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Abstract: In this paper, we investigate the graph structures on hoop algebras. First, by using
the quasi-filters and r-prime (one-prime) filters, we construct an implicative graph and show that
it is connected and under which conditions it is a star or tree. By using zero divisor elements,
we construct a productive graph and prove that it is connected and both complete and a tree under
some conditions.
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1. Introduction

Non-classical logic has become a formal and useful tool for computer science to deal with uncertain
information and fuzzy information. The algebraic counterparts of some non-classical logics satisfy
residuation and those logics can be considered in a frame of residuated lattices [1]. For example, Hájek’s
BL (basic logixc [2]), Lukasiewicz’s MV (many-valued logic [3]) and MTL (monoidal t-norm-based
logic [4]) are determined by the class of BL-algebras, MV-algebras and MTL-algebras, respectively.
All of these algebras have lattices with residuation as a common support set. Thus, it is very important
to investigate properties of algebras with residuation.

Hoops are naturally ordered commutative residuated integral monoids, as introduced by
Bosbach [5,6], and then studied by Büchi and Owens, in a paper never published. In the last years,
hoop theory has been enriched with deep structure theorems [7–10]. Many of these results have a
strong impact with fuzzy logic.

Graph theory has existed for many years not only as an area of mathematical study, but also
as an intuitive and illustrative tool. Graph theory has found many applications in engineering and
science, such as chemical, electrical, civil and mechanical engineering; architecture; management and
control; communication; operational research; sparse matrix technology; combinatorial optimization;
and computer science. Therefore, many books have been published on applied graph theory, e.g.
the book by Bondy and Murty [11]; especially in the field of universal algebras and graph theory,
graph algebra is a way of giving a directed graph of algebraic structure. This was introduced by
McNulty [12], and has seen many uses in the field of universal algebra since then. Algebraic graph
theory comprises both the study of algebraic objects arising in connection with graphs. The rapidly
expanding area of algebraic graph theory uses two different branches of algebra to explore various
aspects of graph theory: linear algebra (for spectral theory) and group theory (for studying graph
symmetry). These areas have links with other areas of mathematics, such as logic and harmonic
analysis, and are increasingly being used in such areas as computer networks where symmetry is an
important feature, for example, automorphism groups of graphs along with the use of algebraic tools
to establish interesting properties of combinatorial objects. One of the oldest themes in the area is the
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investigation of the relation between properties of a graph and the spectrum of its adjacency matrix.
In addition, algebraic graph theory can be viewed as an extension to graph theory in which algebraic
methods are applied to problems about graphs. Many authors studied graph theory in connection
with semigroups and rings. In [13], Beck introduced the zero-divisor graph Γ(R) associated with the
zero-divisor set of a commutative ring, whose vertex set is the set of zero divisors. Two distinct zero
divisors x, y are adjacent in Γ(R) if and only if xy = 0. The zero-divisor graph establishes a connection
between graph theory and commutative ring theory, which hopefully will turn out to be mutually
beneficial for those two branches of mathematics. Axtell and Stickles [14], remarked that, in general,
the set of zero-divisors lacks algebraic structure, suggesting that turning to the zero-divisor graph
may both reveal both ring-theoretical properties and impose a graph-theoretical structure. Beck’s
hopes have certainly been met: his now classical paper motivated an explosion of research in this and
similar associated graphs in the past decade. His definition has since been modified to emphasize
the fundamental structure of the zero-divisor set: Anderson’s definition given in [15], which excludes
the vertex 0 from the graph, is now considered standard. In [16], Jun and Lee introduced the notion
of associated graph of BCK/BCI-algebras by zero divisors in BCK/BCI-algebras and verified some
properties of this graph. In addition, Torkzadeh and Ahmadpanah [17] defined the notion of zero
divisors of a non-empty subset A of a residuated lattice L and associated a graph to a residuated lattice
L. They proved that this graph is always a connected graph and its diameter is at most two.

In this paper, the graphs of hoop algebras are studied. For this, the notion of zero divisors of a
non-empty subset of a hoop algebra is introduced by two methods and some related properties are
investigated. Several examples of hoop graphs are proved. These graphs are connected and also some
necessary conditions for the hoop graph to be a star graph are found. Finally, hoop graphs that are
provided by two methods together are compered.

2. Preliminaries

At first, we recall the definition of a hoop algebra and some properties.
By a hoop, we mean an algebraic structure (A,�,→, 1) where, for all x, y, z ∈ A:

(HP1) (A,�, 1) is a commutative monoid.
(HP2) x → x = 1.
(HP3) (x� y)→ z = x → (y→ z).
(HP4) x� (x → y) = y� (y→ x).

On hoop A we define x ≤ y if and only if x → y = 1. It is easy to see that ≤ is a partial order
relation on A. A hoop A is bounded if there is an element 0 ∈ A such that 0 ≤ x, for all x ∈ A.

Let A be a bounded hoop. We define a negation “−” on A by x = x → 0, for all x ∈ A.
For ∅ 6= X ⊆ A, we define X = {x | x ∈ X}. If (x) = x, for all x ∈ A, then the bounded hoop A is
said to have the double negation property (DNP).

The following proposition provides some properties of hoops.

Proposition 1 ([5,6]). Let (A,�,→, 1) be a bounded hoop. Then, the following condition hold, for
all x, y, z, a ∈ A:

(i) (A,≤) is a meet-semilattice with x ∧ y = x� (x → y).
(ii) x� y ≤ z if and only if x ≤ y→ z.
(iii) x� y ≤ x, y and x ≤ y→ x.
(iv) x → x = 1 and 1→ x = x.
(v) x ≤ y→ (x� y).
(vi) x → y ≤ (y→ z)→ (x → z).
(vii) x ≤ x and x� x = 0.
(viii) x ≤ y implies x� a ≤ y� a and z→ x ≤ z→ y and y→ z ≤ x → z.
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Let A be a hoop and for any x, y ∈ A; define

x t y = ((x → y)→ y) ∧ ((y→ x)→ x).

Then, a hoop A is called a t-hoop, if t is the join operation on A. It is easy to see that, for any
x, y, z ∈ A,

x� (y t z) = (x� y) t (x� z).

A non-empty subset I of t-hoop A is called an ideal of A if it satisfies the following conditions:

(I1) If x, y ∈ I, then x t y ∈ I.
(I2) If x ∈ A, y ∈ I and x ≤ y, then x ∈ I.

A non-empty subset F of A is a filter of A if,

(F1) x, y ∈ F implies x� y ∈ F.
(F2) x ∈ F and x ≤ y imply y ∈ F, for any x, y ∈ A.

The set of all filters of A is denoted by F (A). F is a proper filter if F is a filter of A and F 6= A.
A proper filter of A is called a maximal filter, if it is not properly contained in any other proper filters
of A.

Let G be a graph with the vertex set V and edge set E. The edge that connects two distinct
vertices x and y is denoted by x− y. Note that x− y and y− x are the same. A graph H = (V1, E1) is
called a subgraph of G = (V, E), if V1 ⊆ V and E1 ⊆ E. A graph G = (V, E) is called connected, if any
two distinct vertices x and y of G linked by a path in G, otherwise the graph is called disconnected.
For distinct vertices x and y of G, let d(x, y) be the length of the shortest path from x to y. If there is no
x− y path, then d(x, y) = ∞. The diameter of G is

diam(G) = sup{d(x, y) | x and y are distinct vertices of V(G)}.

A tree is a connected graph with no cycles. A graph G is called complete graph if x− y ∈ E(G),
for any distinct elements x, y ∈ V(G). A graph G is called a star graph in the case there is a vertex x in
G such that every other vertex in G is an end, connected to x and no other vertex by an edge [18].

Notation. From now on, (A,�,→, 1) or simply A is a hoop algebra, unless otherwise stated.

3. Implicative Graph of a Hoop Algebra

In this section, we study associated implicative graph of a hoop algebra. We first introduce the
notions of r-prime quasi-filter and zero divisors and investigate related properties. Then, we introduce
the concept of associated implicative graph Ω(A) of a hoop A and provide several examples.

Notation. For any non-empty subset X of A, we use the notation r(X) and l(X) to denote the sets,

r(X) = {a ∈ A | x → a = 1, ∀ x ∈ X} and l(X) = {a ∈ A | a→ x = 1, ∀ x ∈ X}.

Definition 1. Let F be a non-empty subset of A. Then,
(i) F is called a quasi-filter of A if for all x ∈ A, y ∈ F and y ≤ x, then x ∈ F.
(ii) A quasi-filter F of A is called a r-prime (l-prime) filter if it satisfies the following conditions:
(rlF1) F is proper, that is F 6= A; and
(rF2)((lF2)) for any x, y ∈ A, if r({x, y}) ⊆ F, (l({x, y}) ⊆ F), then x ∈ F or y ∈ F.
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Example 1. Let A = {0, a, b, c, d, 1}. Define the operations � and→ on A as follows

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a b c 1 1
1 0 a b c d 1

� 0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

We can easily see that A with these operations is a bounded hoop. Let X = {a, b, c} and Y = {c, d}. Then,
by routine calculation, we can see that r(X) = {1, c} and l(Y) = {b, 0}. Now, F = {1, a, c} and G = {1, c, d}
are quasi-filters of A but G is not a filter of A, because c� d = b /∈ G. Moreover, F is an r-prime filter of A.

Proposition 2. Let X and Y be two non-empty subsets of A. Then, the following statements hold:
(i) X ⊆ l(r(X)) and X ⊆ r(l(X)).
(ii) If X ⊆ Y, then l(Y) ⊆ l(X) and r(Y) ⊆ r(X).
(iii) l(X) = l(r(l(X))) and r(X) = r(l(r(X))).

Proof.
(i) Let l(X) = Y. Then, for any y ∈ Y and for any x ∈ X, we get that y→ x = 1. Thus, we have

for any x ∈ X and for any y ∈ Y, y → x = 1. Hence, x ∈ r(Y). Therefore, x ∈ r(l(X)). Similarly, we
can prove that X ⊆ l(r(X)).

(ii) Let a ∈ r(Y). Then, for any y ∈ Y, y → a = 1. Since X ⊆ Y, for any x ∈ X, x → a = 1, too.
Hence, a ∈ r(X). Similarly, l(Y) ⊆ l(X).

(iii) By (i), X ⊆ l(r(X)), then by (ii), r(l(r(X))) ⊆ r(X). Let Y = r(X). Then, by (i), Y ⊆ r(l(Y)),
and thus r(X) ⊆ r(l(r(X))). Hence, r(X) = r(l(r(X))). Similarly, l(X) = l(r(l(X))).

Theorem 1. A proper quasi-filter F of A is r-prime if and only if r({x1, x2, ..., xn}) ⊆ F implies, there exists
1 ≤ i ≤ n such that xi ∈ F.

Proof. We proceed by induction on n. If n = 2, then r({x1, x2}) ⊆ F. Since F is an r-prime
quasi-filter of A, by Definition 1(rF2), the result is clear. Now, suppose the statement holds for
n− 1. Let x1, x2, ..., xn ∈ A such that r({x1, x2, ..., xn−1, xn}) ⊆ F. If y ∈ r({x1, x2, ..., xn−1}), then by
routine calculation, we can see that

r({y, xn}) ⊆ r({x1, x2, ..., xn−1, xn}) ⊆ F.

Now, assume that xn /∈ F. Since F is r-prime, we get y ∈ F, which shows that
r({x1, x2, ..., xn−1}) ⊆ F. Using the induction hypothesis, we conclude that xi ∈ F, for some
i ∈ {1, ..., n− 1}. The converse is clear.

Remark 1.
(i) For any x, y ∈ A, 1 ∈ r({x, y}). Thus, r({x, y}) 6= ∅.
(ii) r({x, y}) = r({x}) ∩ r({y}), for any x, y ∈ A. Thus, we have,

t ∈ r({x, y})⇐⇒ x → t = 1 and y→ t = 1⇐⇒ t ∈ r({x}) and t ∈ r({y})⇐⇒ t ∈ r({x}) ∩ r({y}).

Definition 2. For any x ∈ A, we use the notion Zx to denote the set of all elements y ∈ A such that
r({x, y}) = {1}. It means that Zx = {y ∈ A | r({x, y}) = {1}}.
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Example 2. According to Example 1,

Z0 = Zb = {1} Z1 = A Za = Zc = {1, d} and Zd = {a, c, 1}.

Proposition 3. For any x ∈ A, r({x, 1}) = {1}.

Proof. Let x ∈ A. Since

r({x, 1}) = {y ∈ A | x → y = 1 and 1→ y = 1} = {y ∈ A | x → y = 1 and y = 1} = {1},

we have r({x, 1}) = {1}.

Proposition 4. For any elements a and b of A, if a→ b = 1, then r({b}) ⊆ r({a}) and Za ⊆ Zb.

Proof. Let x ∈ r({b}). Then, b → x = 1. By assumption, a → b = 1, then by Proposition 1(vi),
a → b ≤ (b → x) → (a → x). Then, 1 ≤ a → x, and thus a → x = 1. Thus, x ∈ r({a}). Hence,
r({b}) ⊆ r({a}). Now, suppose x ∈ Za. Then, by Remark 1(ii),

1 ∈ r({b, x}) = r({b}) ∩ r({x}) ⊆ r({a}) ∩ r({x}) = r({a, x}) = {1}.

Thus, r({b, x}) = {1}, and so x ∈ Zb. Therefore, Za ⊆ Zb.

By the following example, we show that the converse of relation in Proposition 4 may not be true
in general.

Example 3. In Example 1, b→ d = 1. By routine calculation, we have r({b}) = {b, c, d, 1}, r({d}) = {d, 1},
Zb = {1} and Zd = {a, c, 1}. We can easily see that r({b}) * r({d}) and Zd * Zb.

Theorem 2. For any element x of A, Zx is a quasi-filter of A containing the element 1. Moreover, if Zx is
maximal in {Za | a ∈ A and Za 6= ∅}, then Zx is an r-prime.

Proof. At first, we prove that Zx is a quasi-filter of A. For this, suppose b ∈ A and a ∈ Zx are two
arbitrary elements such that a ≤ b. Then, it is enough to prove that b ∈ Zx. Since a ≤ b, we have
a → b = 1. By Proposition 4, r({b}) ⊆ r({a}). In addition, since a ∈ Zx, we have r({x, a}) = {1}.
Moreover, we know that 1 ∈ r({x, b}), then by Remark 1,

1 ∈ r({x, b}) = r({x}) ∩ r({b}) ⊆ r({x}) ∩ r({a}) = r({x, a}) = {1}.

Thus, r({x, b}) = {1}. Hence, b ∈ Zx. Thus, Zx is a quasi-filter of A. Now, suppose Zx is
maximal in {Za | a ∈ A and Za 6= ∅}. By Proposition 3, for any x ∈ A, r({x, 1}) = {1}. Then, 1 ∈ Zx,
and so Zx 6= ∅. Now, we prove that Zx is an r-prime. For this, let a, b ∈ A and r({a, b}) ⊆ Zx such
that a /∈ Zx. It is enough to prove that b ∈ Zx. Since Zx is maximal, Zx is proper. Moreover, since
r({a, b}) ⊆ Zx such that a /∈ Zx, r({a, b, x}) = {1}. Suppose r({a, b, x}) 6= {1}. Then,

1 ∈ r({a, b, x}) = r({a}) ∩ r({b}) ∩ r({x}) = r({a, b}) ∩ r({x}) ⊆ Zx ∩ r({x}).

Let Zx ∩ r({x}) 6= {1}. Then, there exists t 6= 1 such that t ∈ Zx ∩ r({x}). Since t ∈ Zx, we have
r({t, x}) = {1}. In addition, t ∈ r({x}), then x → t = 1. Moreover, since x → t = 1 and t → t = 1,
we have t ∈ r({t, x}), which is a contradiction. Then, Zx ∩ r({x}) = {1}, and thus r({a, b, x}) = {1}.
In addition, from a /∈ Zx, r({a, x}) 6= {1}. Then, there exists 1 6= y ∈ r({a, x}), and so x → y = 1.
Thus, by Proposition 4, Zx ⊆ Zy. If Zy = A, then, for any a ∈ A, a ∈ Zy, and so r({a, y}) = {1}.
Since y ∈ r({a, x}), we get a → y = 1. In addition, y → y = 1, then y ∈ r({a, y}) = {1}, which is
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a contradiction. Then, Zy is proper. Since Zx is maximal, Zx = Zy. In addition, from y ∈ r({a, x}),
we have,

∅ 6= r({b, y}) = r({b}) ∩ r({y}) ⊆ r({b}) ∩ r({x}) ∩ r({a}) = r({a, b, x}) = {1}.

Then, r({y, b}) = {1}, thus b ∈ Zy. Since Zx = Zy, we get b ∈ Zx. Thus, Zx is an r-prime
of A.

Definition 3. By the implicative graph of a hoop A, denoted Ω(A), we mean the graph which vertices
are just the elements of A, and for distinct x, y ∈ Ω(A), there is an edge connecting x and y if and only if
r({x, y}) = {1}.

Example 4. According to Example 1, we have, r({x, 1}) = r({a, d}) = r({c, d}) = {1},
r({a, b}) = r({a, c}) = r({b, c}) = r({c, 0}) = {c, 1}, r({a, 0}) = {a, c, 1}, r({b, 0}) = {b, c, d, 1}, and
r({b, d}) = r({d, 0}) = {d, 1}, as Figure 1.
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Figure 1. Implicative graph Ω(A) of A.

Theorem 3. For any x, y ∈ Ω(A), if Zx and Zy are distinct r-prime quasi-filters of A, then there is an edge
connecting x and y.

Proof. Let x, y ∈ A. It is sufficient to prove that r({x, y}) = {1}. Suppose r({x, y}) 6= {1}. Then,
x /∈ Zy and y /∈ Zx. If x ∈ Zy, then r({x, y}) = {1}, which is a contradiction. Let a ∈ Zx. Then,
r({x, a}) = {1}. Since Zy is a quasi-filter, 1 ∈ Zy, thus, r({x, a}) ⊆ Zy. By assumption, Zy is an
r-prime, then x ∈ Zy or a ∈ Zy. Since x /∈ Zy, we get that a ∈ Zy. Hence, Zx ⊆ Zy. Similarly, we can
see that Zy ⊆ Zx. Thus, Zx = Zy, which is a contradiction. By assumption, Zx and Zy are distinct.
Therefore, r({x, y}) = {1} and there is an edge connecting x and y.

Theorem 4. The graph Ω(A) is connected with diameter at most two.

Proof. By Proposition 3, for any x ∈ A, r({x, 1}) = {1}. Then, 1 is connected to all points of A. Hence,
both vertices are connected by a path, and so Ω(A) is connected. Now, let x, y be two vertices in
Ω(A). If r({x, y}) = {1}, then d(x, y) = 1. If r({x, y}) 6= {1}, then the path (x− 1− y) exists, thus,
d(x, y) = 2. Since

diam(Ω(A)) = sup{d(x, y) | x, y ∈ V(Ω(A))},

we have diam(Ω(A)) ≤ 2.

Theorem 5. If A is a totally ordered hoop, then Ω(A) is a star.

Proof. Suppose A is a totally ordered hoop and | A |= n. We proceed by induction on n. If n = 3, then
0 ≤ a ≤ 1. Since r({0, 1}) = r({a, 1}) = {1}, it is enough to investigate on r({0, a}). It is easily to see
that r({0, a}) = {a, 1}. Then, 1 is just connected to all points of A, and so Ω(A) is a star. Let | A |= n.
Without loss of generality, suppose A = {0, a1, ..., an−2, 1} such that 0 ≤ a1 ≤ ... ≤ an−2 ≤ 1. Using
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the induction hypothesis, we conclude that Ω(B) is a star such that B ⊆ A and | B |= n− 1. Suppose
C = {0, a1, ..., an−3, 1} ⊆ A. By assumption, for any x ∈ C− {1}, x ≤ an−2, then it is easy to see that

r({x, an−2}) = {an−2, 1} 6= {1}.

Thus, there is no edge x− an−2. Hence, Ω(A) is a star.

Corollary 1. If A is a totally ordered hoop, then Ω(A) is a tree.

4. Productive Graph of a Hoop Algebra

In this section, we study associated productive graph of a hoop algebra. We first introduce the
notion of zero divisors by product operation and investigate related properties. By means of the set
of all zero divisors of elements of a hoop A, the associated productive graph Γ(A) is defined and
several examples are provided.

Note. From now one, in this section, A will be a bounded hoop algebra.

Definition 4. Let X be a non-empty subset of A. The set of all zero divisors of X is denoted by ZX and is
defined as follows:

ZX = {a ∈ A | a� x = 0, ∀x ∈ X}.

Proposition 5. Let X and Y be non-empty subsets of A. Then, the following statements hold:
(i) 0 ∈ ZX .
(ii) If X ⊆ Y, then ZY ⊆ ZX .
(iii) If ZX − {1} 6= ∅, then ZZX−{1} ⊆ ZX .
(iv) If 1 ∈ X, then ZX = {0}.
(v) ZF = {0}, for all F ∈ F (A).
(vi) 1 ∈ ZX if and only if X = {0} if and only if ZX = A.
(vii) If 0 ∈ X, then ZX = ZX−{0}.
(viii) ZX ∪ ZY ⊆ ZX∧Y, where X ∧Y = {x ∧ y | x ∈ X and y ∈ Y}.

Proof.
(i) Since A is a bounded hoop, then 0 ∈ A. Thus, for any x ∈ X, x� 0 = 0. Hence, 0 ∈ ZX .
(ii) Let a ∈ ZY. Then, for any y ∈ Y, a� y = 0. Since X ⊆ Y, for any x ∈ X, a� x = 0. Hence, a ∈ ZX .
Therefore, ZY ⊆ ZX .
(iii) Assume that p ∈ ZZX−{1}, then p� x = 0, for all x ∈ ZX − {1}. Put x = t, for t ∈ ZX − {0}.
Hence, p� t = 0, for all t ∈ ZX − {0}, and we get that t ≤ p, for all t ∈ ZX − {0}. Since t ∈ ZX − {0},
then t� a = 0, for all a ∈ X, i.e, a ≤ t, for all a ∈ X. Thus, we can obtain a ≤ p, that is p� a = 0, for all
a ∈ X. Therefore, p ∈ ZX .
(iv) Let 1 ∈ X and x ∈ ZX . Then, x = x� 1 = 0, and so ZX = {0}.
(v) The proof follows by (iv).
(vi) Let 1 ∈ ZX. Then, 1� x = 0, for all x ∈ X and so X = {0}. Conversely, let X = {0}. Then,
ZX = A. We get that 1 ∈ ZX . It is easy to prove that ZX = A if and only if 1 ∈ ZX .
(vii) The proof is straightforward.
(viii) Let a ∈ ZX ∪ ZY. Then, by Definition 4, a� x = 0 or a� y = 0, for all x ∈ X or y ∈ Y. Suppose
a� x = 0, for all x ∈ X. Since x ∧ y ≤ x, by Proposition 1(viii), a� (x ∧ y) ≤ a� x. From a� x = 0,
we have a� (x ∧ y) = 0. Hence, a ∈ ZX∧Y.

By the following example, we show that the inverse inclusions of Proposition 5(iii) and (viii) may
not be true, in general.
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Example 5. According to Example 1:
(i) Let X = {b}. Then, by routine calculations, we can see that ZX = {0, a, b, c}, Thus, ZX = {1, d, c, b},
and so ZX − {1} = {d, c, b}. Hence, ZZX−{1} = {0}. Thus, it is clear that ZZX−{1} 6= ZX .
(ii) Let X = {c} and Y = {d}. Then, ZX = {0, b} and ZY = {0, a}, respectively. Thus, ZX ∪ZY = {0, a, b}.
We can easily see that X ∧Y = {b} and ZX∧Y = {0, a, b, c}. Hence, ZX∧Y * ZX ∪ ZY.

Proposition 6. Let X be a non-empty subset of t-hoop A. Then, ZX is an ideal of A.

Proof. By Proposition 5(i), 0 ∈ ZX , then ZX is non-empty. Let x ≤ y, for any y ∈ ZX and x ∈ A. Then,
y� a = 0, for all a ∈ X. By Proposition 1(viii), x� a ≤ y� a = 0, then x� a = 0, for all a ∈ X. Thus,
x ∈ ZX . Now, let x, y ∈ ZX . Then, x� a = y� a = 0, for all a ∈ X. Hence, for all a ∈ X,

a� (x t y) = (a� x) t (a� y) = 0,

that is x t y ∈ ZX . Therefore, ZX is an ideal of A.

For x ∈ A, the set Dx = {y ∈ A | Z{x,y} = {0}} is called the set of all zero divisors of x.
By Proposition 5, we have D1 = A and 1 ∈ Dx, for all x ∈ A.

Proposition 7. Dx is a filter of A, for any x ∈ A.

Proof. Let x ∈ A. Then, by Proposition 5(iv), Z{1,x} = {0}, thus, 1 ∈ Dx, i.e., Dx 6= ∅. Now, we
show that Dx is a filter of A. Let y, z ∈ Dx. Then, Z{x,y} = Z{x,z} = {0}. Suppose h ∈ Z{x,y�z}. Then,
h� x = h� (y� z) = 0. Since A is a monoid, 0 = h� (y� z) = (h� y)� z, then h� y ∈ Z{x,z} = {0}.
Hence, h� y = 0. Since h� x = 0, we have h ∈ Z{x,y} = {0}. Thus, h = 0, and so Z{x,y�z} = {0}.
Now, suppose y ∈ Dx and z ∈ A such that y ≤ z. Let h ∈ Z{x,z}. Then, h� x = h� z = 0. Since y ≤ z,
by Proposition 1(viii), h� y ≤ h� z = 0, then h� y = 0. Thus, h ∈ Z{x,y} = {0}. Hence, h = 0. Then,
Z{x,z} = {0}, and so z ∈ Dx. Therefore, Dx ∈ F (A).

The set of dense elements of a hoop A is denoted by Ds(A) = {x ∈ A | x = 0}.

Theorem 6. D0 = Ds(A).

Proof. Let a ∈ D0. Then,

Z{a,0} = {0} = {t | t� a = 0} = {t | t ≤ a}.

Since a� 0 = 0 and by Proposition 1(vii), a� a = 0, we have a ∈ Z{a,0} = {0}. Then, a = 0,
and so a ∈ Ds(A). Conversely, let a ∈ Ds(A). Then, a = 0. Since a� 0 = 0 and by Proposition 1(vii),
a� a = 0, a ∈ Z{a,0}. Now, suppose t ∈ Z{a,0}. Then, t� a = 0, and so t ≤ a. Since a = 0, we have
t = 0. Thus, Z{a,0} = {0}. Hence, a ∈ D0.

Definition 5. Γ(A) is called an associated productive graph if vertices are just the elements of A, and for
distinct x, y ∈ A, there is an edge connecting x and y if and only if Z{x,y} = {0}. The edge that connects two
vertices x and y is denoted by x− y.
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Example 6. (i) Let A = {0, a, b, 1}. Define the operations � and→ on A as follows

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

� 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

By routine calculations, we see that A with these operations is a bounded hoop. Then, for any 1 6= x ∈ A,
we have:

Z{x,1} = Z{a,b} = Z{b,0} = {0} and Z{a,0} = {a, 0}.

as Figure 2.
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Figure 2. Associated productive graph Γ(A) of A.

(ii) Let A = 0, a, b, c, 1. Define the operations � and→ on A as follows

→ 0 a b c 1

0 1 1 1 1 1
a b 1 0 0 1
b c 0 1 0 1
c c 0 0 1 1
1 0 a b c 1

� 0 a b c 1

0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 b
c 0 0 0 c c
1 0 a b c 1

Then, A with these operations is a bounded hoop. Then, for any 1 6= x ∈ A, we have: Z{x,1} = {0},
Z{0,a} = {0, b, c}, Z{0,b} = {0, a, c}, Z{0,c} = {0, a, b}, Z{a,b} = {0, c}, Z{a,c} = {0, b}, Z{b,c} = {0, a},
as Figure 3.
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Figure 3. Associated productive graph Γ(A) of A.

Theorem 7. Γ(A) is a connected graph with diameter at most two.

Proof. By Proposition 5(iv), Z{1,x} = {0}, for any x ∈ A. Then, 1 is connected to all points of A. Hence,
both vertices are connected by a path, and so Γ(A) is connected. Now, let x, y be two vertices in Γ(A).
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If Z{x,y} = {0}, then d(x, y) = 1. If Z{x,y} 6= {0}, then the path (x − 1− y) exists, thus d(x, y) = 2.
Since

diam(Γ(A)) = sup{d(x, y) | x, y ∈ V(Γ(A))},

we have diam(Γ(A)) ≤ 2.

Theorem 8. Ds(A) = A− {0} if and only if Γ(A) is complete.

Proof. (⇒) Let x, y ∈ A− {0} such that x 6= y. Then, x, y ∈ Ds(A), and so x = y = 0. By definition
of Z{x,y},

Z{x,y} = {t | t� x = 0 and t� y = 0} = {t | t ≤ x and t ≤ y}.

Since x = y = 0, we have t = 0. Then, Z{x,y} = {0}. Hence, x − y exists. By Theorem 6,
D0 = Ds(A), then D0 = A− {0}. Thus, for any 0 6= x ∈ A, x ∈ D0. Hence, Z{x,0} = {0}. Therefore,
Γ(A) is complete.

(⇐) Since Γ(A) is complete, for any x, y ∈ V(Γ(A)), x − y exists. Let y = 0 and x 6= 0. Then,
x− 0 exists, and so Z{x,0} = {0}. By Proposition 1(vii), x� x = x� 0 = 0. Then, x ∈ Z{x,0} = {0}.
Thus, x ∈ D0. Hence, D0 = A− {0}. By Theorem 6, D0 = Ds(A). Therefore, Ds(A) = A− {0}.

Corollary 2. If Ds(A) = A− {0} and | A |> 2, then Γ(A) is not a tree.

Example 7. Let A = {0, a, b, 1}. Define the operations � and→ on A as follows,

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

� 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

By routine calculations, we see that A with these operations is a bounded hoop and Ds(A) = A− {0}.
Then, Γ(A) is complete. Because Z{x,1} = Z{0,a} = Z{0,b} = Z{a,b} = {0}, as Figure 4.
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Figure 4. Associated productive graph Γ(A) of A.

Theorem 9. If Γ(A) is a tree, then | Ds(A) |= 1.

Proof. By Proposition 5(iv), Z{1,x} = {0}, for any x ∈ A. Then, Γ(A) is connected. Since 1 = 0,
1 ∈ Ds(A) 6= ∅. Suppose | Ds(A) |6= 1. Then, there exists t ∈ Ds(A) such that t = 0. Then,

Z{t,0} = {y | y� t = 0} = {y | y ≤ t}.

Since t = 0, Z{t,0} = {0}. Then, the path (0− t − 1− 0) is a circle, which is a contradiction.
Because Γ(A) is tree. Therefore, | Ds(A) |= 1.

The converse of the above theorem may not be true, in general.
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Example 8. According to Example 1, | Ds(A) |= 1 and by routine calculation (see Figure 5), we have:

Z{x,1} = Z{c,d} = Z{a,d} = {0} Z{0,c} = Z{a,b} = Z{a,c} = Z{b,c} = {0, b},

Z{b,d} = Z{0,d} = {0, a}, Z{0,a} = {0, b, d}, Z{0,b} = {0, a, b, c}.
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Figure 5. Associated productive graph Γ(A) of A.

Theorem 10. Γ(A) is a star graph if it satisfies the following conditions:
(i) | Ds(A) |= 1.
(ii) There is a ∈ A− {0} such that a ≤ x, for any x ∈ A− {0}.

Proof. By Proposition 5(iv), Z{1,x} = {0}, for any x ∈ A. Then, Γ(A) is connected and by Theorem 7,
diameter at most two. Let x, y ∈ A− {1} such that x 6= y. If x 6= 0 and y = 0 or vice versa, since 1 = 0,
we have | Ds(A) |> 1, which is a contradiction. In addition, if x = y = 0, then x, y ∈ Ds(A), and so
| Ds(A) |> 1, which is a contradiction. Thus, x, y 6= 0. Thus, x, y ∈ A− {0}. Then, by (ii), there is
a ∈ A− {0} such that a ≤ x, y. Thus, a� x = 0 and a� y = 0. Hence, a ∈ Z{x,y}, and so Z{x,y} 6= {0}.
Then, there is not the edge x− y. Therefore, Γ(A) is a star graph.

Corollary 3. Under Conditions (i) and (ii) of Theorem 10, Γ(A) is a tree.

Example 9. Let A = {0, a, b, 1}. Define the operations � and→ on A as follows

→ 0 a b 1

0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

� 0 a b 1

0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

We can easily see that A with these operations is a bounded hoop. By routine calculation, we can see that
two conditions of the above theorem hold because A is a chain and there is an element a ∈ A− {0} such that
a ≤ x, for any x ∈ A− {0}. In addition, it is clear that | Ds(A) |= 1. Thus, the graph is a star. We have:
Z{x,1} = {0}, Z{0,a} = {0, a, b}, Z{0,b} = Z{a,b} = {0, a}, as Figure 6.
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Figure 6. Associated productive graph Γ(A) of A.
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By the following example, we show that both conditions listed in Theorem 10 are necessary.

Example 10. (i) Let A = {0, a, b, c, 1}. Define the operations � and→ on A as follows

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1

0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

It can easily be seen that A with these operations is a bounded hoop. In this hoop neither condition holds.
Because A is not a chain, there is not an element a ∈ A − {0} such that a ≤ x, for any x ∈ A − {0}.
In addition, it is clear that Ds(A) = {c, 1}, and so | Ds(A) |= 2 6= 1. We can easily see that the graph is not a
star. As Figure 7, we have:

Z{x,1} = Z{a,c} = Z{a,b} = Z{0,c} = Z{b,c} = {0},

Z{0,a} = {0, b}, Z{0,b} = {0, a}.
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Figure 7. Associated productive graph Γ(A) of A.

(ii) Let A = {0, a, b, 1}. Define the operations � and→ on A as follows

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

� 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

By routine calculations, we can see that A with these operations is a bounded hoop. By routine calculation,
we can see that | Ds(A) |= 1 but the second condition does not hold because A is not a chain. Thus, the graph
is not a star. We have:

Z{x,1} = Z{a,b} = {0}, Z{0,a} = {0, b}, Z{0,b} = {0, a}.

(iii) According to Example 7, | Ds(A) |= 3 6= 1 and we see that the graph is complete. Thus, as Figure 8,
it is not a star.
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Figure 8. Associated productive graph Γ(A) of A.

5. Conclusions and Future Works

In this paper, graphs of hoop algebras are studied. For this, the notion of zero divisors of a
non-empty subset of a hoop algebra is introduced by two methods and some related properties are
investigated. Several examples of hoop graphs are proved. These graphs are connected, and also some
necessary conditions for the hoop graph to be a star graph are found. Finally, hoop graphs that are
provided by two methods together are compared. Then we conclude that these graphs are connected
and also some necessary conditions for the hoop graphs to be star graphs. By comparing the graph
of two methods, we conclude that both graphs are connected and one is connected to all points of
bounded hoop A. Finally, Γ(A) and Ω(A) are graphs with diameter at most two. However, the graph
of any hoop in both methods is not the same, in general.

In our future work, we will investigate the relation between graphs Γ(A/F) and Γ(A)/Π, where
Π is a partition of A. In addition, we will try to find some kinds of filters in a hoop by two graphs
Ω(A) and Γ(A).
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