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Abstract: In this paper, the ill-posed problem of the two-dimensional modified Helmholtz
equation is investigated in a strip domain. For obtaining a stable numerical approximation
solution, a mollification regularization method with the de la Vallée Poussin kernel is proposed.
An error estimate between the exact solution and approximation solution is given under suitable
choices of the regularization parameter. Two numerical experiments show that our procedure is
effective and stable with respect to perturbations in the data.

Keywords: modified Helmholtz equation; ill-posed; de la Vallée Poussin kernel; mollification method;
regularization solution; error estimate

MSC: 26D15; 31A25; 31B20; 31B35

1. Introduction

The inversion problem on mathematical physics equations is an important branch in mathematics.
The inversion of surface parameters in remote sensing science, the invention and application of CT
in medical imaging, the reconstruction of optical signals and the geomorphological exploration in
geological exploration are all related to such inversion problems [1].

There are many research methods and results for the Helmholtz equation for a positive
wave number. The Helmholtz equation of a pure imaginary wave number is called the modified
Helmholtz equation (also known as the Yukawa equation). It usually appears in the semi-implicit
time-discrete heat equation and is also used to describe the physical phenomena of wave dispersion
and diffusion [2]. A number of numerical solutions in the direct problem for the modified
Helmholtz equation have been proposed [3,4], however, its inverse problem is severely ill-posed or
improperly-posed in the viewpoint of Hadamard [5], the Cauchy problem suffers from the instability of
the solution in the sense that a minor disturbance in the input data may cause a tremendous deviation
in the solution [6]. To establish an accurate, stable, reliable and fast numerical algorithm for the Cauchy
problem is a considerably interesting topic. It is impossible to solve this problem by using classical
numerical methods, such as the finite element method (FEM), finite difference method (FDM) and
finite volume method (FVM). It requires special techniques, and some different approaches had been
given of an account of on the published literature, for instance, the Landweber method with boundary
element method (BEM) [7], the conjugate gradient method [8], the method of fundamental solutions
(MFS) [9], the Fourier regularization method [10], the truncation method [11] and the mollification
method [12,13].
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The kernel functions, such as Féjer kernel, Weierstrass kernel, Bessel-MacDonald kernel,
de la Vallée Poussin kernel, Dirichlet and Krein kernel have a wide range of applications [12].
Manselli, Miller [13] and Murio [14] adopted the mollification method with the Weierstrass kernel to
construct regularization operators to solve some inverse problems, but their methods were suitable for
the case of Hilbert space L2(R), furthermore they could not find appropriate regularization parameters.
Hào [15] generalized their works, not only in Hilbert spaces, but also in Banach spaces with de la Vallée
Poussin kernel and Dirichlet kernel. He applied the mollification method to concrete problems, such as
the Cauchy problem of the Laplace equation, numerical differentiation and some parabolic equations.
In recent years, inspired by Murio’s work [16], there are some research results for the mollification
method with Gaussian kernel to solve Cauchy problem of elliptic equations [17–19].

In this paper, a mollification regular method with the de la Vallée Poussin kernel is introduced
to solve the Cauchy problem for a Helmholtz-type equation; our approximation is to transform the
ill-posed problem into a well-posed problem by convoluting the de la Vallée Poussin function and the
measured data. We consider the following two problems:

4u(x, y)− k2u(x, y) = 0, 0 < x < d, y ∈ R,
u(0, y) = f (y), y ∈ R,

ux(0, y) = 0, y ∈ R,
u(d, y) = h1(y), y ∈ R,

(1)

and 
4v(x, y)− k2v(x, y) = 0, 0 < x < d, y ∈ R,

v(0, y) = 0, y ∈ R,
vx(0, y) = g(y), y ∈ R,
v(d, y) = h2(y), y ∈ R,

(2)

where ∆ = ∂2

∂x2 +
∂2

∂y2 is a two-dimensional Laplace operator, f (y), g(y) are given vectors in L2(R), and

h1(y), h1(y) ∈ L2(R) are unknown vectors. The constant k (k > 0) is the wave number.
Let w = u + v, where u and v are solution of problems (1) and (2), respectively. Then w is the

solution of the following Cauchy problem with the inhomogeneous Neumann boundary condition:
4w(x, y)− k2w(x, y) = 0, 0 < x < d, y ∈ R,

w(0, y) = f (y), y ∈ R,
wx(0, y) = g(y), y ∈ R,
w(d, y) = h(y), y ∈ R,

(3)

where h(y) = h1(y) + h2(y).
We assume that all the functions involved are L2 functions in (−∞, ∞), Additionally suppose that

input functions f (y), g(y) and its measurement data f δ(y), gδ(y) satisfy

max{‖ f − f δ‖, ‖g− gδ‖‖} ≤ δ, (4)

where δ > 0 denotes noise level, and ‖ · ‖ denotes the L2−norm.
Assume there exits a constant E > 0, such that the following a priori bound holds:

max{‖h1(·)‖, ‖h2(·)‖} ≤ E. (5)

The rest of this paper is organized as follows. In Section 2, we illuminate the ill-posed nature of
problems (1) and (2), the de la Vallée Poussin kernel and some properties are presented to obtain the
regularization solution. In Section 3, some error estimates are given for 0 < x < d and at the boundary
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x = d under the suitable choices of regularization parameter. Section 4 is the numerical aspect of our
proposed algorithm. Some conclusions are given in Section 5.

2. Description of the Problem and Mollification Method

Let us introduce the Sobolev space Hr(R) [15] with r ≥ 0, and if r = 0, then H0 = L2(R),
Hr = { f (y) ∈ L2(R) : ‖ f ‖Hr < ∞}, where

‖ f ‖Hr := (
∫
R
| f̂ (ξ)|2(1 + ξ2)rdξ)1/2 (6)

with the Fourier transform

f̂ (ξ) =
1√
2π

∫
R

e−iξ·ydy, (ξ ∈ R)

Additionally, the inverse Fourier transform for the variable ξ ∈ R

f (y) =
1√
2π

∫
R

eiξ·y f̂ (ξ)dξ.

In this paper, we denote ‖ · ‖ := ‖ · ‖0.
For any function ϕ ∈ L1(R) and f ∈ Lp(R), 1 ≤ p ≤ ∞, the convolution is defined by [15]

ϕ ∗ f =
1√
2π

∫ +∞

−∞
ϕ(x− y) f (y)dy =

1√
2π

∫ +∞

−∞
ϕ(y) f (x− y)dy. (7)

It is well known that [16] ̂(ϕ ∗ f )(ξ) = ϕ̂(ξ) f̂ (ξ), (8)

and
‖ϕ ∗ f ‖p ≤

1√
2π
‖ϕ‖1‖ f ‖p, (9)

and the Parseval equality [15]
‖ f ‖ = ‖ f̂ ‖, f , f̂ ∈ L2(R). (10)

2.1. Ill-posed Analysis

Applying the Fourier transform to problems (1) and (2). with respect to the variable y, we obtain
the following problems:

ûxx(x, ξ) + (iξ)2û(x, ξ)− k2û(x, ξ) = 0, 0 < x < d, ξ ∈ R;
û(0, ξ) = f̂ (ξ), ξ ∈ R;
ûx(0, ξ) = 0, ξ ∈ R.

(11)

and 
v̂xx(x, ξ) + (iξ)2v̂(x, ξ)− k2v̂(x, ξ) = 0, 0 < x < d, ξ ∈ R;

v̂(0, ξ) = 0, ξ ∈ R;
v̂x(0, ξ) = ĝ(ξ), ξ ∈ R.

(12)

The solution of problem (11) is

û(x, ξ) = f̂ (ξ) cosh(x
√

ξ2 + k2).
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or equivalently,

u(x, y) =
1√
2π

∫ +∞

−∞
f̂ (ξ) cosh(x

√
ξ2 + k2)eiξydξ.

The solution of problem (12) is

v̂(x, ξ) = ĝ(ξ)
sinh(x

√
ξ2 + k2)√

ξ2 + k2
.

or equivalently,

v(x, y) =
1√
2π

∫ +∞

−∞
ĝ(ξ)

sinh(x
√

ξ2 + k2)√
ξ2 + k2

eiξydξ.

When x = d, we have

û(d, ξ) = f̂ (ξ) cosh(d
√

ξ2 + k2), v̂(d, ξ) = ĝ(ξ)
sinh(d

√
ξ2 + k2)√

ξ2 + k2
.

Apparently, the factors cosh(x
√

ξ2 + k2) and sinh(x
√

ξ2+k2)√
ξ2+k2

are unbounded with respect to variable

ξ, a small perturbation in the measured data ĝ(ξ) and ĥ(ξ) may arouse a tremendously large error
in the solutions u(x, y) and v(x, y), respectively. Therefore, problems (1), (2) and (3) are severely
ill-posed [5].

2.2. Mollification Method

This paper is devoted to establishing a mollification method, constructing mollification operator
by convolution with the de la Vallée Poussin kernel and measurement data, as thus the ill-posed
problems are transformed into well-posed problems.

The function

Vα(t) =
cos(αt)− cos(2αt)

αt2 .

is called the de la Vallée Poussin kernel [15]. Here, α (α > 0) is called mollification radius or
mollification parameter, and Vα(x) has the following properties [15].

(1) Vα(t) is an exponential type entire function of degree 2α relative variable t, bounded and
summable on R;

(2) V̂α is the Fourier transform of Vα(t) and satisfies

√
2
π

V̂α =


1, |ξ| < α,

2α−ξ
α , α < |ξ| ≤ 2α,

0, |ξ| > 2α;

(3) 1
π

∫ +∞
−∞ Vα(t)dt = 1;

(4) 1
π

∫ +∞
−∞ |Vα(t)|dt < 2

√
3 (α ≥ 1).

We define the operator Tα by Tα : R→ R

(Tα f δ)(t) =
1
π

∫ +∞

−∞
Vα(t− y) f δ(y)dy =

√
2
π
(Vα ∗ f δ)(t),

Utilizing (8), we have
ˆ(Tα f δ)(ξ) =

√
2/πV̂α(ξ) f̂ δ(ξ),
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The Cauchy problems (1) and (2) can be stabilized, if instead of attempting to find the values of
the function f δ(y), gδ(y), we shall reconstruct the δ−mollification of the function f δ(y), gδ(y), given by
(Tα f δ)(y), (Tαgδ)(y). We have the following problems with the mollified data:

uα,δ
xx + uα,δ

yy − k2uα,δ = 0, 0 < x < d, y ∈ R,
uα,δ(0, y) = (Tα f δ)(y), y ∈ R,

uα,δ
x (0, y) = 0, y ∈ R,

(13)

and 
vα,δ

xx + vα,δ
yy − k2vα,δ = 0, 0 < x < d, y ∈ R,

vα,δ(0, y) = 0, y ∈ R,
vα,δ

x (0, y) = (Tαgδ)(y), y ∈ R,
(14)

where uα,δ and vα,δ denote the solution of problems (13) and (14), respectively.
The solution of problem (13) is

ûα,δ(x, ξ) = ˆ(Tα f δ)(ξ) cosh(x
√

ξ2 + k2),

equivalently

uα,δ(x, y) =
1√
2π

∫ +∞

−∞
ˆ(Tα f δ)(ξ) cosh(x

√
ξ2 + k2)eiξydξ.

The solution of problem (14) is

v̂α,δ(x, ξ) = ˆ(Tαgδ)(ξ)
sinh(x

√
ξ2 + k2)√

ξ2 + k2
,

equivalently

vα,δ(x, y) =
1√
2π

∫ +∞

−∞
ˆ(Tαgδ)(ξ)

sinh(x
√

ξ2 + k2)√
ξ2 + k2

eiξydξ.

According to the property (3) of kernel function Vα, we have

Tα f δ(y)− f (y) =
1
π

∫ +∞

−∞
Vα(s)( f δ(y− s)− f (y))ds.

From (9) and property (4) of Vα, we get

‖Tα f δ − f ‖2 ≤ ‖Vα‖1 · ‖ f − f δ‖2 < 2
√

3δ.

Remark 1. Assumption that condition (4) is valid, when α ≥ 1, we have

‖Tα f δ − f ‖2 < 2
√

3δ, ‖Tα f δ − f ‖2 < 2
√

3δ.

3. Error Estimate and Parameter Selection

Lemma 1. For 0 < x ≤ d, the following inequalities hold.

(1) sinh(x
√

ξ2+k2)

sinh(d
√

ξ2+k2)
≤ e−(d−x)|ξ|;

(2) sinh(x
√

ξ2+k2)√
ξ2+k2

≤ dex(|ξ|+k);

(3) cosh(x
√

ξ2+k2)

cosh(d
√

ξ2+k2)
≤ 2e−(d−x)|ξ|;

(4) cosh(x
√

ξ2 + k2) ≤ ex(|ξ|+k).
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Proof. Using inequality |ξ| <
√

ξ2 + k2 < |ξ|+ k, the proofs of (3) and (4) can be obtained. Therefore,
we only prove (1) and (2).

From inequality,

sinh(x
√

ξ2 + k2)

sinh(d
√

ξ2 + k2)
=

ex
√

ξ2+k2

ed
√

ξ2+k2
· 1− e−2x

√
ξ2−k2

1− e−2d
√

ξ2−k2
≤ ex
√

ξ2+k2

ed
√

ξ2+k2
,

inequality (1) can be arrived at.
By the Taylor’s expansion,

sinh(x
√

ξ2 + k2)√
ξ2 + k2

=
1√

ξ2 + k2

∞

∑
n=0

(x
√

ξ2 + k2)2n+1

(2n + 1)!
=

∞

∑
n=0

(
√

ξ2 + k2)2nx2n+1

(2n + 1)!

≤ d
∞

∑
n=0

(x
√

ξ2 + k2)2n

(2n)!
= d cosh(x

√
ξ2 + k2),

we obtain (2).

In the following, we will give error estimate for ‖u− uα,δ‖, ‖v− vα,δ‖ and ‖w−wα,δ‖ in 0 < x < d
and at boundary x = d, respectively. The convergence results will be obtained while we choose a
suitable regular parameter α.

3.1. Approximation Theorems

In this section, we shall give the stable estimates of the proposed regularization method for the
case of 0 < x < d.

Theorem 1. Let u(x, y) be the exact solution of problem (1) with the exact input data f (y), and let uα,δ(x, y)
be the regularized solution of problem (13) with the noisy data f δ(y). Assume that conditions (4) and (5) hold,
we have the following estimate:

‖u− uα,δ‖ < 12Ee−(d−x)α + 7δex(2α+k). (15)

Furthermore, if we select regular parameter α as

α =
1

2d
ln(E/δ), (16)

we obtain
‖u− uα,δ‖ < 12E(d+x)/2dδ(d−x)/2d + 7exkEx/dδ1−x/d. (17)

Proof. Suppose that conditions (4) and (5) hold, using Parseval formula (10), we have

‖u− uα,δ‖2 = ‖û− ûα,δ‖2

=
∫ −2α

−∞
|P(ξ) f̂ (ξ)|2dξ +

∫ −α

−2α
|P(ξ)( f̂ (ξ)− 2α− ξ

α
f̂ δ(ξ))|2dξ+∫ α

−α
|P(ξ)( f̂ (ξ)− f̂ δ(ξ)|2dξ +

∫ 2α

α
|P(ξ)( f̂ (ξ)− 2α− ξ

α
f̂ δ(ξ))|2dξ

+
∫ +∞

2α
|P(ξ) f̂ (ξ)|2dξ,

where
P(ξ) = cosh(x

√
ξ2 + k2), (ξ ∈ R).

If ξ ∈ [α, 2α], then 0 < ξ−α
α < 1.
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According to Minkowski inequality, there is

(
∫ 2α

α
|P(ξ)( f̂ (ξ)− 2α− ξ

α
f̂ δ(ξ))|2dξ)1/2

= ||P(ξ)( f̂ (ξ)− f̂ δ(ξ) +
ξ − α

α
f̂ δ(ξ))||H0[α,2α]

≤ ‖P(ξ)( f̂ (ξ)− f̂ δ(ξ)‖H0[α,2α] + ‖P(ξ) f̂ δ(ξ)‖H0[α,2α]

≤ 2‖P(ξ)( f̂ (ξ)− f̂ δ(ξ)‖H0[α,2α] + ‖P(ξ) f̂ (ξ)‖H0[α,2α]

≤ 2‖P(ξ)( f̂ (ξ)− f̂ δ(ξ)‖+ ‖A(ξ)ĥ1(ξ)‖
≤ 2δ sup

|ξ|∈[α,2α]

|P(ξ)|+ E sup
|ξ|∈[α,2α]

|A(ξ)|,

where,

A(ξ) =
cosh(x

√
ξ2 + k2)

cosh(d
√

ξ2 + k2)
, (ξ ∈ R).

Therefore, we have

‖u− uα,δ‖2 = ‖û− ûα,δ‖2

≤ 2E2( sup
|ξ|≥2α

|A(ξ)|)2 + (4δ sup
ξ∈[−2α,−α]

|P(ξ)|+ 3E sup
ξ∈[−2α,−α]

|A(ξ)|)2+

δ2( sup
ξ∈[−α,α]

|P(ξ)|)2 + (2δ sup
ξ∈[α,2α]

|P(ξ)|+ E sup
ξ∈[α,2α]

|A(ξ)|)2.

From items (3) and (4) of Lemma 1, we have

‖u− uα,δ‖2

≤ 8E2e−(d−x)4α + (4δex(2α+k) + 6Ee−(d−x)α)2+

δ2e2x(α+k) + (2δex(2α+k) + 2Ee−(d−x)α)2.

Using inequality
√

A + B <
√

A +
√

B (A > 0, B > 0), we obtain

‖u− uα,δ‖

< 4Ee−(d−x)2α + 4δex(2α+k) + 6Ee−(d−x)α + δex(α+k) + 2δex(2α+k) + 2Ee−(d−x)α

< 12Ee−(d−x)α + 7δex(2α+k).

Choosing the parameter α as (16), then (17) holds.

Similarly, we have the following error estimate for problem (2).

Theorem 2. Let v(x, y) be the exact solution of problem (2) with the exact input data g(y), and let vα,δ(x, y)
be the regularized solution of problem (14) with the noisy data gδ(y). Assume that conditions (4) and (5) hold,
we have the following estimate:

‖v− vα,δ‖ < 6Ee−(d−x)α + 7dδex(2α+k). (18)

Furthermore, if we select regular parameter α as (16), then

‖v− vα,δ‖ < 6E(d+x)/2dδ(d−x)/2d + 7dexkEx/dδ1−x/d. (19)

Moreover, according to the results of Theorems 1 and 2 and Minkowski inequality, we get the
Theorem 3 as follows.
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Theorem 3. Let w(x, y) be the exact solution of problem (3) with the exact input data f (y), g(y), and let
wα,δ(x, y) be its approximate solution with the noisy data f δ(y), gδ(y). Assume that conditions (4) and (5)
hold, we have the following estimate:

‖w− wα,δ‖ < 18Ee−(d−x)α + 7(d + 1)δex(2α+k). (20)

Furthermore, if we select regular parameter α as (16), then

‖w− wα,δ‖ < 18E(d+x)/2dδ(d−x)/2d + 7(d + 1)exkEx/dδ1−x/d. (21)

3.2. Approximation Estimate at Boundary

Note that the error estimates in above section only solve our problems for 0 < x < d and do not
give any useful information at x = d. In order to obtain the stability estimates of problems (1) and (2)
at x = d, we need a stronger a priori assumption instead of (5):

max{‖h1(·)‖Hr , ‖h2(·)‖Hr} ≤ Er, r > 0, (22)

where constant Er > 0 dependents only on r.

Theorem 4. Let u(d, y) be the solution of the Cauchy problem (1) and uα,δ(d, y) be solution of modified problem
(13) at x = d. Suppose that conditions (4) and (22) hold, we have

‖u(d, ·)− uα,δ(d, ·)‖ < 6Er

(1 + α2)r/2 + 7δed(2α+k). (23)

If we select

α =
1

4d
ln(Er/δ), (24)

there is
‖u(d, ·)− uα,δ(d, ·)‖ < 6Er(

4d
ln(Er/δ)

)r + 7E1/2
r edkδ1/2. (25)

Proof. From equality (10), adoption similar analysis method with Theorem 1, we have

‖u(d, ·)− uα,δ(d, ·)‖2 = ‖û(d, ·)− ûα,δ(d, ·)‖2

=
∫ −2α

−∞
| 1
(1 + ξ2)r/2 (1 + ξ2)r/2û(d, ξ)|2dξ +

∫ −α

−2α
|P(ξ)( f̂ (ξ)− 2α− ξ

α
f̂δ(ξ))|2dξ+∫ α

−α
|P(ξ)( f̂ (ξ)− f̂ δ(ξ)|2dξ +

∫ 2α

α
|P(ξ)( f̂ (ξ)− 2α− ξ

α
f̂ δ(ξ))|2dξ+∫ +∞

2α
| 1
(1 + ξ2)r/2 (1 + ξ2)r/2û(d, ξ)|2dξ

≤ 2E2
r ( sup
|ξ|≥2α

|B(ξ)|)2 + (4δ sup
ξ∈[−2α,−α]

|P(ξ)|+ 3Er sup
ξ∈[−2α,−α]

|B(ξ)|)2+

δ2( sup
ξ∈[−α,α]

|P(ξ)|)2 + (2δ sup
ξ∈[α,2α]

|P(ξ)|+ Er sup
ξ∈[α,2α]

|B(ξ)|)2,

where
B(ξ) =

1
(1 + ξ2)r/2 , P(ξ) = cosh(d

√
ξ2 + k2), (ξ ∈ R).

Applying (4) of Lemma 1, we have

‖u(d, ·)− uα,δ(d, ·)‖ < 6Er

(1 + α2)r/2 + 7δed(2α+k).
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Taking regularization parameter α as (24), then (25) holds.

Similarly, combining (2) of Lemma 1, we have error estimation of problem (2) at boundary x = d.

Theorem 5. Let v(d, y) be the solution of the Cauchy problem (2) and vα,δ(d, y) be the solution of modified
problem (14) at x = d. Suppose that conditions (4) and (22) hold, we have

‖v(d, ·)− vα,δ(d, ·)‖ < 6Er

(1 + α2)r/2 + 7dδed(2α+k). (26)

If we select α as (24), then

‖v(d, ·)− vα,δ(d, ·)‖ < 6Er(
4d

ln(Er/δ)
)r + 7dE1/2

r edkδ1/2. (27)

According the results of Theorem 4, Theorem 5 and Minkowski inequality, we get the following
approximate estimate of problem (3).

Theorem 6. Let w(d, y) be the solution of the Cauchy problem (3) and wα,δ(d, y) be its approximation solution
at x = d. Suppose that conditions (4) and (22) hold, we have

‖w(d, ·)− wα,δ(d, ·)‖ < 12Er

(1 + α2)r/2 + 7(d + 1)δed(2α+k). (28)

If we select α as (24), then

‖w(d, ·)− wα,δ(d, ·)‖ < 12Er(
4d

ln(Er/δ)
)r + 7(d + 1)E1/2

r edkδ1/2. (29)

4. Numerical Aspect

In this section, in order to test the feasibility and stability of our method, two numerical results
are proposed. Numerical experiments are performed by MATLAB R2014b (MathWorks, Natick, MA,
USA).

In the numerical examples, we select the discrete interval as −2π ≤ y ≤ 2π, the measurement
data f δ(y) and gδ(y) are obtained as follows

f δ(y) = f + εrandn(size( f )),

where

f = ( f (y1), f (y2), · · · , f (yN)), y2 = −2π +
4π(i− 1)

N − 1
, i = 1, 2, · · · , N.

Function ’rand(·)’ generates arrays of random numbers whose elements are normally disturbed
with mean 0, variance ε2 = 1.

The error level δ is given by

δ = ‖ f − f δ‖ =

√√√√ 1
N

N

∑
i=1

( f (yi)− f δ(yi))2.

In numerical examples, we need to take the discrete Fourier transform of the data vector f δ

as follows

f̂ δ(ξ) =
h√
2π

N

∑
i=1

f δ(yi)e−iξyi ,
−π

h
≤ ξ ≤ π

h
, h =

2π

N − 1
.
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And the discrete Fourier transform of ûα,δ,

uα,δ(x, yi) =
hξ√
2π

N−1

∑
m=1

ûα,δ(x, yi)eiξmyi .

where ξm = −π
h + mhξ , m = 1, 2, · · · , N − 1, hξ = 2π

h(N−1) , and N is the total test points at y-axis.

To measure the accuracy of the numerical solution uα,δ, we define relative error rel(u) between
the exact solution u and approximate solution uα,δ:

rel(u) =
‖u− uα,δ‖
‖u‖

In following numerical experiments, we always take N = 30, d = 1, and fix the reconstructed
position x = 0.2, the a priori mollification parameter α is determined by (16).

Example 1. It’s easy to verify that function

v(x, y) =
sin(y/2) sinh(x

√
1/4 + k2)√

1/4 + k2

is the exact solution of problem (2), where g(y) = sin(y).

Example 2. Apparently, the function

u(x, y) = cos(
y
4
) cosh(x

√
1

16
+ k2)

is the exact solution of problem (1), where f (y) = cos( y
4 ).

To verify the stability of our method, different noisy levels for δ = 1× 10−3, 1× 10−4, 1× 10−5,
1× 10−6 are presented, respectively. Tables 1 and 2 show the results associated with different error
levels δ of Example 1 and 2. Note that the relative error depends not only on error level δ but also on
wave number k. However, due to the characteristic of the selected parametric formula, the numerical
results show that the optimal range of error level within 10−5 and 10−3.

Table 1. The relative error rel(v) of Example 1.

δ 1 × 10−3 1 × 10−4 1 × 10−5 1 × 10−6

rel(v)(k = 0.5) 0.2394 0.2397 0.2399 0.1238
rel(v)(k = 3) 0.2011 0.2010 0.2008 0.2428

Table 2. The relative error rel(u) of Example 2.

δ 1 × 10−3 1 × 10−4 1 × 10−5 1 × 10−6

rel(u)(k = 0.5) 0.001545 0.0001602 0.0001203 0.1038
rel(u)(k = 3) 0.001383 0.0002011 0.07417 0.5989

Figure 1 shows the reconstructed solution and exact solution for Example 1 corresponding to
noise levels δ = 1× 10−6, δ = 1× 10−3 with k = 0.8 and k = 10, respectively. Figure 2 shows the
reconstructed solution and exact solution for Example 2 corresponding to noise levels δ = 1× 10−3

with k = 0.8. and k = 5. Note that the proposed method is effective and stable to noisy data.
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(a)

(b)

Figure 1. Example 1: The comparison of numerical effects between the exact solution and the
approximate solution: (a) For the case k = 0.8, δ = 1× 10−6; (b) For the case k = 10, δ = 1× 10−3.

(a)

Figure 2. Cont.
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(b)

Figure 2. Example 2: The comparison of numerical effects between exact solution and the approximate
solution: (a) For the case k = 0.8, δ = 1× 10−3; (b) For the case k = 5, δ = 1× 10−3.

Remark 2. In above two examples, the value of wave number k which we take is relatively small. In fact, when
k ∈ [0, 10], the result is still valid, when k > 10, the relative error will gradually increase, and the fitting effect
will become more and more undesirability. Moreover, if we take N to be odd, there will be singularities, in this
case, instead of [−2π, 2π], we consider interval [−2π − eps, 2π + eps], where eps = 10−8 is the number
of disturbance.

5. Conclusions

In this paper, a mollification method with the de la Vallée kernel for solving a Cauchy problem
of the Helmholtz-type equation in a strip domain is proposed; the stable approximate estimates are
obtained. Two numerical examples are investigated, and the relative errors between the regularization
solution and the exact solution are presented. The numerical examples do verify the numerical
efficiency and stability of our method. Furthermore, the accuracy of the procedure is quite acceptable,
if noise levels are within 10−5 and 10−3.

However, the selection of regular parameters in this paper depends on the given function. In fact,
we always obtain discrete data onto observation, the formulas for calculating parameters α in this
paper are no longer applicable. At this time, we use the Golden Section Search method to calculate
parameters α, which we will use in later papers.
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