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Abstract: In this paper, we investigate the value distribution of meromorphic solutions and their
arbitrary-order derivatives of the complex linear differential equation f ′′ + A(z) f ′ + B(z) f = F(z) in
∆ with analytic or meromorphic coefficients of finite iterated p-order, and obtain some results on the
estimates of the iterated exponent of convergence of meromorphic solutions and their arbitrary-order
derivatives taking small function values.
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1. Introduction and Main Results

Throughout this paper, we use the standard notations of the classic Nevanlinna theory (see,
e.g., [1,2]), such as m(r, f ), n(r, f ), N(r, f ), T(r, f ), and M(r, f ).

In the following, we denote the whole complex plane as C and denote the unit disc as ∆ = {z ∈
C : |z| < 1}; we denote N+ = {1, 2, · · · }, and assume that p, k ∈ N+ unless otherwise specified. We
also define inductively [3], for r ∈ [0,+∞), exp1 r = exp r, expp+1 r = exp(expp r); and, for sufficiently
large r ∈ (0,+∞), log1 r = log r, logp+1 r = log(logp r); additionally, we denote exp0 r = r = log0 r,
exp−1 r = log1 r = log r, log−1 r = exp1 r = exp r.

Firstly, we introduce some definitions on the growth and the value distribution of fast-growing
meromorphic functions in ∆ (see, e.g., [4–9]).

Definition 1 ([6]). Let f (z) be a meromorphic function in ∆. Then, we define the iterated p-order of f (z) as

σp( f ) = lim
r→1−

log+
p T(r, f )

log 1
1−r

.

If f (z) is analytic in ∆, we also define

σM,p( f ) = lim
r→1−

log+
p+1 M(r, f )

log 1
1−r

.

Remark 1. From Tsuji [10] and Laine [2], respectively, we can see that if f (z) is analytic in ∆, then we have

σ1( f ) ≤ σM,1( f ) ≤ σ1( f ) + 1
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and
σp( f ) = σM,p( f ) (p ∈ N+ \ {1}).

Definition 2 ([6,7]). Let f (z) be a meromorphic function in ∆. Then, we define the growth index of the iterated
order of f (z) as

i( f ) =


0, if f (z) is non-admissible;
min{p : σp( f ) < ∞}, if f (z) is admissible and σp( f ) < ∞ for some p;
∞, if σp( f ) = ∞ for all p.

If f (z) is analytic in ∆, we also define

iM( f ) =


0, if f (z) is non-admissible;
min{p : σM,p( f ) < ∞}, if f (z) is admissible and σM,p( f ) < ∞ for some p;
∞, if σM,p( f ) = ∞ for all p.

Definition 3 ([4,5]). Let f (z) be a meromorphic function in ∆. Then, we define the iterated p-exponent of
convergence of the sequence of zeros of f (z) and the iterated p-exponent of convergence of the sequence of distinct
zeros of f (z), respectively, as

λp( f ) = lim
r→1−

log+
p N(r, 1

f )

log 1
1−r

and

λp( f ) = lim
r→1−

log+
p N(r, 1

f )

log 1
1−r

.

Definition 4 ([9]). Let f (z) be a meromorphic function in ∆ with the iterated p-order σp( f )(0 < σp( f ) < ∞).
Then, we define the iterated p-type of f (z) as

τp( f ) = lim
r→1−

log+
p−1 T(r, f )

( 1
1−r )

σp( f )
.

If f (z) is analytic in ∆, we also define

τM,p( f ) = lim
r→1−

log+
p M(r, f )

( 1
1−r )

σM,p( f )
.

Definition 5 ([1]). Let f (z) be a meromorphic function in ∆. Then, for a ∈ C = C
⋃{∞}, we define the

deficiency of the value a with respect to f (z) as

δ(a, f ) = lim
r→1−

m(r, 1
f−a )

T(r, f )
.

Next, we introduce some background relative to our main results. It is well-known that Bank and
Laine started the original complex oscillation theory of solutions of linear differential equations in C in
1982 (see [2]). Following that, many scholars in the field of complex analysis have investigated the
growth and the value distribution of meromorphic solutions of complex linear differential equations
as the theory of complex linear differential equations in C has matured (see, e.g., [2,3,11,12]). Naturally,
the question of whether we can get the corresponding results on complex linear differential equations in
∆ has arisen. This question is interesting and meaningful. On the one hand, complex linear differential
equations in ∆ have many similar properties to those in C. On the other hand, it is much more difficult
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to study complex linear differential equations in ∆ than in C, due to the lack of corresponding effective
tools. Some results on this topic can be seen in, for example, [4–9,13–20].

In particular, Latreuch and Belaïdi [18] investigated the distribution of zeros of meromorphic
solutions and their arbitrary-order derivatives for a second-order non-homogeneous complex linear
differential equation

f ′′ + A(z) f ′ + B(z) f = F(z) (1)

in ∆ with meromorphic coefficients of finite iterated p-order, and got the following result:

Theorem 1 ([18]). Let A(z), B(z)( 6≡ 0), and F(z)( 6≡ 0) be meromorphic functions in ∆ with finite iterated
p-order, such that Bj(z) 6≡ 0 and Fj(z) 6≡ 0 (j = 1, 2, · · · ), where Bj(z) and Fj(z)(j = 1, 2, · · · ) are defined
as follows

A0(z) = A(z), Aj(z) = Aj−1(z)−
B′j−1(z)

Bj−1(z)
(j = 1, 2, · · · ), (2)

B0(z) = B(z), Bj(z) = A′j−1(z)− Aj−1(z)
B′j−1(z)

Bj−1(z)
+ Bj−1(z) (j = 1, 2, · · · ), (3)

F0(z) = F(z), Fj(z) = F′j−1(z)− Fj−1(z)
B′j−1(z)

Bj−1(z)
(j = 1, 2, · · · ). (4)

(a) If f (z) is a meromorphic solution of (1) in ∆ with σp( f ) = ∞ and σp+1( f ) = σ, then f (z) satisfies

λp( f (j)) = λp( f (j)) = σp( f ) = ∞ (j = 0, 1, · · · )

and
λp+1( f (j)) = λp+1( f (j)) = σp+1( f ) = σ (j = 0, 1, · · · ).

(b) If f (z) is a meromorphic solution of (1) in ∆ with

σp( f ) > max{σp(A), σp(B), σp(F)},

then f (z) satisfies
λp( f (j)) = λp( f (j)) = σp( f ) (j = 0, 1, · · · ).

They also noted that some special conditions on the coefficients in (1) can guarantee that the
assumptions Bj(z) 6≡ 0 and Fj(z) 6≡ 0 (j = 1, 2, · · · ) in Theorem 1 hold, which makes Theorem 1 more
concrete. More details can be seen in Theorems 2 and 3.

Theorem 2 ([18]). Let A(z), B(z)( 6≡ 0), and F(z)( 6≡ 0) be analytic functions in ∆ with finite iterated p-order,
such that σp(B) > max{σp(A), σp(F)}. Then, all non-trivial solutions of (1) in ∆ satisfy

σp(B) ≤ λp+1( f (j)) = λp+1( f (j)) = σp+1( f ) ≤ σM,p(B) (j = 0, 1, · · · ),

with at most one possible exceptional solution, f0(z), such that

σp+1( f0) < σp(B).
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Theorem 3 ([18]). Let A(z), B(z)( 6≡ 0), and F(z)( 6≡ 0) be meromorphic functions in ∆ with finite iterated
p-order, such that σp(B) > max{σp(A), σp(F)}. If f (z) is a meromorphic solution of (1) in ∆ with σp( f ) = ∞
and σp+1( f ) = σ, then f (z) satisfies

λp( f (j)) = λp( f (j)) = σp( f ) = ∞ (j = 0, 1, · · · )

and
λp+1( f (j)) = λp+1( f (j)) = σp+1( f ) = σ (j = 0, 1, · · · ),

where

σp( f ) = lim
r→1−

logp m(r, f )

log 1
1−r

.

Later, Gong and Xiao [17] generalized Theorems 1–3, and obtained the following results which
consider the distribution of meromorphic solutions and their arbitrary-order derivatives taking small
function values instead of taking zeros.

Theorem 4 ([17]). Let A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z) be meromorphic functions in ∆ with finite
iterated p-order, such that Bj(z) 6≡ 0 and Dj(z) 6≡ 0 (j = 0, 1, · · · ), where Bj(z) and Dj(z)(j = 0, 1, · · · ) are
defined by (2)–(4) and the following

Dj(z) = Fj(z)− (ϕ′′(z) + Aj(z)ϕ′(z) + Bj(z)ϕ(z)) (j = 0, 1, · · · ). (5)

(a) If f (z) is a meromorphic solution of (1) in ∆ with σp( f ) = ∞ and σp+1( f ) = σ, then f (z) satisfies

λp( f (j) − ϕ) = λp( f (j) − ϕ) = σp( f ) = ∞ (j = 0, 1, · · · )

and
λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) = σ (j = 0, 1, · · · ).

(b) If f (z) is a meromorphic solution of (1) in ∆ with

max{σp(A), σp(B), σp(F), σp(ϕ)} < σp( f ) < ∞,

then f (z) satisfies
λp( f (j) − ϕ) = λp( f (j) − ϕ) = σp( f ) (j = 0, 1, · · · ).

Similar to Theorems 2 and 3, they also obtained more concrete results corresponding Theorem 4,
as follows in Theorems 5 and 6.

Theorem 5 ([17]). Let A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z) be analytic functions in ∆ with finite iterated
p-order, such that σp(B) > max{σp(A), σp(F), σp(ϕ)}, σM,p(A) ≤ σM,p(B), and ϕ(z) is not a solution of
(1). Then, all non-trivial solutions of (1) in ∆ satisfy

σp(B) ≤ λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) ≤ σM,p(B) (j = 0, 1, · · · ),

with at most one possible exceptional solution, f0(z), such that

σp+1( f0) < σp(B).
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Theorem 6 ([17]). Let A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z) be meromorphic functions in ∆ with finite
iterated p-order, such that σp(B) > max{σp(A), σp(F), σp(ϕ)}, δ(∞, B) > 0, and ϕ(z) is not a solution of
(1). If f (z) is a meromorphic solution of (1) in ∆ with σp( f ) = ∞ and σp+1( f ) = σ, then f (z) satisfies

λp( f (j) − ϕ) = λp( f (j) − ϕ) = σp( f ) = ∞ (j = 0, 1, · · · )

and
λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) = σ (j = 0, 1, · · · ).

Inspired by Theorems 1–6, we proceed further in this direction. Note that there exists a dominant
coefficient whose iterated p-order is strictly larger than those of the other coefficients in Theorems 2, 3,
5, and 6. A question arises naturally: What can we say if there exists more than one coefficient having
the maximal iterated p-order? In the following, we introduce a condition on the iterated p-type to deal
with coefficients having the maximal iterated p-order to obtain Theorems 7 and 8.

Theorem 7. Let p ∈ N+\{1}, A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z)( 6≡ 0) be analytic functions in ∆

with finite iterated p-order, such that max{σp(A), σp(F), σp(ϕ)} ≤ σp(B)(0 < σp(B) < ∞), max{τp(S) :
σp(S) = σp(B), S ∈ {A, F, ϕ}} < τp(B) < ∞, σM,p(A) ≤ σM,p(B), and ϕ(z) is not a solution of (1). Then,
all non-trivial solutions f (z) of (1) in ∆ satisfy

σp(B) = λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) = σM,p+1( f ) = σM,p(B) (j = 0, 1, · · · ),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Remark 2. The partial result of Theorem 7 for the case p = 1 will be shared in Lemma 7.

Theorem 8. Let p ∈ N+\{1}, A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z) be meromorphic functions in ∆

with finite iterated p-order, such that max{σp(A), σp(F), σp(ϕ)} ≤ σp(B)(0 < σp(B) < ∞), max{τp(S) :
σp(S) = σp(B), S ∈ {A, F, ϕ}} < τp(B) < ∞, δ(∞, B) > 0, and ϕ(z) is not a solution of (1). If f (z) is a
meromorphic solution of (1) in ∆ with σp( f ) = ∞ and σp+1( f ) < ∞, then f (z) satisfies

λp( f (j) − ϕ) = λp( f (j) − ϕ) = σp( f ) = ∞ (j = 0, 1, · · · )

and
λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) (j = 0, 1, · · · ).

Remark 3. The partial results of Theorem 8 for the case p = 1 can be seen in Lemmas 2 and 3.

2. Lemmas for Proofs of Main Results

Lemma 1 ([14]). Let f (z) be a meromorphic function in ∆ with i( f ) = p and σp( f ) < ∞. Then, for any
ε(> 0), there exists a subset E ⊂ [0, 1) with

∫
E

dr
1−r < ∞ such that, for all r 6∈ E, r → 1−, we have

m(r,
f (k)

f
) = O(expp−2{(

1
1− r

)σp( f )+ε}).

Lemma 2 ([18]). Let A0(z), A1(z), · · · , Ak−1(z), and F(z)( 6≡ 0) be meromorphic functions in ∆ with finite
iterated p-order. If f (z) is a meromorphic solution of complex linear differential equation

f (k) + Ak−1(z) f (k−1) + · · ·+ A0(z) f = F(z) (6)
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in ∆ with σp( f ) = ∞ and σp+1( f ) < ∞, then f (z) satisfies

λp( f ) = λp( f ) = σp( f ) = ∞

and
λp+1( f ) = λp+1( f ) = σp+1( f ).

Lemma 3 ([17]). Let A0(z), A1(z), · · · , Ak−1(z), F(z)( 6≡ 0) and ϕ(z) be meromorphic functions in ∆ with
finite iterated p-order, such that

F(z)− ϕ(k)(z)− Ak−1(z)ϕ(k−1)(z)− · · · − A1(z)ϕ′(z)− A0(z)ϕ(z) 6≡ 0.

If f (z) is a meromorphic solution of (6) in ∆ with σp( f ) = ∞ and σp+1( f ) < ∞, then f (z) satisfies

λp( f − ϕ) = λp( f − ϕ) = σp( f ) = ∞

and
λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ).

Lemma 4 ([11]). Let A0(z), A1(z), · · · , Ak−1(z) be analytic functions in DR(= {z ∈ C : |z| < R}), where
0 < R ≤ ∞, and f (z) be a solution of complex linear differential equation

f (k) + Ak−1(z) f (k−1) + · · ·+ A0(z) f = 0

in DR. Then, for all 0 ≤ r < R,

mp(r, f )p ≤ C(
k−1

∑
j=0

∫ 2π

0

∫ r

0
|Aj(seiθ)|

p
k−j dsdθ + 1),

where C = C(k) > 0 is a constant depending on p and on the initial values of f (z) at the point zθ , where
Aj(zθ) 6= 0 for some j = 0, 1 · · · , k− 1.

Lemma 5 ([19]). Let f (z) be an analytic function in ∆ with finite iterated order, such that σM,p( f ) = σ > 0,
0 < τM,p( f ) = τ < ∞. Then, for any µ(< τ), there exists a subset H ⊂ [0, 1) with

∫
H

dr
1−r = ∞ such that for

all r ∈ H, we have

logp M(r, f ) > µ(
1

1− r
)σ.

Remark 4. If the definitions of σM,p( f ) and τM,p( f ) in Lemma 5 are replaced by σp( f ) and τp( f ), respectively,
it is obvious that, for any ε(0 < ε < τp( f )), there exists a subset H ⊂ [0, 1) with

∫
H

dr
1−r = ∞ such that, for

all r ∈ H, we have

logp−1 T(r, f ) > (τp( f )− ε)(
1

1− r
)σ( f ).

Lemma 6. Let A(z) and B(z) be analytic functions in ∆ such that σp(A) ≤ σp(B)(0 < σp(B) < ∞),
τp(A) < τp(B) if σp(A) = σp(B), σM,p(A) ≤ σM,p(B). If f (z)( 6≡ 0) is a solution of

f ′′ + A(z) f ′ + B(z) f = 0 (7)

in ∆, then f (z) satisfies
σp(B) ≤ σp+1( f ) = σM,p+1( f ) ≤ σM,p(B).
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Further, if p ∈ N+\{1}, then f (z) satisfies

σp(B) = σp+1( f ) = σM,p+1( f ) = σM,p(B).

Proof. We divide this proof into two parts.
Firstly, we prove σp+1( f ) ≤ σM,p(B). By Lemma 4, for r ∈ (0, 1), we have

T(r, f ) = m(r, f ) ≤ C[
∫ 2π

0

∫ r
0 (|A(seiθ)|+ |B(seiθ)| 12 )dsdθ + 1]

≤ 2πC[M(r, A) + M(r, B) + 1],
(8)

where C = C(k) > 0 is a constant depending on the initial values of f (z) at the point zθ , where
A(zθ) 6= 0 or B(zθ) 6= 0. By Definition 1, for any ε(> 0) and all r → 1−, we have

M(r, A) ≤ expp{(
1

1− r
)σM,p(A)+ε} (9)

and

M(r, B) ≤ expp{(
1

1− r
)σM,p(B)+ε}. (10)

Then, by (8)–(10) and as σM,p(A) ≤ σM,p(B), for the above ε and all r → 1−, we have

T(r, f ) ≤ 2πC[expp{(
1

1− r
)σM,p(A)+ε}+ expp{(

1
1− r

)σM,p(B)+ε}+ 1]

≤ expp+1{(σM,p(B) + 2ε) log(
1

1− r
)},

which implies that σp+1( f ) ≤ σM,p(B) < ∞.
Secondly, we prove σp+1( f ) ≥ σp(B). Now, we rewrite (7) as

−B(z) =
f ′′(z)
f (z)

+ A(z)
f ′(z)
f (z)

.

Then, we have

T(r, B) = m(r, B) ≤ m(r, A) + m(r,
f ′

f
) + m(r,

f ′′

f
)

= T(r, A) + m(r,
f ′

f
) + m(r,

f ′′

f
). (11)

By Lemma 1, for any ε(> 0), there exists a subset E ⊂ [0, 1) with
∫

E
dr

1−r < ∞ such that, for all
r 6∈ E, r → 1−, we have

m(r,
f (k)

f
) = O(expp−1{(

1
1− r

)σp+1( f )+ε}) (k = 1, 2). (12)

If σp(A) = σp(B) and τp(A) < τp(B), then, by Definition 4, for the above ε and all r → 1−, we have

T(r, A) ≤ expp−1{(τp(A) + ε)(
1

1− r
)σp(A)} = expp−1{(τp(A) + ε)(

1
1− r

)σp(B)}, (13)
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and, by Lemma 5 and Remark 4, for sufficiently small ε(> 0), there exists a subset H ⊂ [0, 1) with∫
H

dr
1−r = ∞ such that, for all r ∈ H, we have

T(r, B) > expp−1{(τp(B)− ε)(
1

1− r
)σp(B)}. (14)

Then, by (11)–(14), for sufficiently small ε(> 0) and all r ∈ H\E, r → 1−, we have

expp−1{(τp(B)− ε)(
1

1− r
)σp(B)}

≤ expp−1{(τp(A) + ε)(
1

1− r
)σp(B)}+ O(expp−1{(

1
1− r

)σp+1( f )+ε}). (15)

Now, we may choose sufficiently small ε(0 < 2ε < τp(B)− τp(A)), and deduce, by (15), that

expp−1{(τp(B)− τp(A)− 2ε)(
1

1− r
)σp(B)} ≤ expp−1{(

1
1− r

)σp+1( f )+2ε},

which implies that σp+1( f ) ≥ σp(B). If σp(A) < σp(B), then, for the above ε and all r → 1−, we have

T(r, A) ≤ expp−1{(
1

1− r
)σp(A)+ε}, (16)

and, by (14), for sufficiently small ε(> 0) and all r ∈ H, we have

T(r, B) ≥ expp−1{(
1

1− r
)σp(B)−ε}. (17)

Then, by (11), (12), (16), and (17), for sufficiently small ε(0 < 2ε < σp(B)− σp(A)) and all r ∈ H\E,
r → 1−, we have

expp−1{(
1

1− r
)σp(B)−ε} ≤ expp−1{(

1
1− r

)σp(A)+ε}+ O(expp−1{(
1

1− r
)σp+1( f )+ε}),

which implies σp+1( f ) ≥ σp(B).
Therefore, f (z) satisfies σp(B) ≤ σp+1( f ) ≤ σM,p(B). By Remark 1, we have σp+1( f ) = σM,p+1( f ).

Hence, f (z) satisfies
σp(B) ≤ σp+1( f ) = σM,p+1( f ) ≤ σM,p(B).

Further, if p ∈ N+\{1}, then we have σp(B) = σM,p(B). Consequently

σp(B) = σp+1( f ) = σM,p+1( f ) = σM,p(B).

Therefore, the proof of Lemma 6 is complete.

Lemma 7. Let A(z), B(z)( 6≡ 0), F(z)( 6≡ 0), and ϕ(z) be analytic functions in ∆, such that
max{σp(A), σp(F), σp(ϕ)} ≤ σp(B)(0 < σp(B) < ∞), max{τp(S) : σp(S) = σp(B), S ∈ {A, F, ϕ}} <
τp(B) < ∞, σM,p(A) ≤ σM,p(B), and ϕ(z) is not a solution of (1). Then, all non-trivial solutions f (z) of (1)
in ∆ satisfy

σp(B) ≤ λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ) ≤ σM,p(B),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).
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Further, if p ∈ N+\{1}, then f (z) satisfies

σp(B) = λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ) = σM,p(B),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Proof. Firstly, we prove σp+1( f ) = σM,p+1( f ) ≤ σM,p(B). Let f1(z), f2(z) be a solution base of (7).
Then, we have σM,p+1( fi) ≤ σM,p(B)(i = 1, 2) by Lemma 6. By the elementary theory of ordinary
differential equations (see, e.g., [2]), any solution of (1) can be represented as

f (z) = (A1(z) + C1) f1(z) + (A2(z) + C2) f2(z),

where C1, C2 ∈ C and A1(z), A2(z) are analytic in ∆ and are given by the system of equations{
A′1 f1 + A′2 f2 = 0
A′1 f ′1 + A′2 f ′2 = F

satisfying A′1 = −F f2W( f1, f2)
−1 and A′2 = F f1W( f1, f2)

−1, where W( f1, f2) is the Wronskian
determinant of f1(z), f2(z). Hence,

σM,p+1( f ) ≤ max{σM,p+1(F), σM,p(B)}.

Since σp(F) ≤ σp(B) < ∞, then σM,p+1(F) = σp+1(F) = 0 < σp(B) ≤ σM,p(B). So, f (z) satisfies
σp+1( f ) = σM,p+1( f ) ≤ σM,p(B).

Secondly, we prove σp+1( f ) = σM,p+1( f ) ≥ σp(B) with at most one possible exceptional solution,
f0(z), satisfying σp+1( f0) = σM,p+1( f0) < σp(B). On the contrary, we assume that there exist two
distinct solutions f1(z), f2(z) of (1) with σM,p+1( fi) < σp(B)(i = 1, 2). Then, f (z) = f1(z) − f2(z)
satisfies σM,p+1( f ) = σM,p+1( f1 − f2) < σp(B). However, f (z) is a non-zero solution of (7) and
satisfies σM,p+1( f ) = σM,p+1( f1 − f2) ≥ σp(B) by Lemma 6, which is a contradiction. Therefore,

σM,p+1( f ) = σp+1( f ) ≥ σp(B)

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Therefore, we have
σp(B) ≤ σp+1( f ) = σM,p+1( f ) ≤ σM,p(B),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Since ϕ(z) is not a solution of (1)—that is, F(z)− ϕ′′(z)− A(z)ϕ′(z)− B(z)ϕ(z) 6≡ 0—then, by
Lemma 3, we have

λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ).

Consequently, we have

σp(B) ≤ λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ) ≤ σM,p(B),
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with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Further, if p ∈ N+\{1}, we have

σp(B) = λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ) = σM,p(B),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Therefore, the proof of Lemma 7 is complete.

3. Proofs of Theorems 7 and 8

In this section, we denote by E a subset of [0, 1) with
∫

E
dr

1−r < ∞ and by H a subset of [0, 1) with∫
H

dr
1−r = ∞, and assume that E and H appear not necessarily to be the same on each occasion.

Proof of Theorem 7. Since ϕ(z) is not a solution of (1), then, by Lemma 7, all non-trivial solutions
f (z) of (1) satisfy

σp(B) ≤ λp+1( f − ϕ) = λp+1( f − ϕ) = σp+1( f ) = σM,p+1( f ) ≤ σM,p(B), (18)

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

By (2) and (3), we have

σp(Aj) ≤ max{σp(Aj−1), σp(Bj−1)} ≤ σp(B) (j = 1, 2, · · · )

and
σp(Bj) ≤ max{σp(Aj−1), σp(Bj−1)} ≤ σp(B) (j = 1, 2, · · · ).

By Lemma 1 and (2), for any ε(> 0) and all r 6∈ E, r → 1−, we have

m(r, Aj) ≤ m(r, Aj−1) + O(expp−2{(
1

1− r
)σp(B)+ε}) (19)

≤ m(r, A) + O(expp−2{(
1

1− r
)σp(B)+ε}) (j = 1, 2, · · · ).

On the other hand, we deduce, from (2) and (3), that

Bj = A′j−1 − Aj−1
B′j−1

Bj−1
+ Bj−1

= Aj−1(
A′j−1

Aj−1
−

B′j−1

Bj−1
) + Aj−2(

A′j−2

Aj−2
−

B′j−2

Bj−2
) + Bj−2 (20)

=
j−1

∑
k=0

Ak(
A′k
Ak
−

B′k
Bk

) + B (j = 1, 2, · · · ).
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Now, we prove that Bj(z) 6≡ 0 for all j = 1, 2, · · · . On the contrary, we assume that there exists
some j ∈ N+ such that Bj(z) ≡ 0. By (19), (20), and Lemma 1, for any ε(> 0) and all r 6∈ E, r → 1−,
we have

T(r, B) = m(r, B) ≤
j−1

∑
k=0

m(r, Ak) + O(expp−2{(
1

1− r
)σp(B)+ε})

≤ jm(r, A) + O(expp−2{(
1

1− r
)σp(B)+ε}) (21)

= jT(r, A) + O(expp−2{(
1

1− r
)σp(B)+ε}).

Then by (13), (14), (16), (17), and (21), for sufficiently small ε(> 0) and all r ∈ H\E, r → 1−, we have

expp−1{(τp(B)− τp(A)− 3ε)(
1

1− r
)σp(B)} if σp(A) = σp(B)

≤ expp−2{(
1

1− r
)σp(B)+2ε}, and τp(A) < τp(B),

expp−1{(
1

1− r
)σp(B)−2ε} ≤ expp−2{(

1
1− r

)σp(B)+2ε}, if σp(A) < σp(B),

(22)

which implies a contradiction. Hence, Bj(z) 6≡ 0 for all j = 1, 2, · · · .
Next, we just need to prove that Dj(z) 6≡ 0 for all j = 1, 2, · · · , by noting that D0(z) = F(z)−

(ϕ′′(z) + A(z)ϕ′(z) + B(z)ϕ(z)) 6≡ 0 since ϕ(z) is not a solution of (1). On the contrary, we assume that
there exists some j ∈ N+ such that Dj(z) ≡ 0; that is, Fj(z)− (ϕ′′(z) + Aj(z)ϕ′(z) + Bj(z)ϕ(z)) ≡ 0.
Hence, we have

Fj = ϕ(
ϕ′′

ϕ
+ Aj

ϕ′

ϕ
+ Bj)

= ϕ[
ϕ′′

ϕ
+ Aj

ϕ′

ϕ
+

j−1

∑
k=0

Ak(
A′k
Ak
−

B′k
Bk

) + B] (j = 1, 2, · · · ).

By the assumption that ϕ(z) 6≡ 0, we have

B =
Fj

ϕ
− [

ϕ′′

ϕ
+ Aj

ϕ′

ϕ
+

j−1

∑
k=0

Ak(
A′k
Ak
−

B′k
Bk

)]. (23)

Then by (19), (23), and Lemma 1, for any ε(> 0) and all r 6∈ E, r → 1−, we have

T(r, B) = m(r, B) ≤ T(r, Fj) + (j + 1)T(r, A) + m(r,
1
ϕ
) + O(expp−2{(

1
1− r

)σp(B)+ε})

≤ T(r, F) + (j + 1)T(r, A) + T(r, ϕ) + O(expp−2{(
1

1− r
)σp(B)+ε}). (24)

By the assumptions that max{σp(A), σp(F), σp(ϕ)} ≤ σp(B) and max{τp(S) : σp(S) = σp(B), S ∈
{A, F, ϕ}} < τp(B), similar to (13) and (16), for sufficiently small ε(> 0) and all r → 1−, we have

T(r, F) ≤


expp−1{(τp(F) + ε)(

1
1− r

)σp(B)}, if σp(F) = σp(B)

and τp(F) < τp(B),

expp−1{(
1

1− r
)σp(F)+ε} ≤ expp−1{(

1
1− r

)σp(B)−ε}, if σp(F) < σp(B) ,

(25)
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and

T(r, ϕ) ≤


expp−1{(τp(ϕ) + ε)(

1
1− r

)σp(B)}, if σp(ϕ) = σp(B)

and τp(ϕ) < τp(B),

expp−1{(
1

1− r
)σp(ϕ)+ε} ≤ expp−1{(

1
1− r

)σp(B)−ε}, if σp(ϕ) < σp(B) .

(26)

Denote τ = max{τp(S) : σp(S) = σp(B), S ∈ {A, F, ϕ}}. Then, by (13), (14), (16), and (24)–(26), for
sufficiently small ε(0 < 3ε < τp(B)− τ) and all r ∈ H\E, r → 1−, we have

expp−1{(τp(B)− ε)(
1

1− r
)σp(B)}

≤ O(expp−1{(τ + ε)(
1

1− r
)σp(B)}) + O(expp−1{(

1
1− r

)σp(B)−ε})

+O(expp−2{(
1

1− r
)σp(B)+ε}) (27)

≤ expp−1{(τ + 2ε)(
1

1− r
)σp(B)},

which is a contradiction. Hence, Dj(z) 6≡ 0 for all j = 1, 2, · · · .
Then, by Theorem 4(a) and (18), we have

σp(B) ≤ λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) = σM,p+1( f ) ≤ σM,p(B) (j = 0, 1, · · · ),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Since p ∈ N+\{1}, we have

σp(B) = λp+1( f (j) − ϕ) = λp+1( f (j) − ϕ) = σp+1( f ) = σM,p+1( f ) = σM,p(B) (j = 0, 1, · · · ),

with at most one possible exceptional solution, f0(z), satisfying

σM,p+1( f0) = σp+1( f0) < σp(B).

Therefore, the proof of Theorem 7 is complete.

Proof of Theorem 8. Denote δ = δ(∞, B) > 0, then we have, by Definition 5, that for all r → 1−,

T(r, B) ≤ 2
δ

m(r, B). (28)

Firstly, we prove that Bj(z) 6≡ 0 for all j = 1, 2, · · · . On the contrary, we assume that there exists
some j ∈ N+ such that Bj(z) ≡ 0. By (21), (28), and Lemma 1, for any ε(> 0) and all r 6∈ E, r → 1−,
we have

T(r, B) ≤ 2
δ

m(r, B) ≤ 2
δ

j−1

∑
k=0

m(r, Ak) + O(expp−2{(
1

1− r
)σp(B)+ε})

≤ 2
δ

jm(r, A) + O(expp−2{(
1

1− r
)σp(B)+ε}) (29)

≤ 2
δ

jT(r, A) + O(expp−2{(
1

1− r
)σp(B)+ε}).
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Then, by (13), (14), (16), (17), and (29), for sufficiently small ε(> 0) and all r ∈ H\E, r → 1−, we have
(22) again, which implies a contradiction. Hence, Bj(z) 6≡ 0 for all j = 1, 2, · · · .

Secondly, we prove that Dj(z) 6≡ 0 for all j = 1, 2, · · · . On the contrary, we assume that there
exists some j ∈ N+ such that Dj(z) ≡ 0. If ϕ(z) 6≡ 0, then by (23), (28), and Lemma 1, for any ε(> 0)
and all r 6∈ E, r → 1−, we have

T(r, B) ≤ 2
δ

m(r, B)

≤ 2
δ
[m(r, F) + (j + 1)m(r, A) + m(r,

1
ϕ
)] + O(expp−2{(

1
1− r

)σp(B)+ε}) (30)

≤ 2
δ
[T(r, F) + (j + 1)T(r, A) + T(r, ϕ)] + O(expp−2{(

1
1− r

)σp(B)+ε}).

Hence, by (13), (14), (16), (25), (26), and (30), we deduce a contradiction, similar to (27). If ϕ(z) ≡ 0,
then, by (4) and (5), we have

F′j−1 − Fj−1
B′j−1(z)

Bj−1(z)
≡ 0. (31)

Integrating (31), we have Fj−1(z) = cBj−1(z), where c is a non-zero complex constant. If j = 1,
then F(z) = F0(z) = cB0(z) = cB(z), which contradicts with the assumption that σp(F) < σp(B) or
σp(F) = σp(B), τp(F) < τp(B). So, j ∈ N+\{1}, and, by (20), we have

1
c

Fj−1 = Bj−1 =
j−2

∑
k=0

Ak(
A′k
Ak
−

B′k
Bk

) + B. (32)

Then, by (4) and Lemma 1, for any ε(> 0) and all r 6∈ E, r → 1−, we have

m(r, Fj−1) ≤ m(r, F) + O(expp−2{(
1

1− r
)σp(B)+ε}). (33)

By (28), (32), and (33), for the above ε and all r 6∈ E, r → 1−, we have

T(r, B) ≤ 2
δ

m(r, B)

≤ 2
δ
[

j−2

∑
k=0

m(r, Ak) + m(r, Fj−1)] + O(expp−2{(
1

1− r
)σp(B)+ε}) (34)

≤ 2
δ
[(j− 1)T(r, A) + T(r, F)] + O(expp−2{(

1
1− r

)σp(B)+ε}).

Then by (13), (14), (16), (25), and (34), we deduce a contradiction, similar to the case for ϕ(z) 6≡ 0.
Hence, Dj(z) 6≡ 0 for all j = 1, 2, · · · . In addition, D0(z) = F(z)− (ϕ′′(z)+ A(z)ϕ′(z)+ B(z)ϕ(z)) 6≡ 0,
since ϕ(z) is not a solution of (1).

As Bj(z) · Dj(z) 6≡ 0 for all j = 0, 1, · · · , then, by Theorem 4(a), we obtain the result of Theorem 8.
Therefore, the proof of Theorem 8 is complete.
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