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Abstract: A topological index is a numeric quantity that is closely related to the chemical constitution
to establish the correlation of its chemical structure with chemical reactivity or physical properties.
Miličević reformulated the original Zagreb indices in 2004, replacing vertex degrees by edge degrees.
In this paper, we established the expressions for the reformulated Zagreb indices of some derived
graphs such as a complement, line graph, subdivision graph, edge-semitotal graph, vertex-semitotal
graph, total graph, and paraline graph of a graph.
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1. Introduction

In the fields of mathematical chemistry and chemical graph theory, a topological index is a
numerical parameter that is measured based on the molecular graph of a chemical constitution.
Topological indices are extensively used in the study of quantitative structure-activity relationships
(QSARs) to establish the correlation between different properties of molecules and/or the biological
activity with their structure. Topological indices have also been applied in spectral graph theory to
measure the resilience and robustness of complex networks [1].

Suppose that Ω denotes the set of all graphs. Then, a function T : Ω→ R+ is called a topological
index if for any pair of isomorphic graphs G and H, we have T(G) = T(H). There are many topological
indices that are useful in chemistry, biochemistry, and nanotechnology.

Throughout this paper, we are concerned only with the simple and connected graphs.
Let G = (V, E) be such a graph. We use the notations V = V(G) and E = E(G) for the vertex
set and edge set of G, respectively. We use the notation dG(i) for the degree of a vertex i in G. The hand
shaking lemma says that the sum of the degrees of all the vertices is equal to double the number of
edges. Mathematically,

∑
i∈V(G)

dG(i) = 2|E(G)|

For basic definitions and notations, see the book [2].
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The first and second Zagreb indices are defined as:

M1 = M1(G) = ∑
i∈V(G)

dG(i)2

M2 = M2(G) = ∑
ij∈E(G)

dG(i)dG(j).

Another expression for the first Zagreb index is:

M1 = M1(G) = ∑
ij∈E(G)

[dG(i) + dG(j)].

These two Zagreb indices defined by Gutman and Trinajstic in 1972 [3] are among the oldest
topological indices, having many applications in mathematical chemistry. Zagreb indices are known to
be very useful in quantitative structure-property relationships (QSPR) and QSAR [4–6]. In [7] and [8],
the authors have derived the expressions for Zagreb indices of some derived graphs.

Zagreb indices were reformulated by Miličević [9] as:

EM1 = EM1(G) = ∑
e∈E(G)

dG(e)2,

EM2 = EM2(G) = ∑
e∼ f∈E(G)

dG(e)dG( f ),

where dG(e) denotes the degree of an edge e = ij in G and defined as the total number of edges
incident with e. Mathematically, dG(e) = dG(i) + dG(j)− 2. Here, e ∼ f indicates that the edges e and
f are incident. Another expression for the first reformulated Zagreb index is:

EM1 = EM1(G) = ∑
e∼ f∈E(G)

[dG(e) + dG( f )].

The first reformulated Zagreb index is closely related to Laplacian eigenvalues [10]. Much interest
has been shown by researches and scientists in the reformulated Zagreb indices [11–15].

Another vertex-degree-based topological index was found to be useful in the earliest work on
Zagreb indices [3,16], but later was totally ignored. Quite recently, some interest has been shown in
it [17,18]. It is called the forgotten index or simply the F-index and is defined as:

F = F(G) = ∑
i∈V(G)

dG(i)3

= ∑
ij∈E(G)

[dG(i)2 + dG(j)2].

In general, for any real number “α”, the generalized version of first Zagreb index is defined as:

α M1 = α M1(G) = ∑
i∈V(G)

dG(i)α

= ∑
ij∈E(G)

[dG(i)α−1 + dG(j)α−1].

Clearly, the first Zagreb index and F-index are special cases of α M1 for α = 2 and α = 3, respectively.
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Bearing in mind the reformulation of Zagreb indices, here we reformulate the F-index as:

EF = EF(G) = ∑
e∈E(G)

dG(e)3

= ∑
e∼ f∈E(G)

[dG(e)2 + dG( f )2].

We prefer to call it the reformulated forgotten index or simply the reformulated F-index.

Some Derived Graphs

Let, as before, G be a simple and connected graph with vertex set V(G) and edge set E(G).
Let |V(G)| = n and |E(G)| = m. Now, we consider the following graphs derived from G:

• Complement: The complement G of G is the graph with the same set of vertices as G, but there
is an edge between two vertices of G if and only if there is no edge between these vertices in G.
Clearly, |V(G)| = n and m = |E(G)| = n(n−1)

2 −m.
• Line graph: The line graph L = L(G) of G is the graph in which the vertex set is the edge set of

G, and there is an edge between two vertices of L if and only if their corresponding edges are
incident in G. Thus, |V(L)| = m, and by hand shaking lemma,

|E(L)| =
1
2 ∑

i∈V(L)
dL(i) =

1
2 ∑

e∈E(G)

dG(e)

=
1
2 ∑

ij∈E(G)

[dG(i) + dG(j)− 2]

=
1
2
(M1 − 2m) =

M1

2
−m.

• Subdivision graph: A subdivision graph of a graph G can be constructed by inserting a vertex on
each edge of G, which will change that edge into a path of length two. This graph is denoted as
S = S(G).

So, |V(S)| = |V(G)|+ |E(G)| = n + m and |E(S)| = 2|E(G)| = 2m.
• Vertex-semitotal graph: A vertex-semitotal graph T1 = T1(G) is constructed from G by inserting

a new vertex on each edge of G and then by joining every newly-inserted vertex to the end
vertices of the corresponding edge. Thus, |V(T1)| = |V(G)|+ |E(G)| = n + m and |E(T1)| =
|E(S)|+ |E(G)| = 2m + m = 3m.

• Edge-semitotal graph: An edge-semitotal graph T2 = T2(G) is made by putting a new vertex in each
edge of G and then joining with edges those new vertices whose corresponding edges are incident
in G. Thus, |V(T2)| = |V(G)|+ |E(G)| = n+m and |E(T2)| = |E(S)|+ |E(L)| = 2m+ M1

2 −m =

m + M1
2 .

• Total graph: The total graph T = T(G) is the union of the vertex-semitotal graph and the
edge-semitotal graph. Thus, |V(T)| = |V(G)|+ |E(G)| = n + m and |E(T)| = |E(G)|+ |E(S)|+
|E(L)| = m + 2m + M1

2 −m = 2m + M1
2 .

• Paraline graph: The paraline graph PL = PL(G) is the line graph of the subdivision graph denoted
by PL = PL(G) = L(S(G)). Furthermore, |V(PL)| = |E(S)| = 2m and:

|E(PL)| = M1(S)
2
− 2m.

In [7], one can easily see that M1(S) = M1 + 4m. Thus:

|E(PL)| = M1 + 4m
2

− 2m =
M1

2
.
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In Figure 1, self-explanatory examples of these derived graphs are given for a particular graph.
In every derived graph of G (except the paraline graph PL(G)), the vertices corresponding to the vertices
of G are denoted by circles and the vertices corresponding to the edges of G are denoted by squares.

G G L(G) S(G)

T1(G) T2(G) T(G) PL(G)

Figure 1. Different graphs derived from G.

The following are some known results on Zagreb indices.

Lemma 1. [7] If G is the complement of G, then:

M1(G) = M1 + n(n− 1)2 − 4m(n− 1).

Lemma 2. [7] If G is the complement of G, then:

M2(G) =
2n− 3

2
M1 −M2 +

1
2

n(n− 1)3 − 3m(n− 1)2 + 2m2.

Lemma 3. [17] If G is the complement of G, then:

F(G) = 3(n− 1)M1 − F + n(n− 1)3 − 6m(n− 1)2.

Lemma 4. [15] The reformulated first Zagreb index can be written in terms of the Zagreb indices and F-index as:

EM1 = F− 4M1 + 2M2 + 4m.

2. Reformulated First Zagreb Index of Some Derived Graphs

In [7] and [8], the authors derived the expressions for Zagreb indices and coindices of those
derived graphs, which have been discussed above. In [19], the authors derived the expressions for
multiplicative Zagreb indices and coindices of some derived graphs. In this section, we present the
expressions for the reformulated first Zagreb index of these derived graphs.

Theorem 1. If G is the complement of G, then:

EM1(G) = 5(n− 2)M1 − 2M2 − F + 2n(n− 1)(n− 2)2

−4m(n− 2)(3n− 4) + 4m2.
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Proof. By the definition of the first reformulated Zagreb index,

EM1(G) = ∑
e∈E(G)

dG(e)
2

= ∑
ij∈E(G)

[dG(i) + dG(j)− 2]2

= ∑
ij∈E(G)

[dG(i)
2 + dG(j)2] + 4 ∑

ij∈E(G)

1 + 2 ∑
ij∈E(G)

dG(i)dG(j)

−4 ∑
ij∈E(G)

[dG(i) + dG(j)]

= F(G) + 4|E(G)|+ 2M2(G)− 4M1(G)

Using Lemma 1, Lemma 2, and Lemma 3 for fourth, third, and first term, respectively, we have:

EM1(G) = 3(n− 1)M1 − F + n(n− 1)3 − 6m(n− 1)2 + 2n(n− 1)− 4m

+(2n− 3)M1 − 2M2 + n(n− 1)3 − 6m(n− 1)2 + 4m2

−4M1 − 4n(n− 1)2 + 16m(n− 1)

= 5(n− 2)M1 − 2M2 − F + 2n(n− 1)3 − 4n(n− 1)2 + 2n(n− 1)

−12m(n− 1)2 − 4m + 16m(n− 1) + 4m2

= 5(n− 2)M1 − 2M2 − F + 2n(n− 1)(n− 2)2 − 4m(n− 2)(3n− 4) + 4m2.

Theorem 2. If L = L(G) is the line graph of G, then:

EM1(L) = EF + 2EM2 − 4F + 18M1 − 8M2 − 20m.

Proof. By the definition of the reformulated first Zagreb index,

EM1(L) = ∑
e∈E(L)

dL(e)2

= ∑
ij∈E(L)

[dL(i) + dL(j)− 2]2

= ∑
ij∈E(L)

[dL(i)2 + dL(j)2] + 4 ∑
ij∈E(L)

1 + 2 ∑
ij∈E(L)

dL(i)dL(j)

−4 ∑
ij∈E(L)

[dL(i) + dL(j)]

= F(L) + 4|E(L)|+ 2M2(L)− 4M1(L).

Now, by the definition of the line graph, it is clear that:

F(L) = EF, M1(L) = EM1, M2(L) = EM2.

Thus:

EM1(L) = EF + 4(
M1

2
−m) + 2EM2 − 4EM1.

Using Lemma 4 for term EM1,

EM1(L) = EF + 2EM2 − 4F + 18M1 − 8M2 − 20m.



Mathematics 2019, 7, 366 6 of 14

Now, for subdivision graph S, vertex-semitotal graph T1, edge-semitotal graph T2, and total graph
T, we can see that there are two types of vertices in these graphs: first, the vertices corresponding to
the vertices of G and, second, the vertices corresponding to the edges of G. We call them α-vertices
and β-vertices, respectively. Depending on the nature of end vertices, we can divide the edges of these
graphs into three types:

1. αα-edge: an edge between two α-vertices.
2. ββ-edge: an edge between two β-vertices.
3. αβ-edge: an edge between a α-vertex and a β-vertex.

The above idea is very similar to the idea used in [20].

Theorem 3. If S = S(G) is a subdivision graph of G, then:

EM1(S) = F.

Proof. We can see that for any α-vertex iα of S:

dS(iα) = dG(iα)

and for any β-vertex jβ of S:

dS(jβ) = 2.

Furthermore, all the edges of S are αβ-edges. Thus:

EM1(S) = ∑
eαβ∈E(S)

dS(eαβ)
2

= ∑
iα jβ∈E(S)

[dS(iα) + dS(jβ)− 2]2.

In fact, every α-vertex iα of S is connected with dG(iα) β-vertices, each of degree two. Hence:

EM1(S) = ∑
iα∈V(G)

dG(iα)[dG(iα) + 2− 2]2 = F.

Theorem 4. If T1 = T1(G) is a vertex-semitotal graph of G, then:

EM1(T1) = 8(F−M1 + M2) + 4m.

Proof. First note that for any α-vertex iα of T1:

dT1(iα) = 2dG(iα)

and for any β-vertex jβ of T1:

dT1(jβ) = 2.
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Furthermore, any edge of T1 is either an αα-edge or an αβ-edge. Thus:

EM1(T1) = ∑
e∈E(T1)

dT1(e)
2

= ∑
eαα∈E(T1)

dT1(eαα)
2 + ∑

eαβ∈E(T1)

dT1(eαβ)
2

= ∑
iα jα∈E(T1)

[dT1(iα) + dT1(jα)− 2]2 + ∑
iα jβ∈E(T1)

[dT1(iα) + dT1(jβ)− 2]2.

For αβ-edges in the second term, it is clear that every α-vertex iα of T1 is connected with dG(iα)

β-vertices, each of degree two. Therefore, corresponding to every vertex iα in G, there are dG(iα) edges
in T1 each of (edge) degree [2dG(iα) + 2− 2]. Thus:

EM1(T1) = ∑
iα jα∈E(G)

[2dG(iα) + 2dG(jα)− 2]2 + ∑
iα∈V(G)

dG(iα)[2dG(iα) + 2− 2]2

= 4 ∑
iα jα∈E(G)

[dG(iα)
2 + dG(jα)2] + 4 ∑

iα jα∈E(G)

1 + 8 ∑
iα jα∈E(G)

dG(iα)dG(jα)

−8 ∑
iα jα∈E(G)

[dG(iα) + dG(jα)] + 4 ∑
iα∈V(G)

dG(iα)
3

= 8(F−M1 + M2) + 4m.

Theorem 5. If T2 = T2(G) is an edge-semitotal graph of G, then:

EM1(T2) = EF + 2EM2 + 9F− 26M1 + 16M2 + 20m.

Proof. First note that for any α-vertex iα of T2:

dT2(iα) = dG(iα)

and for any β-vertex jβ of T2

dT2(jβ) = dL(jβ) + 2.

Any edge in T2 is either an αβ-edge or a ββ-edge. In fact,

1. Corresponding to every edge iα jα in G, there are two αβ-edges iαxβ and xβ jα in T2 such that:

dT2(iα) = dG(iα)

dT2(jα) = dG(jα)

and:

dT2(xβ) = dL(xβ) + 2 = dG(iα) + dG(jα)− 2 + 2

= dG(iα) + dG(jα).

2. ββ-edges are the edges corresponding to the edges of L(G).
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Thus:

EM1(T2) = ∑
e∈E(T2)

dT2(e)
2

= ∑
eαβ∈E(T2)

dT2(eαβ)
2 + ∑

eββ∈E(T2)

dT2(eββ)
2

= ∑
iα jα∈E(G)

[(dT2(iα) + dT2(xβ)− 2)2 + (dT2(xβ) + dT2(jα)− 2)2]

+ ∑
iβ jβ∈E(L)

(dT2(iβ) + dT2(jβ)− 2)2

= ∑
iα jα∈E(G)

[(2dG(iα) + dG(jα)− 2)2 + (dG(iα) + 2dG(jα)− 2)2]

+ ∑
iβ jβ∈E(L)

(dL(iβ) + dL(jβ) + 2)2

= 5F + 8m + 8M2 − 12M1 + F(L) + 4|E(L)|+ 2M2(L) + 4M1(L).

Now, by the definition of the line graph, it is clear that:

F(L) = EF, M1(L) = EM1, M2(L) = EM2.

Thus:

EM1(T2) = 5F + 8m + 8M2 − 12M1 + EF + 4(
M1

2
−m) + 2EM2 + 4EM1.

Using Lemma 4,

EM1(T2) = EF + 2EM2 + 9F− 26M1 + 16M2 + 20m.

Theorem 6. If T = T(G) is the total graph of G, then:

EM1(T) = EF + 2EM2 + 18F− 38M1 + 28M2 + 24m.

Proof. First note that for any α-vertex iα of T:

dT(iα) = 2dG(iα)

and for any β-vertex jβ of T:

dT(jβ) = dL(jβ) + 2.

T has all three types of edges. In fact,

1. Corresponding to every edge iα jα in G, there is one αα-edge, which is iα jα, and two αβ-edges,
which are iαxβ and xβ jα in T such that:

dT(iα) = 2dG(iα)

dT(jα) = 2dG(jα)
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and:

dT(xβ) = dL(xβ) + 2 = dG(iα) + dG(jα)− 2 + 2

= dG(iα) + dG(jα).

2. ββ-edges are the edges corresponding to the edges of L(G).

Thus:

EM1(T) = ∑
e∈E(T)

dT(e)2

= ∑
eαα∈E(T)

dT(eαα)
2 + ∑

eββ∈E(T)
dT(eββ)

2 + ∑
eαβ∈E(T)

dT(eαβ)
2

= ∑
iα jα∈E(G)

(dT(iα) + dT(jα)− 2)2 + ∑
iβ jβ∈E(L)

(dT(iβ) + dT(jβ)− 2)2

+ ∑
iα jα∈E(G)

[(dT(iα) + dT(xβ)− 2)2 + (dT(xβ) + dT(jα)− 2)2]

= 4 ∑
iα jα∈E(G)

(dG(iα) + dG(jα)− 1)2 + ∑
iβ jβ∈E(L)

(dL(iβ) + dL(jβ) + 2)2

+ ∑
iα jα∈E(G)

[(3dG(iα) + dG(jα)− 2)2 + (dG(iα) + 3dG(jα)− 2)2]

= 14F− 24M1 + 20M2 + 12m + F(L) + 4|E(L)|+ 2M2(L) + 4M1(L).

Now, using the facts:

F(L) = EF, M1(L) = EM1, M2(L) = EM2,

and then using Lemma 4, we get:

EM1(T) = EF + 2EM2 + 18F− 38M1 + 28M2 + 24m.

Theorem 7. If PL = PL(G) is a paraline graph of G, then:

EM1(PL) = 2(4M1 + M1 + M2)− 5F.

Proof. It can be noted that for any vertex i ∈ V(G), there are dG(i) vertices in PL(G) having the same
degree as i such that all these dG(i) vertices are connected with each other. In fact, PL(G) can be
obtained from G by replacing every vertex i by KdG(i). Now, the edges of PL(G) can be divided into
two categories:

1. The edges in KdG(i), where i ∈ V(G).
2. Edges corresponding to edges of G. It can be seen that corresponding to every edge in G, there is

an edge in PL(G) of the same degree.

Thus:

EM1(PL) = ∑
e∈E(PL)

dPL(e)2

= ∑
e∈E(KdG(i)),i∈V(G)

dPL(e)2 + ∑
e∈E(G)

dG(e)2.
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Now, in each KdG(i), there are dG(i)(dG(i)−1)
2 edges, each of degree dG(i) + dG(i)− 2 = 2dG(i)− 2.

Thus:

EM1(PL) = ∑
i∈V(G)

dG(i)(dG(i)− 1)
2

(2dG(i)− 2)2 + EM1.

Solving the first term and using Lemma 4 in the second term, we get:

EM1(PL) = 2(4M1 − 3F + 3M1 − 2m) + F− 4M1 + 2M2 + 4m

= 2(4M1 + M1 + M2)− 5F.

3. Reformulated Second Zagreb Index of Some Derived Graphs

In this section, we derive the expressions for the reformulated second Zagreb index of some
derived graphs.

Theorem 8. If S = S(G) is a subdivision graph of G, then:

EM2(S) =
1
2
(4M1 − F) + M2.

Proof. We can divide the pairs of incident edges of S = S(G) into two categories:

1. For any vertex i ∈ V(G), there are dG(i) edges, each of degree dG(i) in S, and all these edges are
incident at i. Therefore, for any vertex i ∈ V(G), the total number of pairs of incident edges lying
in this category is dG(i)(dG(i)−1)

2 .
2. Corresponding to every pair of adjacent vertices i and j in G, there is a pair of incident edges of

degrees dG(i) and dG(j) in S.

Thus:

EM2(S) = ∑
e∼ f∈E(S)

dS(e)dS( f )

= ∑
i∈V(G)

dG(i)(dG(i)− 1)
2

dG(i)dG(i) + ∑
ij∈E(G)

dG(i)dG(j)

=
1
2
(4M1 − F) + M2.

Before going to the next theorem, we prove another lemma here.

Lemma 5. For a graph G, the following equality holds.

∑
ij∈E(G)

dG(i)dG(j)[dG(i) + dG(j)] =
1
3
(EF− 4M1 + 8m) + 2F + 4(M2 −M1).
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Proof.

∑
ij∈E(G)

dG(i)dG(j)[dG(i) + dG(j)] =
1
3 ∑

ij∈E(G)

[dG(i) + dG(j)]3 − 1
3 ∑

ij∈E(G)

[dG(i)3 + dG(j)3]

=
1
3 ∑

e∈E(G)

[dG(e) + 2]3 − 1
3

4M1

=
1
3

EF + 2EM1 + 4 ∑
e∈E(G)

dG(e) +
8
3

m− 1
3

4M1.

Using Lemma 4 and the relation:

∑
e∈E(G)

dG(e) = ∑
i∈V(L)

dL(i) = 2|E(L)| = M1 − 2m,

we have:

∑
ij∈E(G)

dG(i)dG(j)[dG(i) + dG(j)] =
1
3

EF + 2F− 8M1 + 4M2 + 8m + 4M1 − 8m +
8
3

m− 1
3

4M1

=
1
3
(EF− 4M1 + 8m) + 2F + 4(M2 −M1).

Theorem 9. If T1 = T1(G) is vertex-semitotal graph of G, then:

EM2(T1) =
1
3
(14(4M1) + 4EF + 68m) + 4EM2 + 6F− 30M1 + 28M2.

Proof. By definition

EM2(T1) = ∑
e∼ f∈E(T1)

dT1(e)dT1( f )

We can divide the pairs of incident edges (e, f ) of T1 = T1(G) into three cases:

Case 1: When e, f ∈ E(S). Just like Theorem 8, we have two further categories:

1. For any vertex i ∈ V(G), there are dG(i) edges, each of degree 2dG(i) in S, and all these edges are
incident at i. Therefore, for any vertex i ∈ V(G), the total number of pairs of incident edges lying
in this category is dG(i)(dG(i)−1)

2 .
2. Corresponding to every pair of adjacent vertices i and j in G, there is a pair of incident edges of

degrees 2dG(i) and 2dG(j) in S.

Case 2: When e, f ∈ E(G). For any pair of incident edges e and f in G, e and f are also incident
in T1. Furthermore, for any edge e = ij in G,

dT1(e) = dT1(i) + dT1(j)− 2 = 2dG(i) + 2dG(j)− 2 = 2(dG(e) + 1).

Case 3: When e ∈ E(G), f ∈ E(S). Every edge ij of G has degree 2dG(i) + 2dG(j) − 2 in T.
This edge is incident with dG(i) edges, each of degree 2dG(i) at i, and dG(j) edges, each of degree
2dG(j) at j.
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Thus:

EM2(T1) = ∑
e∼ f∈E(S)

dT1(e)dT1( f ) + ∑
e∼ f∈E(G)

dT1(e)dT1( f ) + ∑
e∼ f ,e∈E(G), f∈E(S)

dT1(e)dT1( f )

= ∑
i∈V(G)

dG(i)(dG(i)− 1)
2

2dG(i)2dG(i) + ∑
ij∈E(G)

2dG(i)2dG(j)

+ ∑
e∼ f∈E(G)

2(dG(e) + 1)2(dG( f ) + 1)

+ ∑
ij∈E(G)

[dG(i)(2dG(i) + 2dG(j)− 2)2dG(i) + dG(j)(2dG(i) + 2dG(j)− 2)2dG(j)]

= 2 ∑
i∈V(G)

dG(i)4 − 2 ∑
i∈V(G)

dG(i)3 + 4M2 + 4 ∑
e∼ f∈E(G)

dG(e)dG( f )

+4 ∑
e∼ f∈E(G)

[dG(e) + dG( f )] + 4 ∑
e∼ f∈E(G)

1 + 4 ∑
ij∈E(G)

[dG(i)3 + dG(j)3]

−4 ∑
ij∈E(G)

[dG(i)2 + dG(j)2] + 4 ∑
ij∈E(G)

dG(i)dG(j)[dG(i) + dG(j)].

Using Lemma 5 and the fact:

∑
e∼ f∈E(G)

1 = ∑
ij∈E(L)

1 = |E(L)| = M1

2
−m

we have:

EM2(T1) = 2(4M1)− 2F + 4M2 + 4EM2 + 4EM1 + 2M1 − 4m

+4(4M1)− 4F +
4
3

EF− 4
3
(4M1) +

32
3

m + 8F + 16M2 − 16M1.

Now, using Lemma 4 and simplifying the above expression, we get:

EM2(T1) =
1
3
(14(4M1) + 4EF + 68m) + 4EM2 + 6F− 30M1 + 28M2.

Proposition 1. Let Kn be the complete graph on n vertices, then the total number of pairs of incident edges in
Kn is n(n−1)(n−2)

2 .

Proof. The total number of pairs of incident edges in Kn:

= ∑
e∼ f∈E(Kn)

1 = ∑
ij∈E(L(Kn))

1 = E(L(Kn)) =
M1(Kn)

2
− |E(Kn)|

=
n(n− 1)2

2
− n(n− 1)

2
=

n(n− 1)(n− 2)
2

.

Theorem 10. If PL = PL(G) is a paraline graph of G, then:

EM2(PL) = 2(5M1) +
1
3
(2EF− 26(4M1) + 16m) + 14F− 10M1.
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Proof. As we explained in Theorem 7, PL(G) can be obtained from G by replacing every vertex i
by KdG(i). Therefore, we can divide the pairs of incident edges of PL = PL(G) into two cases:

Case 1: For any vertex i ∈ V(G), there are dG(i)(dG(i)−1)
2 edges each of degree (2dG(i)− 2) in the

corresponding KdG(i) of PL, and all these edges are incident with each other. By Proposition 1, for any
vertex i ∈ V(G), the total number of pairs of incident edges in KdG(i) is:

=
dG(i)(dG(i)− 1)(dG(i)− 2)

2
.

Case 2: Corresponding to every edge ij in G, there is an edge in PL(G) of the same degree that is
incident with (dG(i)− 1) edges, each of degree (2dG(i)− 2) at i, and (dG(j)− 1) edges, each of degree
(2dG(j)− 2) at j.

Thus:

EM2(PL) = ∑
e∼ f∈E(PL)

dPL(e)dPL( f )

= ∑
e∼ f∈E(KdG(i)),i∈V(G)

dPL(e)dPL( f )

+ ∑
e=ij∈E(G)

[(dG(i)− 1)dG(e)(2dG(i)− 2) + (dG(j)− 1)dG(e)(2dG(j)− 2)]

= ∑
i∈V(G)

[
dG(i)(dG(i)− 1)(dG(i)− 2)

2
](2dG(i)− 2)(2dG(i)− 2)

+2 ∑
ij∈E(G)

(dG(i) + dG(j)− 2)[(dG(i)− 1)2 + (dG(j)− 1)2]

= 2 ∑
i∈V(G)

dG(i)(dG(i)− 1)3(dG(i)− 2)

+2 ∑
ij∈E(G)

[(dG(i)3 + dG(j)3)− 4(dG(i)2 + dG(j)2) + 6(dG(i) + dG(j))

−4dG(i)dG(j) + dG(i)dG(j)[dG(i) + dG(j)]− 4].

Now, using Lemma 5:

EM2(PL) = 2(5M1)− 10(4M1) + 18F− 14M1 + 8m + 2(4M1)− 8F + 12M1 − 8M2

+
2
3

EF− 2
3
(4M1) +

16
3

m + 4F + 8M2 − 8M1 − 8m

= 2(5M1) +
1
3
(2EF− 26(4M1) + 16m) + 14F− 10M1.

4. Conclusions

In this note, we obtained some relations for degrees between a derived graph and its parent graph.
Using these relations, the expressions for reformulated Zagreb indices of some derived graphs have
been found in terms of some topological indices of the parent graph. Finding expressions of derived
graphs like these is an open problem for many other topological indices.
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