
mathematics

Article

A Hybrid Framework Combining Genetic Algorithm
with Iterated Local Search for the Dominating
Tree Problem

Shuli Hu 1, Huan Liu 1, Xiaoli Wu 1, Ruizhi Li 2,*, Junping Zhou 1,* and Jianan Wang 1,*
1 School of Computer Science and Information Technology, Northeast Normal University,

Changchun 130117, China; husl903@nenu.edu.cn (S.H.); liuh407@nenu.edu.cn (H.L.);
wuxl009@nenu.edu.cn (X.W.)

2 School of Management Science and Information Engineering, Jilin University of Finance and Economics,
Changchun 130117, China

* Correspondence: lirz111@nenu.edu.cn (R.L.); zhoujp877@nenu.edu.cn (J.Z.); wangjn@nenu.edu.cn (J.W.)

Received: 29 March 2019; Accepted: 11 April 2019; Published: 19 April 2019
����������
�������

Abstract: Given an undirected, connected and edge-weighted graph, the dominating tree problem
consists of finding a tree with minimum total edge weight such that for each vertex is either in the tree
or adjacent to a vertex in the tree. In this paper, we propose a hybrid framework combining genetic
algorithm with iterated local search (GAITLS) for solving the dominating tree problem. The main
components of our framework are as follows: (1) the score functions Dscore and Wscore applied in
the initialization and local search phase; (2) the initialization procedure with restricted candidate
list (RCL) by controlling the parameter to balance the greediness and randomness; (3) the iterated
local search with three phases, which is used to intensify the individuals; (4) the mutation with high
diversity proposed to perturb the population. The experimental results on the classical instances
show that our method performs much better than the-state-of-art algorithms.

Keywords: dominating tree; genetic algorithm; iterated local search; score functions

1. Introduction

Let G = (V, E, W) be an undirected, connected and edge-weighted graph, where V is the set of
vertexes, E is the set of edges, and W is a non-negative weight function E→ R+ associated with edges.
We shall use wuv to represent a non-negative weight of each edge (u, v) ∈ E. A tree of graph G is called
dominating tree (DT) if each vertex in V\DT is adjacent to at least one vertex in DT. The dominating
tree problem (DTP) aims to find a dominating tree DT of G with the minimum total edge weight.

The DTP has many applications in real-word domains [1–5], such as network design and network
routing in the area of wireless sensor networks (WSNs). For example, the goal of multicasting is
to simultaneously transmit same message to a group of target computers [1,5]. If the edge weight
represents the energy to transfer message from one server to another, the total edge weight in DT
equals the total cost of transferring message for multicasting. Another example is that DTP can be
modelled using for routing the virtual backbone [4]. In fact, the energy cost of each edge directly
affects the energy cost of the routing. Therefore, minimizing the energy cost of the routing must
be considered.

The DTP has been proved to be non-deterministic polynomia-hard (NP-hard) in general [1].
At present, many different algorithms have been proposed accordingly for DTP. These algorithms can
be divided into two categories (i.e., exact algorithms and heuristic algorithms) in terms of the solution
method. To the best of our knowledge, there are two exact algorithms proposed in the literature
for solving the DTP. In [6], Eduardo et al. proposed a solution framework combining a primal-dual

Mathematics 2019, 7, 359; doi:10.3390/math7040359 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/4/359?type=check_update&version=1
http://dx.doi.org/10.3390/math7040359
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 359 2 of 14

heuristic with an exact branch-and-cut approach to solve DTP. The highlight of it is to transform
the DTP into a Steiner tree problem for further solution. Meanwhile, Adasme et al. [7] proposed
an extended version of a primal-dual model to solve DTP. In addition, they designed the effective
inequalities to improve linear relaxation of the primal-dual model. In recent years, many heuristic
algorithms have been proposed to solve DTP. Shin et al. [1] proposed an approximation framework
with polynomial time complexity (|v|O(lg|v|)) and a heuristic algorithm with low time complexity
for DTP. Sundar and Singh [2] proposed two heuristic algorithms to solve DTP, viz. artificial bee
colony(ABC) algorithm and an ant colony optimization (ACO) algorithm. Their algorithms are the first
metaheuristic algorithms to solve DTP. Sundar [3] proposed a steady-state genetic algorithm (SSGA)
to solve DTP. He designed the effective crossover and mutation operator to improve the performance
of SSGA. Dražić et al. [5] proposed a variable neighborhood search (VNS) approach to solve DTP.
They properly used the arrangement of vertex sets in the neighborhood structure and the local search
phase. At the same time, Chaurasia and Singh [4] proposed an evolutionary algorithm which employs
a guided mutation (EA/G) operator to solve DTP. It tried to overcome the shortcomings of genetic
algorithms. Sundar and Singh [8] proposed a novel artificial bee colony algorithm (ABC_DT) to solve
DTP. ABC_DT is different from existing ABC on two main points, viz. initial phase and the acquisition
of the neighborhood solution. Although many heuristic algorithms have been proposed to solve DTP,
there is still room for improvement based on these existing results.

Tremendous work on the memetic search has been done by more and more researchers due to
its effectiveness and adaptiveness [9–14]. It is essentially a combination of a global search based on
population and a local search based on individuals. In this framework, different memetic search
can be constructed using different search strategies. For example, global search strategies can use
genetic algorithms, evolution strategies, etc. Local search strategies can use simulated annealing,
greedy algorithm, tabu search, etc. Tang et al. [9] proposed a memetic algorithm with extended
neighborhood search for the capacitated arc routing problem (CARP). They mainly designed an
effective local search approach to increase search space and diversity. Kannan et al. [10] proposed
a novel memetic framework combining a genetic algorithm with local search-based filter ranking.
Wang et al. [11] proposed a novel memetic algorithm based on tabu search for the maximum diversity
problem (MDT). Tabu search phase effectively used continuous filtering candidate list strategy. In this
paper, our proposed algorithm shall make full use of the advantages of the local search framework
and genetic algorithm.

In this paper, we propose an effective hybrid framework combining genetic algorithm with
iterated local search for DTP. Firstly, we design two functions Dscore and Wscore which are used
to help make the decisions on which vertex should be added to or removed from the solution.
Secondly, the initialization procedure with RCL (Init_RCL) is proposed to initialize the population.
By controlling the parameter α, Init_RCL can balance the greediness and randomness to some extent.
Third, the iterated local search (ITLS) including three phases is applied to intensify the individuals
in the population. In the removing phase, some vertexes with higher Dscore are removed, and the
dominating phase and connecting phase are applied to repair the solution greedily considering
the Dscore and Wscore. Due to the high greediness in the ITLS, a mutation with high diversity
is performed to perturb the population. Some vertexes are randomly removed, then we also use
the same procedure in ITLS to repair the solution. Finally, the framework is outlined. We shall
compare our proposed algorithm with the state-of-the-art heuristic algorithms, viz. VNS and ABC_DT.
The experimental results show that our algorithm performs much better than VNS and ABC_DT on
the classical benchmark instances.

The structure of our paper is as follows. Some basic concepts are provided in Section 2. In Section 3,
we introduce our framework and its components including the score function, the initialization
procedure, the iterated local search and the mutation with high diversity. The experimental results are
shown in Section 4. Finally, we summarize our work and put forward some new ideas for the future
work in Section 5.

Mathematics 2019, 7, 359 3 of 14

2. Preliminaries

Let G = (V, E, W) be an undirected, connected and edge-weighted graph, where V is the set of
vertexes, E is the set of edges, and W is a non-negative weight function E→ R+ associated with edges.
We shall use wuv to represent a non-negative weight of each edge (u, v) ∈ E. We shall use hop(u, v) to
denote the number of edges in a shortest hop path (not considering the edge weight) from u to v. Then,
Ni(v) = {u|hop(u, v) = i} is used to present the ith level neighbors of the vertex v. In addition, we
denote Ni[v] = Ni(v) ∪ {v}. Particularly, N(v) is the neighbor set of v and N[v] also includes the v
itself except N(v). Some definitions are described as follows.

Definition 1. (Induced Subgraph, IS) Given an undirected graph G(V, E), G′ = (V′, E′), V′ ⊆ V, E′ =
{(u, v)|(u, v) ∈ E, u, v ∈ V′}, subgraph G′ is called the induced subgraph of graph G.

Definition 2. (dominating set, DS) Given an undirected graph G(V, E), the dominating set of G is a vertex
subset D ⊆ V such that every vertex in V\D has at least one neighbor in D. (An example is shown in Figure 1).

Definition 3. (minimum dominating set, MDS) Given an undirected graph G(V, E), the minimum dominating
set problem calls for finding a dominating set D with minimum cardinality.

5

1

6

0 2 4

3
8

7

9

5.49

7.87 3.55

1.39

7.51

5.41

7.45

9.76

9.47

9.89

3.15

3.10

1.35

3.19

5.84

10

2.19

Figure 1. An example of dominating set on the graph.

Definition 4. (Dominating tree problem, DTP) Given an undirected and edge-weighted graph G = (V, E, W),
the DTP calls for finding a tree with minimum total edge weight such that every vertex in V\DT has at least
one neighbor in DT. (An example is shown in Figure 2).

5

1

6

0 2 4

3
8

7

9

5.49

7.87 3.55

1.39

7.51

5.41

7.45

9.76

9.47

9.89

3.15

3.10

1.35

3.19

5.84

10

2.19

Figure 2. An example of dominating tree on the graph.

Figures 1 and 2 show an undirected graph G with 11 vertexes and 16 edges. The black vertexes
are in the dominating set, hence in Figure 1 {0, 1, 7, 9} is a dominating set of G . In Figure 2, the black
vertexes (viz. 0, 2, 7, 9) are in DT and the edges of the minimum spanning tree are the bold. The total
edge weight of the dominating tree is 5.89. We can observe that {0, 2, 7, 9} is also a dominating set of G.
It embodies that the dominating tree satisfies the characteristic of the dominating set.

Mathematics 2019, 7, 359 4 of 14

3. The Hybrid Framework Combining Genetic Algorithm with Iterated Local Search for DTP

In this section, we focus on the framework proposed for solving the DTP, which is a hybrid
framework by combining the genetic algorithm with iterated local search. Before providing the
framework, the score functions will be introduced firstly, which will be applied in the initialization
procedure and the iterated local search phase. Then, we present the initialization procedure which can
balance the greediness and the randomness to some extent. Subsequently, the iterated local search is
described in details, which is used to intensify the individuals in the population. In order to maintain
the diversity of the individuals, we utilize the mutation to perturb the population. Finally, the hybrid
framework combining the genetic algorithm with iterated local search (GAITLS) is presented.

3.1. The Score Functions

To guide the search toward the direction with more possible best solutions, the score function is
designed to help the search make the decision on selecting the vertex to add to or remove from the
solution. Lots of score functions have been proposed in [15–18] for the different problems. Considering
the features of DTP, we design the Dscore and Wscore function which will be applied in two phases
including the iterated local search and the initialization. How to apply the Dscore and Wscore is
introduced in the following subsections. Now we give the information about Dscore and Wscore.

• Dscore: For a vertex v in the solution, Dscore indicates how many vertexes will become
non-dominated from dominated once v is removed from the solution. That is to say, Dscore
is equal to the number of neighbors of v which are only dominated by v. If the vertex v is not in
the solution, Dscore represents how many vertexes will become dominated from non-dominated
once v is added to the solution. In this case, Dscore is equal to the number of neighbors of v which
are non-dominated. The definition of Dscore is listed as follows.

Dscore[v] =

{
−1× |{u|u ∈ N[v] and u is only dominated by v}|, v ∈ DT
|{u|u ∈ N[v] and u is nondominated}|, v /∈ DT

(1)

In order to distinguish between the vertexes v ∈ DT and v /∈ DT, the Dscore value of v ∈ DT is
non-positive by times −1. Once one vertex is added to or removed from the DT, we do not need
re-compute the Dscore for each vertex and we just need update the Dscore of N[v] and N2[v].

• Wscore: For each vertex not in the solution DT, we design the Wscore function to evaluate the
effect on the final sum weight of edges in the minimum spanning tree if one vertex is added
to DT. The definition of Wscore is listed in Equation (2). The SP(v, v

′
) means the shortest path

between v /∈ DT and v
′ ∈ DT. Wscore[v] is equal to the minimum over all such shortest paths

SP(v, v
′
). The shortest path for each vertex pair has been computed in the preprocessing phase,

so it is easy to update the Wscore[v] for each vertex not in DT.

Wscore[v] = min
v′∈DT

SP(v, v
′
), v /∈ DT (2)

3.2. The Initialization Procedure

For the evolutionary algorithm, the important component is the population. The quality of the
population has an important impact on the final results. Generally, the population should be balanced
considering the greediness and randomness. Greediness is used to guarantee the individuals with
better objective while the randomness is used to guarantee the diversity of population on the whole.
Hence, we adopt the restricted candidate list (RCL) to initialize the population. RCL can control
the greediness strength by the parameter and has been widely applied to solve the combinational
optimization problem [18–20].

The initialization procedure (Init_RCL) is outlined in Algorithm 1. The inputs are the graph
G(V, E, W), the size of population IndiNum, and the parameter α which is used to control the
greediness strength. The bigger the α, the stronger the greediness. In order to save time, we compute

Mathematics 2019, 7, 359 5 of 14

the shortest path for each vertex pair in the preprocessing phase. Then, the procedure generates
IndiNum individuals to construct the population by executing a series of iterations. At each iteration,
one individual is produced. To start with, the solution DT is initialized to the empty set. In order
to guarantee the solution is connected, we maintain a candidate list (CL) which is used to store the
neighbors (not in DT) of the vertexes in DT. CL is initialized to empty set due to no vertex in the
DT. Then, the Dscore[v] is initialized to |N[v]|. One vertex will be randomly selected from RCL
to add to the DT at each inner iteration. Therefore, firstly we need to construct the RCL. For the
first vertex, we just consider the Dscore. The maxscore and minscore represent the maximum and
minimum value of Dscore over the vertexes in V. The vertexes with Dscore greater than or equal to
minscore + α× (maxscore−minscore) will be added to the RCL. For the remaining vertexes, we will
consider the weight of edges connecting to the vertexes in DT. The maxscore and minscore represent
the maximum and minimum value of Dscore[v]/min(wuv) over vertexes in CL, where min(wuv)

is the minimum weight of edges connecting v to the vertex u in DT. After randomly selecting a
vertex AddVertex from RCL, some information should be updated, such as the CL, DT and Dscore of
N[AddVertex] and N2[AddVertex]. The inner loop will stop until the there is no non-dominated vertex
indicating the individual is a feasible solution.

Once an individual is constructed, we will execute the pruning procedure to remove the redundant
vertexes [2]. Subsequently, we connect the vertexes in DT by constructing the minimum spanning tree
with the help of Prim’s algorithm [21]. In addition, the fitness of the individual is equal to the sum
weight of edges in the spanning tree. Finally, the new individual will be inserted into the population
POPinit. The outer loop will stop until the population is full.

3.3. The Iterated Local Search Based on the Dynamic Score Functions

In each generation, we apply the iterated local search (ITLS) to intensify the individuals.
During the ITLS, we use the score functions introduced above to lead the direction toward the
solutions with more possible best solutions. The framework of ITLS is described in Algorithm 2.

The graph G(V, E, W) and the current solution DT are as the inputs for the ITLS. In addition, ITLS
will return the local best solution DT

′
which is initialized to DT. Before performing the iteration,

we need compute the Dscore[v] for each vertex according to Equation (1). Subsequently, a series of
iterations are executed to improve the current solution DT. Here, we use the max iterations as the stop
criterion. At each iteration, we firstly judge whether the current solution is feasible. If that, we will
perform the pruning phase by removing the redundant vertexes and connect the vertexes in DT by
constructing the minimum spanning tree. If the DT is better than DT

′
, DT

′
will be updated.

Then, three phases are followed. (1) In the removing vertexes phase, we always remove the
vertex with the highest Dscore[v] value from DT until there exists non-dominated vertex. Meanwhile,
the removed vertex should be not in tabul_list to avoid the search to meet the same situation quickly.
Here, we use the simple tabu_list and the vertex added at the last iteration is not allowed to be removed
at the current iteration. To guarantee the solution feasible, we do not use the tabu list when adding
the vertex to the solution. If there are more than one vertex with the highest value Dscore, we prefer
to the vertex in DT longer time evaluated by how many iterations the vertex has not changed the
state (in or not in DT). Once a vertex is removed, the Dscore of N[v] and N2(v) should be updated.
The following two phases are applied to repair the infeasible solution. (2) In the dominating phase,
we add some vertexes to DT until DT is a dominating set. When selecting the vertex, we consider the
Dscore meaning how many vertexes will become dominated after adding the vertex. We also consider
the effect Wscore[v] on the weight of edges connecting v with the vertexes in DT. Wscore[v] is equal to
the minimum over the shortest paths from v to the vertexes in DT. Therefore, the vertex with lowest
Wscore[v]/Dscore[v] is selected to add to DT. (3) In the connecting phase, we compute all the shortest
paths between the vertexes in different components. The shortest path is chosen and the vertexes along
the path are added to the solution. The procedure will continue until there is only one component.
Finally, the tabu list and the Dscore are updated.

Mathematics 2019, 7, 359 6 of 14

Algorithm 1: The initialization procedure (Init_RCL).
Input: A graph G(V, E, W), the size of population IndiNum, the parameter α

Output: The population POPinit
POPinit ← ∅;
compute the shortest path for each vertex pair;
while IndiNum > 0 do

DT ← ∅ ;
CL← ∅;
for each vertex v do

Dscore[v]← |N[v]|;
end
while there are non-dominated vertexes do

RCL← ∅ ;
if DT is ∅ then

maxscore← max
v∈V

Dscore[v];

minscore← min
v∈V

Dscore[v] ;

for each vertex v ∈ V do
if Dscore[v] ≥ minscore + α× (maxscore−minscore) then

RCL← RCL ∪ {v} ;
end

end
else

maxscore← max
v∈CL,u∈DT

Dscore[v]/min(wuv);

minscore← min
v∈CL,u∈DT

Dscore[v]/min(wuv);

for each vertex v ∈ CL do
if Dscore[v]/min(wuv) ≥ minscore + α× (maxscore−minscore) then

RCL← RCL ∪ {v} ;
end

end
end
AddVertex ← randomly select from the RCL ;
if DT is ∅ then

CL← N(AddVertex) ;
else

CL← CL\{AddVertex} ∪ {v|v ∈ N(AddVertex) and v /∈ DT} ;
end
DT ← DT ∪ {AddVertex} ;
update the Dscore for N[AddVertex] and N2[AddVertex];

end
Remove the redundant vertexes;
Connect the vertexes in DT by constructing a minimum spanning tree on them;
POPinit ← POPinit ∪ {DT} ;
IndiNum← IndiNum− 1;

end
return POPinit ;

Mathematics 2019, 7, 359 7 of 14

Algorithm 2: The iterated local search based on the score functions (ITLS).
Input: The graph G(V, E, W), the cuto f f time, the current solution DT
Output: the local best solution DT

′

tabu_list← ∅;
DT

′ ← DT ;
for each vertex v ∈ V do

if v ∈ DT then
Dscore[v]← −1× |{u|u ∈ N[v] and u is just dominated by v}|;

end
else

Dscore[v]← |{u|u ∈ N[v] and is non-dominated }|;
end

end
repeat

if there is no non-dominated vertex and DT is connected then
remove the redundant vertexes ;
connect the vertexes in DT by constructing the minimum spanning tree;
if DT is better than DT

′
then

DT
′ ← DT ;

end
end
/***************** Removing Phase *****************/
while there is no non-dominated vertex do

remove a vertex v in DT and not in tabu_list with the highest value Dscore[v], breaking
ties in the oldest one;

update the Dscore ;
end
/***************** Dominating Phase *****************/
tabu_list← ∅ ;
while there are non-dominated vertex do

add a vertex v not in DT with lowest Wscore[v]/Dscore[v], breaking ties in the oldest
one;

tabu_list← tabu_list ∪{v};
update the Dscore ;

end
/***************** Connecting Phase *****************/
while the DT is not connected do

find the shortest path between the components;
add the vertexes along the path to the DT ;
tabu_list← tabu_list ∪{v};
update the Dscore ;

end
until the stop criterion is not met;

3.4. The Mutation with High Diversity

Generally, the genetic algorithm uses the crossover to combine the genetic information of two
parents and pass down the excellent genes to the offspring. However, for the DTP problem the
crossover usually leads to the same offspring. Therefore, we adopt the mutation with high diversity to
improve the situation. The ITLS focuses on one solution and greedily to explore the solution space.

Mathematics 2019, 7, 359 8 of 14

In order to explore bigger space, we use the mutation to perturb the parent solution and generate
the offspring.

During the ITLS, we always remove the vertexes with the highest Dscore, which may lead the
search to trap in the local optima. Hence, some vertexes are randomly selected to remove from the
solution in the mutation phase until the solution is not a dominating set. After removing the vertex,
the solution is infeasible and we conduct two phases including dominating and connecting phase
like in ITLS to repair it. The difference is that we do not apply the tabu list in the mutation phase.
Furthermore, the new solution generated by the mutation will replace the parent solution no mater
whether it is better than parent or not. The reason is that after ITLS the individual is replaced by the
local optima. The best solution DT∗ will be updated if the offspring is better than DT∗.

3.5. The Hybrid Framework Combining Genetic Algorithm with Iterated Local Search (GAITlS)

After introducing the components respectively, we provide the framework in this section, which
is shown in Algorithm 3.

The inputs of GAITLS include the graph G(V, E, W), the size of population IndiNum, the cut-off
time and the greediness strength α for the initialization procedure. To start with, the population
POP is initialized by calling the procedure InitRCL(G, IndiNum, α). Then, DT∗ is initialized to the
individual with the best objective in POP. The outer loop (line 3–15) will continue until the the elapsed
time is greater the cut-off time. At each generation, the iterated local search is performed for each
individual in the population (line 6–10). The individual is replaced by the solution returned by ITLS.
Once the better solution is found during the ITLS, the best solution DT∗ will be updated. After the
ITLS, for each individual we perform the mutation to increase the diversity. The best solution DT∗

also will be updated during the mutation phase.

Algorithm 3: The hybrid framework combining genetic algorithm with iterated local
search (GAITLS).

Input: The graph G(V, E, W), the cuto f f time, the size of population IndiNum,
the parameter α

Output: the best solution DT∗

POP← InitRCL(G, IndiNum, α) ;
DT∗ ← the individual with the best objective in POP ;
while the elapsed time is less than cut-off time do

index ← 0 ;
for each individual in POP do

POP[index]← ITLS(POP[index]) ;
if POP[index] is better than DT∗ then

DT∗ ← POP[index];
end
index++;

end
index ← 0 ;
for each individual in POP do

POP[index]← MuatationHD(POP[index]) ;
if POP[index] is better than DT∗ then

DT∗ ← POP[index] ;
end
index++;

end
end
return DT∗;

Mathematics 2019, 7, 359 9 of 14

4. Experiments

In this section, we carry out plentiful experiments to evaluate the efficiency of our algorithm on
standard benchmarks. We have compared our proposed algorithm with the state-of-the-art heuristic
algorithms, viz. VNS and ABC_DT. In our experiments, there are two classic benchmark instances,
dtp and range, which can be downloaded from the webpage [22]. For each instance of dtp, |V| ∈
{10, 15, 20, 100, 200, 300} and |E| ∈ {15, 20, 30, 50, 150, 200, 400, 600, 1000}. For each instance of range,
|V| ∈ {50, 100} and three values of transmission range, viz. 100, 125 and 150. It should be noted that,
VNS is the best heuristic algorithm on dtp benchmark, and ABC_DT is the best heuristic algorithm on
range benchmark. Our algorithm will compare with VNS and ABC respectively.

Our proposed algorithm is implemented in C++ and compiled by g++ with the -O2 option.
All computational experiments were performed on the Linux Ubuntu with Intel(R) Xeon(R) CPU
E7-4830 @2.13Ghz and 8GB memory. It should be noted here that ABC_DT and VNS are implemented
in C [5,8]. Our proposed algorithm run 20 times independently for each instance with different random
seeds, until the time limit (600 s) is satisfied. In our algorithm, it is important to make appropriate
adjustments to the parameters. There are mainly three parameters values(viz. IndiNum = 50, α = 0.85,
step = 1,000,000) where are determined by performing a preliminary experiment. IndiNum presents
the size of the population, and α presents the greediness strength when constructing the RCL. step is
used to control the number of iterations in the local search phase.

4.1. Computational Results

In the results of our experiment, Best presents the best solution values, Avg presents the average
solution values, and AvgTime presents the average run time to reach the best solution. Note that the
bold value presents the best solution value among the different algorithms compared (in terms of
Best and Avg). Opt presents the optimal solution which is acquired by two exact algorithms [6,7].
Init represents the initial solution obtained by GAITLS. For some instances, exact algorithm failed to
find a optimal solution, then it is marked as “na” for these cases.

The experimental results of algorithms are shown in Tables 1–3. Table 1 shows the results of
VNS and our algorithm on small size instances of dtp. Compared with VNS, GAITLS can obtain the
optimal solution on all instances. In addition, both the algorithms have the same average solution on
all instances. Our algorithm is faster than VNS in terms of the average time of solution. Table 2 shows
the results of VNS and our algorithm on large size instances of dtp. Form Table 2, our algorithm can
obtain the same best values with VNS on 6 instances. In the remaining 12 instances, our algorithm can
obtain better best values with VNS. In terms of Avg and AvgTime, our algorithm is better than VNS
on all instances. This shows that our algorithm has been considerably improved compared to VNS.
Table 3 shows the results of ABC_DT and our algorithm on range benchmark. From Table 3, all of them
can be solved to optimality. We can observe that the quality of Avg obtained by our algorithm is much
better than ABC_DT with one exception, viz. R150_100_2. The computational results in Tables 1–3
show that our algorithm can be resoundingly applied to spares instances. It distinctly indicates that the
combination of genetic algorithm and iterated local search in our algorithm can effectively solve DTP.

As shown in Tables 1–3, we also list the results obtained by the initialization procedure in the
column Init. After calling the initialization procedure (Init_RCL), we get a population. Therefore,
the value of Init represents the best objective value among the population over 20 independent times
run. By comparing the values of the columns Init and Best of our algorithm GAITLS, we can find that
the initialization procedure cannot get as good as the final results on almost instances in Tables 1–3.
In order to show the gap intuitively, we provide Figures 3–5. The blue and orange cures represent the
values of the column Init and Best respectively. From these figures, we also can observe that there
always exists gaps between Init and Best.

Mathematics 2019, 7, 359 10 of 14

Table 1. Experimental results of VNS and GAITLS on small size instances of dtp.

VNS GAITLS

Instances Opt Best Avg AvgTime Init Best Avg AvgTime

dtp_10_15_0 5.89 5.89 5.89 0.04 5.89 5.89 5.89 0
dtp_10_15_1 14.42 14.42 14.42 0.04 14.42 14.42 14.42 0
dtp_10_15_2 14.35 14.35 14.35 0.04 16.72 14.35 14.35 0
dtp_15_20_0 18.87 18.87 18.87 0.1 22.65 18.87 18.87 0
dtp_15_20_1 23.03 23.03 23.03 0.09 29.84 23.03 23.03 0
dtp_15_20_2 24.95 24.95 24.95 0.1 29.11 24.95 24.95 0
dtp_15_30_0 18.2 18.2 18.2 0.11 19.7 18.2 18.2 0
dtp_15_30_1 8.32 8.32 8.32 0.08 8.32 8.32 8.32 0
dtp_15_30_2 18.07 18.07 18.07 0.09 23.21 18.07 18.07 0
dtp_20_30_0 33.81 33.81 33.81 0.22 38.39 33.81 33.81 0
dtp_20_30_1 36.03 36.03 36.03 0.2 41.73 36.03 36.03 0
dtp_20_30_2 43.5 43.5 43.5 0.23 51.11 43.5 43.5 0
dtp_20_50_0 9.81 9.81 9.81 0.17 9.81 9.81 9.81 0
dtp_20_50_1 12.19 12.19 12.19 0.16 16.08 12.19 12.19 0
dtp_20_50_2 17.42 17.42 17.42 0.2 23.16 17.42 17.42 0

Table 2. Experimental results of VNS and GAITLS on large instances of dtp.

VNS GAITLS

Instances Opt Best Avg AvgTime Init Best Avg AvgTime

dtp_100_150_0 152.57 152.57 154.61 294.95 174.62 152.57 152.57 186.2
dtp_100_150_1 192.21 192.21 194.22 286.39 210.8 192.21 192.21 0
dtp_100_150_2 146.34 146.34 148.35 245.61 154.66 146.34 146.34 0.06
dtp_100_200_0 135.04 135.04 136.41 333.91 167.1 135.04 135.04 61.29
dtp_100_200_1 91.88 91.88 92.03 133.19 126.45 91.88 91.88 0
dtp_100_200_2 115.93 115.93 117.11 372.14 125.66 115.93 115.93 0.34
dtp_200_400_0 257.09 306.06 343.95 565.14 310.67 257.09 257.09 82.77
dtp_200_400_1 258.77 303.53 331.1 559.42 311.48 258.93 258.93 413.3
dtp_200_400_2 238.27 274.37 289.51 550.36 278.42 238.29 238.29 23.32
dtp_200_600_0 121.62 132.49 150.39 553.69 156.37 121.62 121.62 194
dtp_200_600_1 135.08 162.92 198.21 556.62 170.37 135.08 135.08 1.62
dtp_200_600_2 123.31 139.08 154.36 520.87 159.21 123.31 123.31 7.1
dtp_300_600_0 348.03 471.69 494.62 538.95 398.76 348.03 348.03 479.49
dtp_300_600_1 413.93 494.91 542.46 544.27 466.84 415.32 415.32 61.53
dtp_300_600_2 352.15 500.72 535.3 533.8 398.46 358.53 358.53 10.31

dtp_300_1000_0 na 257.72 264.33 575.1 201.76 149.57 149.57 470.12
dtp_300_1000_1 na 242.79 325.16 530.51 231.97 165.19 165.19 312.21
dtp_300_1000_2 na 223.18 251.41 482.59 202.25 154.61 154.61 7.64

Table 3. Experimental results of ABC_DT and GAITLS on instances of range.

ABC_DTP GAITLS

Instances Opt Best Avg AvgTime Init Best Avg AvgTime

R100_50_1 1024.41 1204.41 1204.41 0.44 1286.31 1024.41 1024.41 0.06
R100_50_2 1340.44 1340.44 1340.69 0.64 1398.51 1340.44 1340.44 6.17
R100_50_3 1316.39 1316.39 1316.39 0.56 1399.71 1316.39 1316.39 2.56

R100_100_1 1217.47 1217.47 1218.59 1.11 1273.02 1217.47 1217.65 293.83
R100_100_2 1128.4 1128.4 1136.5 1.12 1281.33 1128.4 1128.4 15.1
R100_100_3 1252.99 1252.99 1253.3 1.2 1351.87 1252.99 1252.99 279.04
R125_50_1 802.95 802.95 802.95 0.24 827.44 802.95 802.95 0.01
R125_50_2 1055.1 1055.1 1055.1 0.32 1149.88 1055.1 1055.1 1.02
R125_50_3 877.77 877.77 877.83 0.32 941 877.77 877.77 0.13

R125_100_1 943.01 943.01 943.01 0.77 1010.95 943.01 943.01 82.89
R125_100_2 917 917 917.38 0.71 1030.15 917 917.22 196.02
R125_100_3 998.18 998.18 999.91 1.06 1080.4 998.18 998.18 6.76
R150_50_1 647.75 647.75 647.75 0.19 666.08 647.75 647.75 3.04
R150_50_2 863.69 863.69 864.04 0.27 925 863.39 863.39 0.59
R150_50_3 743.94 743.94 745.68 0.18 847.22 743.94 743.94 49.07

R150_100_1 876.69 876.69 877.02 0.57 985.28 876.69 876.69 14.28
R150_100_2 657.35 657.35 657.53 0.66 727.84 657.35 659.35 108.41
R150_100_3 722.87 722.87 722.87 0.54 730.37 722.87 722.87 0.27

Mathematics 2019, 7, 359 11 of 14

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
h

e
o

b
je

ct
iv

e
v

al
u

e

The instance

Init Best

Figure 3. GAITLS performance analysis in Table 1.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
h

e
o

b
je

ct
iv

e
v

al
u

e

The instance

Init Best

Figure 4. GAITLS performance analysis in Table 2.

14 15 16 17 18

Init

Best

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
h

e
o

b
je

ct
iv

e
v

al
u

e

The instance

Init Best

Figure 5. GAITLS performance analysis in Table 3.

Mathematics 2019, 7, 359 12 of 14

4.2. Analysis and Discussion

In this section, we analyse the computational complexity of the initialization procedure
(Algorithm 1) and the iterated local search (Algorithm 2). Meanwhile, we also discuss the difference
between our algorithm and the comparative algorithms.

Considering the initialization procedure Init_RCL, when constructing an individual at each
iteration the RCL need be maintained and a vertex will be selected from the RCL. At most |V| is
added to the dominating set, so the computational complexity of Init_RCL is O(|V| × IndiNum),
where IndiNum is the number of individuals in the population. Regarding the iterated local search
based on the score functions (Algorithm 2), we analyse the three phases respectively. For the removing
phase, the vertex with highest Dscore will be removed, and the Dscore of vertexes in N[v] and N2[v]
is updated. At most |DT| vertexes can be removed, so the computational complexity is O(|DT|).
The dominating phase is similar to the removing phase and the computational complexity is O(|V\DT|).
Actually, the connecting phase is with highest computational complexity which depends on the number
of components. Although we have preprocessed the shortest paths, we need find the shortest path
between the components. However, after the dominating phase the number of components usually is
small due to small-scale of the instances.

Regarding the comparative algorithm variable neighborhood search (VNS), it randomly produces
an initial solution and use the local search to improve it. For the different neighborhoods, it use different
shake strength. However, the local search scan all the vertex pairs to swap, which takes long time and
does not use the information of the current solution. The algorithm artificial bee colony for dominating
(ABC_DT) is a swarm intelligence techniques. There is an important component in the ABC_DT, that is,
the determination of a neighboring solution. The authors propose two methods for determining a
solution in the neighborhood of current solution. CNAS-Method is based on copy a set of dominating
nodes from another solution of the population to current solution, whereas MEDI-Method is based
on performing random multiple edge-deletion-insertion on current solution. CNAS-Method copies
the dominating nodes from another individual but does not consider the effect on the final solution.
MEDI-Method is the random phase. Therefore, we can find VNS and ABC_DT cannot the information
of nodes and current solution to guide the search direction. We use the score function Dscore and
Wscore to guide the search towards the better solution, and the mutation with high diversity is applied
to increase diversity. Our algorithm GAITLS can balance the greediness and randomness.

5. Summary and Future Work

A hybrid framework combining genetic algorithm with iterated local search GAITLS is proposed
for solving the dominating tree problem in this paper. Firstly, two score functions are defined, i.e.,
Dscore and Wscore. Dscore represents how many vertexes will change the state after adding (removing)
one vertex to (from) the solution while Wscore is used to evaluate the possible effect on the final sum
weight of edges in the minimum spanning tree. Dscore and Wscore will help make the decision
which vertex should be selected to add to or remove from the solution in the initialization procedure
and iterated local search. Secondly, the initialization procedure with RCL (Init_RCL) is presented to
initialize the population. By controlling the parameter α, Init_RCL can balance the greediness and
randomness to some extent. Thirdly, the iterated local search (ITLS) including three main phases is
provided. In the removing phases some vertexes with higher Dscore are removed, and dominating
phase and connecting phase are used to repair the solution greedily considering the Dscore and Wscore.
Then, the mutation with high diversity is proposed to perturb the individuals to increase the diversity.
Finally, the hybrid framework is outlined. The experimental results indicate that GAITLS performs
well in solving DTP.

The instances of dominating tree problem are all small-scale. We are interested in the performance
of the applied methods. Therefore, we would like to design the efficient algorithm to solve DTP on the
large-scale instances.

Mathematics 2019, 7, 359 13 of 14

Author Contributions: Software, H.L. and S.H.; Methodology, R.L. and H.L.; Writing—original draft preparation,
S.H. and H.L.; Writing—review and edit, J.W., X.W. and J.Z.

Funding: This work is supported by Jilin education department 13th five-year science and technology project
under Grant Nos. JJKH20190726KJ, JJKH20190756SK, JJKH20180465KJ, the National Natural Science Foundation
of China (NSFC) under Grant Nos. 61502464, 61503074, 61806082, and the Fundamental Research Funds for the
Central Universities 2412019FZ050.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shin, I.; Shen, Y.; Thai, M.T. On approximation of dominating tree in wireless sensor networks. Optim. Lett.
2010, 4, 393–403.

2. Sundar, S.; Singh, A. New heuristic approaches for the dominating tree problem. Appl. Soft Comput. 2013, 13,
4695–4703.

3. Sundar, S. A steady-state genetic algorithm for the dominating tree problem. In Asia-Pacific Conference on
Simulated Evolution and Learning; Springer: Cham, Switzerland, 2014; pp. 48–57.

4. Chaurasia, S.N.; Singh, A. A hybrid heuristic for dominating tree problem. Soft Comput. 2016, 20, 377–397.
5. Dražić, Z.; Čangalović, M.; Kovačević-Vujčić, V. A metaheuristic approach to the dominating tree problem.

Optim. Lett. 2017, 11, 1155–1167.
6. Álvarez-Miranda, E.; Luipersbeck, M.; Sinnl, M. An exact solution framework for the minimum cost

dominating tree problem. Optim. Lett. 2018, 22, 1669–1681.
7. Adasme, P.; Andrade, R.; Leung, J.; Lisser, A. Improved solution strategies for dominating trees. Expert Syst.

Appl. 2018, 100, 30–40.
8. Singh, K.; Sundar, S. Two new heuristics for the dominating tree problem. Appl. Intell. 2018, 48, 2247–2267.
9. Tang, K.; Mei, Y.; Yao, X. Memetic algorithm with extended neighborhood search for capacitated arc routing

problems. IEEE Trans. Evol. Comput. 2009, 13, 1151–1166.
10. Kannan, S.S.; Ramaraj, N. A novel hybrid feature selection via Symmetrical Uncertainty ranking based local

memetic search algorithm. Knowl. Based Syst. 2010, 23, 580–585.
11. Wang, Y.; Hao, J.K.; Glover, F.; Lv, Z. A tabu search based memetic algorithm for the maximum diversity

problem. Eng. Appl. Artif. Intell. 2014, 27, 103–114.
12. Kim, H.; Liou, M.S. Adaptive directional local search strategy for hybrid evolutionary multiobjective

optimization. Appl. Soft Comput. J. 2014, 19, 290–311.
13. Lara, A.; Sanchez, G.; Coello, C.A.C.; Schutze, O. HCS: A new local search strategy for memetic multiobjective

evolutionary algorithms. IEEE Trans. Evol. Comput. 2010, 14, 112–132.
14. Molina, D.; Lozano, M.; Herrera, F. MA-SW-Chains: Memetic algorithm based on local search chains for large

scale continuous global optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,
Barcelona, Spain, 18–23 July 2010.

15. Li, R.; Hu, S.; Zhang, H.; Yin, M. An efficient local search framework for the minimum weighted vertex cover
problem. Inf. Sci. Intern. J. 2016, 372, 428–445.

16. Tompkins, D.A.D.; Hoos, H.H. Scaling and Probabilistic Smoothing: Dynamic Local Search for Unweighted
MAX-SAT. Lect. Notes Comput. Sci. 2003, 2671, 145–159.

17. Thornton, J.; Pham, D.N.; Bain, S.; Ferreira, V., Jr. Additive versus Multiplicative Clause Weighting for SAT.
In Proceedings of the 19th National Conference on Artifical Intelligence, San Jose, CA, USA, 25–29 July 2004.

18. Li, R.; Hu, S.; Gao, J.; Zhou, Y.; Wang, Y.; Yin, M. GRASP for connected dominating set problems.
Neural Comput. Appl. 2016, 28, 1059–1067.

19. Argüello, M.F.; Bard, J.F.; Yu, G. A Grasp for Aircraft Routing in Response to Groundings and Delays.
J. Comb. Optim. 1997, 1, 211–228.

Mathematics 2019, 7, 359 14 of 14

20. Marinakis, Y.; Migdalas, A.; Pardalos, P.M. A Hybrid Genetic-GRASP Algorithm Using Lagrangean
Relaxation for the Traveling Salesman Problem. J. Comb. Optim. 2005, 10, 311–326.

21. Prim, R.C. Shortest Connection Networks and Some Generalizations. Bell Labs Tech. J. 1957, 36, 1389–1401.
22. Markus Sinnl DTP Instances. Availiable online: https://msinnl.github.io/pages/instancescodes.html

(accessed on 3 February 2016).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://msinnl.github.io/pages/instancescodes.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The Hybrid Framework Combining Genetic Algorithm with Iterated Local Search for DTP
	The Score Functions
	The Initialization Procedure
	The Iterated Local Search Based on the Dynamic Score Functions
	The Mutation with High Diversity
	The Hybrid Framework Combining Genetic Algorithm with Iterated Local Search (GAITlS)

	Experiments
	Computational Results
	Analysis and Discussion

	Summary and Future Work
	References

