ∈ J.

Then
∀i ∈ I, ∀j ∈ J, ( f⇒i ◦ φ)(j) = f⇒i (φ(j))

pi−→ fi(ψ(j)) = ( fi ◦ ψ)(j).

Let F ∈ F>L (J) satisfy kφF
q−→ x. Then by definition of q and Lemma 3 we have

∀i ∈ I, k( f⇒i ◦ φ)F = f⇒i (kφF)
qi−→ fi(x).

Since qi is pi-regular we have f⇒i ψ⇒(F) = ( fi ◦ ψ)⇒(F)
qi−→ fi(x). By definition of q we have

ψ⇒(F)
q−→ x. Thus q is p-regular.
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The next theorem shows that p-regularity is preserved under final structures with some additional
assumptions.

Theorem 3. Let {(Xi, qi, pi)}i∈I be pairs of >-convergence spaces such that each qi is pi-regular. Let q

(resp., p) be the final structure on X relative to the sink ((Xi, qi)
fi−→ X)i∈I (resp., ((Xi, pi)

fi−→ X)i∈I).
If X = ∪i∈I fi(Xi) and each fi : (Xi, pi) −→ (X, p) is a closure function, then q is also p-regular.

Proof. Let F ∈ F>L (X)
q−→ x. Then by definition of q, there exists i ∈ I, xi ∈ Xi,Gi ∈ F>L (Xi), fi(xi) =

x such that Gi
qi−→ xi and f⇒i (Gi) ⊆ F. Because qi is pi-regular we get clpi (Gi)

qi−→ xi and then

f⇒i (clpi (Gi))
q−→ x. By fi is a closure function and Proposition 2 (2) it follows that clp( f⇒i (Gi))

q−→ x.

Hence clp(F)
q−→ x from clp( f⇒i (Gi)) ⊆ clp(F). Thus q is p-regular.

For any {qi}i∈I ⊆ >(X), note that the supremum (resp., infimum) of {qi}i∈I in the lattice >(X),
denoted as sup{qi|i ∈ I} (resp., inf{qi|i ∈ I}), is precisely the initial structure (resp., final structure)

regarding the source (X
idX−→ (X, qi))i∈I (resp., the sink ((X, qi)

idX−→ X)i∈I). By Theorems 2 and 3,
we obtain easily the following corollary. It will show us that p-regularity is preserved under supremum
and infimum in the lattice >(X).

Corollary 1. Let {qi|i ∈ I} ⊆ >(X) and p ∈ >(X) with each (X, qi) being p-regular. Then both inf{qi}i∈I
and sup{qi}i∈I are all p-regular.

4. Lower (Upper) p-Regular Modifications in >-Convergence Spaces

In this section, we shall consider the p-regular modifications in >-convergence spaces.

Lemma 6. Let p, q be >-convergence structures on X.

(1) If q is p-regular, then F
q−→ x implies cln

p(F)
q−→ x for any n ∈ N.

(2) If q is p-regular, then q is p′-regular for any p ≤ p′.
(3) The indiscrete structure ι is p-regular for any p ∈ >(X).

Proof. It is obvious.

4.1. Lower p-Regular Modification

It has been known that p-regularity is preserved under supremum in the lattice >(X)

(see Corollary 1), and the indiscrete structure ι is p-regular for any p ∈ >(X) (see Lemma 6 (3)).
So, it follows easily that for a pair of >-convergence spaces (X, p, q), there is a finest p-regular
>-convergence structure γpq on X which is coarser than q.

Definition 7. Let (X, p, q) be a pair of >-convergence spaces. Then the >-convergence structure γpq on X is
said to be the lower p-regular modification of q.

The following theorem gives a characterization on lower p-regular modification.

Theorem 4. For any p, q ∈ >(X), F
γpq
−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G).

Proof. We define q′ as F
q′−→ x ⇐⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G), then we prove γpq = q′.

Obviously, q′ ∈ >(X) and q′ ≤ q. We check that q′ is p-regular. In fact, let F
q′−→ x. Then

there exists n ∈ N,G
q−→ x such that F ⊇ cln

p(G). It follows that clp(F) ⊇ clp(cln
p(G)) = cln+1

p (G),

so clp(F)
q′−→ x. Now, we have proved that q′ is p-regular.
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Let r be p-regular with r ≤ q. We prove below r ≤ q′. In fact, let F
q′−→ x. Then there exists

n ∈ N,G
q−→ x such that F ⊇ cln

p(G), so G r−→ x by q ≤ r. Because r is p-regular it follows by

Lemma 6 (1) that F ⊇ cln
p(G)

r−→ x. Therefore, r ≤ q′.

Theorem 5. If f : (X, q) −→ (X′, q′) and f : (X, p) −→ (X′, p′) are both continuous function between
>-convergence spaces then so is f : (X, γpq) −→ (X′, γp′q′).

Proof. For any F ∈ F>L (X) and x ∈ X.

F
γpq
−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. F ⊇ cln
p(G)

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ f⇒(cln

p(G))

=⇒ ∃n ∈ N, f⇒(G)
q′−→ f (x) s.t. f⇒(F) ⊇ cln

p′( f⇒(G))

=⇒ f⇒(F)
γp′ q

′

−→ ( f (x)),

where the second implication uses the continuity of f : (X, q) −→ (X′, q′), and the third implication
uses the continuity of f : (X, p) −→ (X′, p′) and Proposition 2(1).

The following theorem exhibits us that lower p-regular modification and final structures have
good compatibility.

Theorem 6. Let {(Xi, qi, pi)}i∈I be pairs of spaces in >-CS and let q be the final structure relative to the

sink ((Xi, qi)
fi−→ X)i∈I with X = ∪i∈I fi(Xi). If p ∈ >(X) such that each fi : (Xi, pi) −→ (X, p) is a

continuous closure function, then γpq is the final structure relative to the sink ((Xi, γpi qi)
fi−→ X)i∈I .

Proof. Let s denote the final structure relative to the sink ((Xi, γpi qi)
fi−→ X)i∈I . Then for any

F ∈ F>L (X) and x ∈ X

F s−→ x =⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x,Gi
γpi qi−→ xi s.t. f⇒i (Gi) ⊆ F, by Theorem 4

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, fi(xi) = x,Hi
qi−→ xi s.t. cln

pi
(Hi) ⊆ Gi, f⇒i (Gi) ⊆ F, by Proposition 2 (1)

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. cln

p( f⇒i (Hi)) ⊆ f⇒i (cln
pi
(Hi)) ⊆ f⇒i (Gi), f⇒i (Gi) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, n ∈ N, f⇒i (Hi)
q−→ x s.t. cln

p( f⇒i (Hi)) ⊆ F

=⇒ F
γpq
−→ x.

Conversely,

F
γpq
−→ x =⇒ ∃n ∈ N,G

q−→ x s.t. cln
p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (Hi) ⊆ G, cln

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. cln

p( f⇒i (Hi)) ⊆ cln
p(G), cln

p(G) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N,Hi
qi−→ xi s.t. f⇒i (cln

pi
(Hi)) ⊆ cln

p( f⇒i (Hi)) ⊆ F

=⇒ ∃i ∈ I, xi ∈ Xi, fi(xi) = x, n ∈ N, cln
pi
(Hi)

γpi qi−→ xi s.t. f⇒i (cln
pi
(Hi)) ⊆ F

=⇒ F s−→ x,

where the fourth implication follows by Proposition 2(2).
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The following corollary tells us that lower p-regular modification has good compatibility with
infimum in the lattice >(X).

Corollary 2. Assume that {qi|i ∈ I} ⊆ >(X), p ∈ >(X) and q = inf{qi|i ∈ I}. Then
γpq = inf{γpqi|i ∈ I}.

4.2. Upper p-Regular Modification

Similar to the crisp case, the discrete structure δ is not always p-regular for any p ∈ >(X).
This shows that for a given q ∈ >(X), there may not exist p-regular >-convergence structure on X
finer than q.

Definition 8. Let (X, p, q) be a pair of>-convergence spaces. If there exists a coarsest p-regular>-convergence
structure γpq on X finer than q, then it is said to be the upper p-regular modification of q.

It has been known that the existence of γpq depends on the existence of a p-regular>-convergence
structure finer than q (see Corollary 1), and γpδ is the finest p-regular >-convergence structure. So,
it follows easily that γpq exists if and only if q ≤ γpδ. By Theorem 4, we obtain the following result.

Theorem 7. Let (X, p, q) be a pair of >-convergence spaces. Then
γpq exists⇐⇒ ∀x ∈ X, ∀n ∈ N, cln

p([x]>)
q−→ x.

Proof. For any F ∈ F>L (X) and any x ∈ X, from Theorem 4 we obtain

F
γpδ
−→ x ⇐⇒ ∃n ∈ N,G δ−→ x s.t. cln

p(G) ⊆ F.

Necessity. Let γpq exist. Then q ≤ γpδ. So, for any x ∈ X, n ∈ N

[x]>
δ−→ x =⇒ cln

p([x]>)
γpδ
−→ x =⇒ cln

p([x]>)
q−→ x.

Sufficiency. Let cln
p([x]>)

q−→ x for any x ∈ X, n ∈ N. Then

F
γpδ
−→ x =⇒ ∃n ∈ N,G δ−→ x s.t. cln

p(G) ⊆ F
=⇒ ∃n ∈ N, [x]> ⊆ G s.t. cln

p(G) ⊆ F
Proposition 1 (2)

=⇒ ∃n ∈ N, cln
p([x]>) ⊆ cln

p(G) s.t. cln
p(G) ⊆ F

=⇒ ∃n ∈ N s.t. cln
p([x]>) ⊆ F

=⇒ F
q−→ x.

It follows that q ≤ γpδ, so γpq exists.

The following theorem gives a characterization on upper p-regular modification if it exists.

Theorem 8. Let (X, p, q) be a pair of >-convergence spaces and γpq exists. Then

F
γpq−→ x ⇐⇒ ∀n ∈ N, cln

p(F)
q−→ x.

Proof. We define q′ as F
q′−→ x ⇐⇒ ∀n ∈ N, cln

p(F)
q−→ x.

(1) q′ ∈ >(X). It is obvious.

(2) q ≤ q′. In fact, let F
q′−→ x then F = cl0

p(F)
q−→ x.
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(3) q′ is p-regular. In fact, let F
q′−→ x. Then for any n ∈ N it holds that cln

p(clp(F)) = cln+1
p (F)

q−→ x,

which means clp(F)
q′−→ x. So, q′ is p-regular.

(4) Let r be p-regular with q ≤ r. Then q′ ≤ r. In fact, let F r−→ x then for any n ∈ N, by

Proposition 6 (1) it holds that cln
p(F)

r−→ x and so cln
p(F)

q−→ x by q ≤ r. That means F
q′−→ x.

By (1)–(4) we get that q′ is the coarsest p-regular >-convergence structure finer than q. Therefore,
γpq = q′.

Theorem 9. Let f : (X, q) −→ (X′, q′) be a continuous function, and f : (X, p) −→ (X′, p′) be a closure
function between>-convergence spaces. If γpq and γp′q′ exist then f : (X, γpq) −→ (X′, γp′q′) is continuous.

Proof. Let F
γpq−→ x. Then ∀n ∈ N, cln

p(F)
q−→ x. Since f : (X, q) −→ (X′, q′) is a continuous function

and f : (X, p) −→ (X′, p′) is a closure function it holds that

∀n ∈ N, cln
p′( f⇒(F)) ⊇ f⇒(cln

p(F))
q′−→ f (x),

so f⇒(F)
γp′ q′−→ f (x), as desired.

The following theorem exhibits us that the upper p-regular modification has good compatibility
with initial structures.

Theorem 10. Let {(Xi, qi, pi)}i∈I be pairs of spaces in>-CS and q be the initial structure relative to the source

(X
fi−→ (Xi, qi))i∈I . Let p ∈ >(X) such that each fi : (X, p) −→ (Xi, pi) is continuous closure function.

If γpi qi exists for all i ∈ I then so does γpq, and γpq is precisely the initial structure relative to the source

(X
fi−→ (Xi, γpi qi))i∈I .

Proof. At first, we show the existence of γpq. By Theorem 7, it suffices to check that cln
p([x]>)

q−→ x

for any x ∈ X, n ∈ N. In fact, by the existence of γpi qi we have cln
pi
([ fi(x)])

qi−→ fi(x) for any
i ∈ I, x ∈ X, n ∈ N. Then by each fi : (X, p) −→ (Xi, pi) being a continuous closure function it
holds that

f⇒i (cln
p([x]>) = cln

pi
( f⇒i ([x]>)) = cln

pi
([ fi(x)]>)

qi−→ fi(x),

so cln
p([x]>)

q−→ x for any x ∈ X, n ∈ N, i.e., γpq exists.

Let s denote the initial structure relative to the source (X
fi−→ (Xi, γpi qi))i∈I . Then

F s−→ x ⇐⇒ ∀i ∈ I, f⇒i (F)
γpi qi−→ fi(x) Theorem 8⇐⇒ ∀i ∈ I, ∀n ∈ N, cln

pi
( f⇒i (F))

qi−→ fi(x)
Proposition 2⇐⇒ ∀i ∈ I, ∀n ∈ N, f⇒i (cln

p(F))
qi−→ fi(x)

⇐⇒ ∀n ∈ N, cln
p(F)

q−→ x Theorem 8⇐⇒ F
γpq−→ x.

The following corollary tells us that upper p-regular modification has good compatibility with
supremum in the lattice >(X).

Corollary 3. Assume that {qi|i ∈ I} ⊆ >(X), p ∈ >(X) and q = sup{qi|i ∈ I}. If γpqi exists for all i ∈ I
then so does γpq and γpq = sup{γpqi|i ∈ I}.
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5. Conclusions

In this paper, we studied p-regularity in >-convergence spaces by a diagonal condition and a
closure condition about >-filter, respectively. We proved that p-regularity was preserved under the
initial and final constructions in the category >-CS. We then followed as a conclusion that p-regularity
was preserved under the infimum and supremum in the lattice >(X). Furthermore, we defined and
discussed lower (upper) p-regular modifications in >-convergence spaces. In particular, we showed
that lower (resp., upper) p-regular modification has good compatibility with final (resp., initial)
construction.
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