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Abstract: A new two-stage model for assessing the effect of basic control measures, quarantine and
isolation, on a general disease transmission dynamic in a population is designed and rigorously
analyzed. The model uses the Holling II incidence function for the infection rate. First, the basic
reproduction number (R0) is determined. The model has both locally and globally asymptotically
stable disease-free equilibrium whenever R0 < 1. If R0 > 1, then the disease is shown to be
uniformly persistent. The model has a unique endemic equilibrium when R0 > 1. A nonlinear
Lyapunov function is used in conjunction with LaSalle Invariance Principle to show that the endemic
equilibrium is globally asymptotically stable for a special case.
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1. Introduction

Over the decades, quarantine (of individuals suspected of being exposed to a communicable
disease) and isolation (of individuals with disease symptoms) have been widely used to control
the spread of numerous communicable diseases, such as pandemic influenza, cholera, Ebola,
Severe Acute Respiratory Syndrome (SARS), and most recently swine influenza pandemic [1–9].
Numerous mathematical models have been studying the effect of quarantine and isolation in
combatting the spread of the diseases (see, for instance, refs. [1,2,4–8,10–13] and the references therein).
In the aforementioned studies, mass action or standard incidence functions were used in the modeling
of the transmission dynamics of the diseases. In this study, another nonlinear incidence function (called
the Holling type II incidence function) will be used in the modeling of the transmission dynamics

of a general disease. The Holling type II incidence function is given by g(I) =
βI

1 + αI
, with α > 0,

where I is the number of infectious individuals and β is the effective contact rate (the average number
of contacts sufficient for transmitting infection). The incidence function g(I) was first used in the study
of the cholera epidemic in Bari, Italy by Capasso and Serio [14]. The reason for using the Holling
type II incidence functional comes from the information that the number of effective contacts between
susceptible individuals and infective individuals may saturate at very high levels due to behavioral
changes or due to crowding of infective people taken by the people in reaction to the severity of the
disease [15,16]. It is well known that some infectious diseases, such as influenza [17] and HIV [18],
have multiple disease (infection) stages in their transmission dynamics.

The main purpose of this study is to offer a deep qualitative analysis of a new two-stage model
for the transmission dynamics of a disease that can be controlled by using quarantine and isolation,
where the Holling type II incidence function is used.

The paper is organized as follows. The formulation of the model is given in Section 2. The local and
global asymptotic stability of the disease-free equilibrium (DFE) is analyzed in Section 3. The existence
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of the endemic equilibrium is provided in Section 4. Global stability proof for the endemic equilibrium
for the special case is also analyzed using a nonlinear Lyapunov function.

2. Model Formulation

The total population at time t, denoted by N(t) is sub-divided into ten compartments of
susceptible (S(t)), exposed (with two stages (E1(t)E2(t)), infectious individuals (with two stages
(I1(t)I2(t)), Isolated individuals (with two stages H1(t)H2(t)), and recovered (R(t)) individuals,
so that

N(t) = S(t) + E1(t) + E2(t) + Q1(t) + Q2(t) + I1(t) + I2(t) + H1(t) + H2(t) + R(t).

The model is given by the following system of nonlinear differential equations

dS
dt

= Π− (λ(t) + µ)S(t),

dE1

dt
= λ(t)S(t)− (a1 + b1 + µ)E1(t),

dE2

dt
= a1E1 − (a2 + b2 + µ)E2(t),

dQ1

dt
= b1E1 − (c1 + µ)Q1,

dQ2

dt
= c1Q1 + b2E2 − (c2 + µ)Q2,

dI1

dt
= a2E2(t)− (d1 + e1 + δ1 + µ)I1(t),

dI2

dt
= d1 I1(t)− (e2 + γ1 + δ2 + µ)I2(t),

dH1

dt
= c2Q2 + e1 I1 − ( f1 + δ3 + µ)H1,

dH2

dt
= f1H1 + e2 I2 − (γ2 + δ4 + µ)H2,

dR
dlt

= γ1 I2(t) + γ2H2(t)− µR(t),

(1)

where λ(t) is the infection rate given by

λ(t) = β

(
I1

1 + α1 I1
+

η I2

1 + α2 I2

)
. (2)

In (2), β represents the effective contact rate, where 0 < η < 1 is a parameter that accounts for
the reduction in disease transmission given by infectious individuals (I1) in comparison to infectious
individuals in the I2 stage.

Susceptible people (S) is increased by the recruitment of individuals into the population, at a rate
Π. This class is decreased by infection (with the rate of λ). Furthermore, this population is decreased by
natural death (at a rate µ; populations in all classes are assumed to have the same natural death rate).

Exposed individuals in stage 1 (E1) are generated with the rate of λ and reduced by progression
to the next exposed stage (E2; at a rate a1) and quarantine (at a rate b1). Exposed individuals in stage 2
are generated at the rate a1. This population is decreased by the development of clinical symptoms of
the disease (at a rate a2) and quarantine (at a rate b2).

The class of quarantined individuals in stage 1 is increased by quarantine of exposed people in
stage E1 (at the rate b1) and it is reduced by progression to the second quarantined stage (at a rate c1).
Similarly, quarantined people in stage 2 are increased by the quarantine of exposed people in the
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second stage (at the rate b2) and the progression of quarantined people from the first stage into the
second stage (at the rate c1). It is decreased by hospitalization (at a rate c2).

The infectious people in stage 1 are increased when exposed people in the second stage develop
symptoms (at the rate a2). It is reduced by progression to the second infectious stage (at a rate d1),
hospitalization (isolation) (at a rate e1) and disease-induced death (at a rate δ1). The population of
infectious class in the second stage is generated by progression of individuals in the first stage (at a
rate d1). It is reduced by isolation (at a rate e2), recovery (at a rate γ1) and disease-induced death (at a
rate δ2).

The population of Isolated individuals in the first stage is increased by the hospitalization of
infectious people in stage 1 (at the rate e1) and quarantined individuals in the second stage (at the rate
c2). It is decreased by progression to the second Isolated stage (at a rate f1), and disease-induced death
(at a rate δ3). The population of Isolated individuals in the second stage is generated by the progression
of Isolated individuals from the first stage into the second one (at the rate f1). It is decreased by
recovery (a rate γ2) and disease-induced death (at a rate δ4).

Finally, the recovered individuals is increased by the recovery of infectious individuals and
hospitalization individuals (at the rates γ1 and γ2, respectively). It is reduced by natural death (at the
rate µ). (A flow diagram of the model is depicted in Figure 1. The associated variables and parameters
are described in Table 1):

It should be noted the model (1) is different by the basic model considered in [19] by

(a) Using a Holling type incidence function to model the infection rate (the standard incidence
function was used in [19])

(b) Considering two stages for the infectious compartments (Exposed, infected, quarantined,
and isolated compartments)

γ 2 H2 

δ1 I1 

γ 1 I2 

a1 E1 

 
c1 Q1 

 

a2 E2 

 

 

c2Q2 

 

e2I2 

 

d1I1 

 

μ E2 

δ4 H2 

δ3 H1 

 

μ I1 

δ2 I2 

μ S 

μ I2 

 

 

 

 

 

 

 

 

  

S(t) E1(t) Q1(t) 

R(t) 

μ E1 

π λ S 

 
b1 E1 

 

E2(t) Q2(t) 
b2 E2 

 

I1(t) H1(t) 
e 1 I1 

 

I2(t) H2(t) 

μ Q1 

μ Q2 

f1  H1 

μ H1 

μ R 

μ H2 

Figure 1. Flow diagram of the model (1).
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Table 1. Description of variables and parameters of the model (1).

Variable Description

S(t) Population of susceptible individuals
E1(t) Population of exposed individuals on the first exposed stage
E2(t) Population of exposed individuals on the second exposed stage
Q1(t) Population of quarantined individuals on the first quarantined stage
Q2(t) Population of quarantined individuals on the second quarantined stage
I1(t) Population of infected individuals on the first infectious stage
I2(t) Population of infected individuals on the second infectious stage
H1(t) Population of Isolated individuals on the first Isolated stage
H2(t) Population of Isolated individuals on the second Isolated stage
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate
β Effective contact rate
a1 Progression rate from the first exposed stage to the second one
a2 Progression rate to first infectious class from exposed individuals

in the second stage
b1 Quarantine rate of exposed individuals on the first exposed stage
b2 Quarantine rate of exposed individuals on the second exposed stage
c1 Progression rate from the first quarantined stage to the second one
c2 Progression rate to first Isolated class from quarantined individuals

in the second stage
d1 Progression rate from the first infectious stage to the second one
e1 Hospitalization rate of infectious individuals on the first infectious
e2 Hospitalization rate of infectious individuals on the second infectious
f1 Progression rate from the first Isolated stage to the second one
γ1 Recovery rate of infectious individuals in the second stage
γ2 Recovery rate of Isolated individuals in the second stage
δ1 Disease-induced death rate of the first infectious stage
δ2 Disease-induced death rate of the second infectious stage
δ3 Disease-induced death rate of the first Isolated stage
δ4 Disease-induced death rate of the second Isolated stage
µ Natural death rate

2.1. Preliminaries and Basic Properties

Since the model (1) for human populations, all its parameters are non-negative. Furthermore,
the following non-negativity result holds.

Theorem 1. All variables of the model (1) are non-negative for all t > 0. This mean, the solutions of system (1)
with positive initial conditions will remain positive for all time t > 0.

Proof. Let

t1 = sup{t > 0 : S > 0, E1 > 0, E2 > 0, Q1 > 0, Q2 > 0, I1 > 0, I2 > 0, H1 > 0, H2 > 0, R > 0 ∈ [0, t]}.

Hence, t1 > 0. From the first equation of the system (1) it follows that

d
dt

[
S(t) exp

{
µt +

∫ t

0
λ(τ)dτ

}]
= Π exp

{
µt +

∫ t

0
λ(τ)dτ

}
.

which gives,

S(t1) exp
{

µt1 +
∫ t1

0
λ(τ)dτ

}
− S(0) =

∫ t1

0
Π exp

{
µy +

∫ y

0
λ(τ)dτ

}
dy,
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hence,

S(t) = S(0) exp
{
−µt1 −

∫ t1

0
λ(τ)dτ

}
[

exp
{
−µt1 −

∫ t1

0
λ(τ)dτ

}] ∫ t1

0
Π exp

{
µy +

∫ y

0
λ(τ)dτ

}
dy > 0.

In the same way, it can be shown that E1 > 0, E2 > 0, Q1 > 0, Q2 > 0, I1 > 0, I2 > 0, H1 > 0,
H2 > 0 and R > 0 for all time t > 0.

Lemma 1. The closed set

D =

{
(S, E1, E2, Q1, Q2, I1, I2, H1, H2, R) ∈ R10

+ : S+E1 +E2 +Q1 +Q2 + I1 + I2 + H1 + H2 +R ≤ Π
µ

}
is positively invariant.

Proof. Adding all the equations of the model (1) gives,

dN
dt

= Π− µN − (δ1 I1 + δ2 I2 + δ3H1 + δ4H2). (3)

It follows that
dN
dt
≤ Π− µN, thus

dN
dt
≤ 0 provided that N ≥ Π

µ
. By using standard comparison

theorem [20] it can be shown that N ≤ N(0)e−µt +
Π
µ
(1− e−µt) . In particular, N(t) ≤ Π

µ
if N(0) ≤ Π

µ
.

Thus, the region D is positively invariant. Furthermore, if N(0) >
Π
µ

, then either the solution enters

D in finite time, or N(t) approaches
Π
µ

asymptotically. Hence, the region D attracts all solutions

in R10
+ .

Since the region D is positively invariant, it is sufficient to consider the dynamics of the flow
generated by the model (1) in D, where the usual existence, uniqueness, continuation results hold for
the system [21].

Next-Generation Method

Suppose that the population is divided into n compartments, with m < n infected compartments.
At time t, let xi(t) be the number of infected individuals in the ith infected class such that

dxi
dt

= Fi(x)−Vi(x), with Vi = V−i (x)−V+
i (x) for i = 1, 2, · · · , m, (4)

where Fi(x) represents the rate of appearance of new infections in class i, Vi + (x) represents the rate
of transfer of individuals into class i by all other means, and V−i (x) represents the rate of transfer of
individuals out of class i. System can be rewritten as follows

Ẋ = F(X)−V(X), (5)

with, F(X) = (F1, F2, · · · , Fm)T and V(X) = (V1, V2, · · · , Vm)T .

Lemma 2. (van den Driessche and Watmough [22]). If x̄ is a DFE of (5), then the derivatives DF(x̄) and
DV(x̄) are partitioned as

DF(x̄) =

(
F 0
0 0

)
, DV(x̄) =

(
V 0
J3 J4

)
,
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where F and V are the m×m matrices defined by,

F =

[
∂Fi
∂xj

(x̄)
]

and V =

[
∂Vi
∂xj

(x̄)
]

with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is a non-singular M−matrix and J3, J4 are matrices associated
with the transition terms of the model, and all eigenvalues of J4 have positive real parts.

Now, the next-generation matrix is given by FV−1 and the spectral radius (the largest eigenvalue)
of FV−1 is the basic reproduction number of the model (5) [22].

3. Stability of DFE

3.1. Local Stability

The DFE of the model (1) is given by

E0 = (S∗, E∗1 , E∗2 , Q∗1 , Q∗2 , I∗1 , I∗2 , H∗1 , H∗2 , R∗) = (Π/µ, 0, 0, 0, 0, 0, 0, 0, 0, 0). (6)

The next-generation operator method [22,23] will be used to analyze the stability of E0. Using the
same notation in the previous section , the non-negative matrix, F and the M-matrix, V are given by

F =



0 0 0 0
βΠ
µ

ηβΠ
µ

0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

and,

V =



k1 0 0 0 0 0 0 0
−a1 k2 0 0 0 0 0 0
−b1 0 k3 0 0 0 0 0

0 −b2 −c1 k4 0 0 0 0
0 −a2 0 0 k5 0 0 0
0 0 0 0 −d1 k6 0 0
0 0 0 −c2 −e1 0 k7 0
0 0 0 0 0 −e2 − f1 k8


.

The control reproduction number [24,25], denoted byR0 = ρ(FV−1) is given by

R0 =
βΠa1a2(k6 + ηd1)

µk1k2k5k6
,

where,

k1 = µ + a1 + b1, k2 = µ + a2 + b2, k3 = µ + c1, k4 = µ + c2, k5 = µ + δ1 + d1 + e1,

k6 = µ + δ2 + γ1 + e2, k7 = µ + δ3 + f1, k8 = µ + δ4 + γ2.

The following result is established by using Theorem 2 in [22].
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Lemma 3. The model (1) has a locally asymptotically stable (LAS) DFE wheneverR0 < 1. Moreover, the DFE
of this model is unstable ifR0 > 1.

The average number of new infections generated by a single infectious individual in a population
is measured by the quantityR0. The epidemiological implication of Lemma 3 is that the disease dies
out from the population (whenR0 < 1) if the initial sizes of the sub-populations of the model are in the
basin of attraction of the DFE (E0). To make sure that disease dies out form the population regardless
of the initial sizes of sub-populations, it is necessary to show that the DFE is globally asymptotically
stable (GAS) ifR0 < 1. This is established below.

3.2. Global Stability of DFE

Theorem 2. The model (1) has GAS DFE, given by (6), in D wheneverR0 ≤ 1.

Proof. Define the following Lyapunov function:

F =

(
a1a2(k6 + ηd1)

ηk1k2k5

)
E1 +

(
a1(k6 + ηd1)

ηk2k5

)
E2 +

(
k6 + ηd1

ηk5

)
I1 + I2,

differentiate F with respect to t gives

Ḟ =

(
a1a2(k6 + ηd1)

ηk1k2k5

)
Ė1 +

(
a2(k6 + ηd1)

ηk2k5

)
Ė2 +

(
k6 + ηd1

ηk5

)
İ1 + İ2

=

(
a1a2(k6 + ηd1)

ηk1k2k5

) [
βS
(

I1

1 + α1 I1
+

η I2

1 + α2 I2

)
− k1E1

]
+

(
a2(k6 + ηd1)

ηk2k5

)
[a1E1 − k2E2]

+

(
k6 + ηd1

ηk5

)
[a2E2 − k5 I1] + d1 I1 − k6 I2

≤
(

a1a2(k6 + ηd1)

ηk1k2k5

) [
β

Π
µ
(I1 + η I2)− k1E1

]
+

(
a2(k6 + ηd1)

ηk2k5

)
[a1E1 − k2E2]

+

(
k6 + ηd1

ηk5

)
[a2E2 − k5 I1] + d1 I1 − k6 I2

=

(
βΠa1a2(k6 + ηd1)

µηk1k2k5

)
(I1 + η I2) +

(
d1 −

k6 + ηd1

η

)
I1 − k6 I2

=
k6

η
(R0 − 1)(I1 + η I2)

Since all the variables and the parameters of the model (1) are non-negative, it follows that Ḟ ≤ 0
for R0 ≤ 1 with Ḟ = 0 if and only if E = Iu = Ie = 0. Thus, F defined a Lyapunov function on
D. Hence,

(E1, E2, I1, I2)→ (0, 0, 0, 0) as t→ ∞. (7)

It can be easily shown that (Q1, Q2, H1, H2, R)→ (0, 0, 0, 0, 0) and S→ Π
µ

as t→ ∞. Furthermore,

the region D is an invariant and attracting set of R10
+ , and the largest compact invariant set in

(S, E1, E2, Q1, Q2, I1, I2, H1, H2, R) ∈ D : F = 0 is the singleton {E0}. Thus, by Invariance Principle [26],
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every solution of the system (1), and initial conditions in R10
+ , approaches the DFE (E0) as t → ∞

wheneverR0 < 1 .

The above result shows that the disease dies out from the population if the reproduction number
of the model is less than one. The epidemiological implication of the above theorem is that the use of
isolation and quarantine can lead to elimination of the disease if both controls can keep the threshold
quantity,R0, to a value less than unity (i.e., The conditionR0 < 1 is sufficient and necessary for the
elimination of the disease ). Figure 2 illustrate numerical results obtained by simulating the model (1)
using various initial conditions for the case R0 < 1. Its clear that the solutions are converged to
the DFE.
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Figure 2. Numerical simulation of the model (1). showing the total number of infected individuals as
a function of time for R0 < 1. Parameter values used are as in Table 2 with β = 0.000035 (such that
R0 = 0.1092.)

Table 2. Numerical values of the parameters of the model (1).

Parameter(s) Numerical Value

Π 0.136
a1, a2 0.2
b1, b2 0.1
c1, c2 0.1
d1, d2 0.2
e1, e2 0.15
f1, f2 0.11
γ1 0.0337
γ2 0.0386
δ1, δ2, δ2, δ3, δ4 0.0068
µ 0.000034

4. Existence and Stability for Endemic Equilibrium Point

4.1. Persistence of the Disease

The persistence of the disease in the population will be investigated below. The model
system (1) is said to be uniformly persistent if there exists a constant c such that any solution
(S(t), E1(t), E2(t), Q1(t), Q2(t), I1(t), I2(t), H1(t), H2(t), R(t)) satisfies ([27,28]):
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lim inf
t→∞

S(t) ≥ c, lim inf
t→∞

E1(t) ≥ c, lim inf
t→∞

E2(t) ≥ c, lim inf
t→∞

Q1(t) ≥ c,

lim inf
t→∞

Q2(t) ≥ c, lim inf
t→∞

I1(t) ≥ c, lim inf
t→∞

I2(t) ≥ c, lim inf
t→∞

H1(t) ≥ c,

lim inf
t→∞

H2(t) ≥ c, lim inf
t→∞

R(t) ≥ c,

provided that (S(0), E1(0), E2(0), Q1(0), Q2(0), I1(0), I2(0), H1(0), H2(0), R(0)) ∈ D.

Theorem 3. The model (1) is uniformly persistent in D if and only ifR0 > 1.

Proof. The proof of the above theorem follows from using the same approach given in [29] to prove
Proposition 3.3 of [29], which is applying a uniform persistence theorem in [27] and noting that the
DFE of the model (1) is unstable wheneverR0 > 1 (Lemma 3).

Whenever R0 > 1 its clear (from Theorem (3)) that the model (1) is uniformly persistent.
Moreover using Theorem 2.8.6 in [30] and Theorem D.3 in [20] gives the model (1) has at least
one endemic equilibrium in D. Hence, the following Lemma is concluded.

Lemma 4. System (1) has at least one endemic equilibrium provided thatR0 > 1.

The uniqueness of this equilibrium will be analyzed in the coming subsection.

4.2. Uniqueness of Endemic Equilibrium Point (EEP)

Let,
E1 = (S∗∗, E∗∗1 , E∗∗2 , Q∗∗1 , Q∗∗2 , I∗∗1 , I∗∗2 , H∗∗1 , H∗∗2 , R∗∗)

represents any arbitrary EEP of the model (1). Furthermore, define

λ∗∗ =
βI∗∗1

1 + α1 I∗∗1
+

βη I∗∗2
1 + α2 I∗∗2

(8)

(the force of infection of the model (1) at steady-state). It follows, by solving the equations in (1) at
steady-state that

S∗∗ =
Π

λ∗∗ + µ
, E∗∗1 =

Πλ∗∗

(λ∗∗ + µ)k1
, E∗∗2 =

a1Πλ∗∗

(λ∗∗ + µ)k1k2
,

Q∗∗1 =
b1Πλ∗∗

(λ∗∗ + µ)k1k3
, Q∗∗2 =

(a1b2k3 + b1c1k2)Πλ∗∗

(λ∗∗ + µ)k1k2k3k4
, I∗∗1 =

a1a2Πλ∗∗

(λ∗∗ + µ)k1k2k5
,

I∗∗2 =
a1a2d1Πλ∗∗

(λ∗∗ + µ)k1k2k5k6
.

(9)

Substituting I∗∗1 and I∗∗2 in (9) into (8) gives the following quadratic equation (in terms of λ∗∗):

M0(λ
∗∗)2 + M1λ∗∗ + M2 = 0, (10)

with,

M0 = (Πa1a2α1 + k1k2k5)(Πa1a2d1α2 + k1k2k5k6),

M1 = −Π2a2
1a2

2α1d1ηβ−Π2a2
1a2

2α2d1β−Πa1a2k1k2k5k6β−Πa1a2d1k1k2k5ηβ

+ Πa1a2k1k2k5k6α1µ + Πa1a2d1k1k2k5α2µ + 2µk2
1k2

2k2
5k6,

M2 = µ2k2
1k2

2k2
5k6(1−R0).

By solving for λ∗∗ in (10) and substituting the positive values of λ∗∗ into the expressions in (9)
the endemic equilibria of the model (1) can then be obtained. It should be noted that M0 > 0 and
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M2 < 0 wheneverR0 > 1. Thus, by using the Descartes Rule of Signs on the quadratic Equation (10),
the following result is established.

Lemma 5. The model (1) has a unique endemic (positive) equilibrium, given by E1 wheneverR0 > 1.

4.3. Global Stability for Endemic Equilibrium

In this section, the global stability of the endemic equilibrium of the model (1) is given for
the special case where the associated disease-induced mortality in all classes is negligible (so that
δ1 = δ2 = δ3 = δ4 = 0).

Define
Rs = R0|δ1=δ2=δ3=δ4=0

D0 =

{
(S, E1, E2, Q1, Q2, I1, I2, H1, H2, R) ∈ D : E1 = E2 = I1 = I2 = H1 = H2 = R = 0

}
.

We claim the following result,

Theorem 4. The endemic equilibrium of the model (1) with δ1 = δ2 = δ3 = δ4 = 0 is GAS in D \ D0 if
Rs > 1.

Proof. Let Rs > 1, such that the endemic equilibrium exists. Furthermore, define the following
Lyapunov function:

F =
1
2
[(S− S∗∗) + (E1 − E∗∗1 ) + (E1 − E∗∗1 ) + (Q1 −Q∗∗1 ) + (Q2 −Q∗∗2 )

+ (I1 − I∗∗1 ) + (I2 − I∗∗2 ) + (H1 − H∗∗1 ) + (H2 − H∗∗2 ) + (R− R∗∗)]2

with Lyapunov derivative

Ḟ = [(S− S∗∗) + (E1 − E∗∗1 ) + (E2 − E∗∗2 ) + (Q1 −Q∗∗1 ) + (Q2 −Q∗∗2 )

+ (I1 − I∗∗1 ) + (I2 − I∗∗2 ) + (H1 − H∗∗1 ) + (H2 − H∗∗2 ) + (R− R∗∗)] Ṅ(t).

Since S∗∗ + E∗∗1 + E∗∗2 + Q∗∗1 + Q∗∗2 + I∗∗1 + I∗∗2 + H∗∗1 + H∗∗2 + R∗∗ =
Π
µ

and Ṅ(t) = Π− µN(t)

it follows that

Ḟ =

[
N(t)− Π

µ

]
[Π− µN(t)]

=
1
µ
[µN(t)−Π] [Π− µN(t)]

=
−1
µ

[Π− µN(t)]2 .

It follows that Ḟ ≤ 0 for Rs > 1 with Ḟ = 0 if and only if S = S∗∗, E1 = E∗∗1 , E2 = E∗∗2 ,
Q1 = Q∗∗1 , Q2 = Q∗∗2 , I1 = I∗∗1 , I2 = I∗∗2 , H1 = H∗∗1 , H2 = H∗∗2 , and R = R∗∗. Hence, F is a Lyapunov
function on D \ D0. Thus, S(t) → S∗∗, E1(t) → E∗∗1 , E2(t) → E∗∗2 , Q1(t) → Q∗∗1 , Q2(t) → Q∗∗2 ,
I1(t) → I∗∗1 , I2(t) → I∗∗2 , H1(t) → H∗∗1 , H2(t) → H∗∗2 , and R(t) → R∗∗ as t → ∞. The proof is
concluded as in the proof of Theorem 2. Thus, the unique endemic equilibrium of the model (1)
with δ1 = δ2 = δ3 = δ4 = 0 is GAS in D \ D0 whenever Rs > 1. The epidemiological implication
of the above result is that the disease will persist in the community (with the use of isolation and
quarantine) if threshold quantity (Rs) exceeds unity. Numerical simulation results, done in Figure 3
show convergence to the EEP for the case whenR0 > 1.
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Figure 3. Numerical simulation of the model (1). showing the total number of infected individuals
as a function of time forR0 > 1. Parameter values used are as in Table 2 with β = 0.00035 (such that
R0 = 1.092.)

5. Conclusions

In this paper, a new two stages quarantine/isolation model with a nonlinear incidence rate
is designed and rigorously analyzed. The model, which consists of ten mutually exclusive
epidemiological compartments, uses the Holling type II incidence function for the infection rate.
Some of the theoretical findings of the study are the following:

(i) The model (1) has a locally asymptotically stable DFE if the associated reproduction number (R0) is
less than one.

(ii) The model (1) has a GAS wheneverR0 < 1.
(iii) System (1) is uniformly persistent in D if and only if the reproduction number exceeds unity.
(iv) The model has a unique endemic equilibrium wheneverR0 > 1.
(v) The unique endemic equilibrium of the model is shown to be GAS for a special case.

Funding: This research received no external funding.

Acknowledgments: The author is grateful to the anonymous reviewers for their constructive comments.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Chowell, G.; Hengartner, N.W.; Castillo-Chavez, C.; Fenimore, P.W.; Hyman, J.M. The basic reproductive
number of ebola and the effects of public health measures: The cases of Congo and Uganda. J. Theor. Biol.
2004, 1, 119–126. [CrossRef] [PubMed]

2. Donnelly, C.; Ghani, A.; Leung, G.; Hedley, A.; Fraser, C.; Riley, S.; Abu-Raddad, L.J.; Ho, L.M.; Thach, T.Q.;
Chau, P.; et al. Epidemiological determinants of spread of casual agnet of severe acute respiratory syndrome
in Hong Kong. Lancet 2003, 361, 1761–1766. [CrossRef]

3. Hethcote, H.W.; Zhien, M.; Shengbing, L. Effects of quarantine in six endemic models for infectious diseases.
Math. Biosci. 2002, 180, 141–160. [CrossRef]

4. Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.;
Samore, M.H.; et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003,
300, 1966–1970. [CrossRef] [PubMed]

5. Lloyd-Smith, J.O.; Galvani, A.P.; Getz, W.M. Curtailing transmission of severe acute respiratory syndrome
within a community and its hospital. Proc. R. Soc. Lond. B 2003, 170, 1979–1989. [CrossRef] [PubMed]

6. McLeod, R.G.; Brewster, J.F.; Gumel, A.B.; Slonowsky, D.A. Sensitivity and uncertainty analyses for a SARS
model with time-varying inputs and outputs. Math. Biosci. Eng. 2006, 3, 527–544. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jtbi.2004.03.006
http://www.ncbi.nlm.nih.gov/pubmed/15178190
http://dx.doi.org/10.1016/S0140-6736(03)13410-1
http://dx.doi.org/10.1016/S0025-5564(02)00111-6
http://dx.doi.org/10.1126/science.1086616
http://www.ncbi.nlm.nih.gov/pubmed/12766207
http://dx.doi.org/10.1098/rspb.2003.2481
http://www.ncbi.nlm.nih.gov/pubmed/14561285
http://dx.doi.org/10.3934/mbe.2006.3.527
http://www.ncbi.nlm.nih.gov/pubmed/20210378


Mathematics 2019, 7, 350 12 of 12

7. Wang, W.; Ruan, S. Simulating the SARS outbreak in Beijing with limited data. J. Theor. Biol. 2004,
227, 369–379. [CrossRef] [PubMed]

8. Webb, G.F.; Blaser, M.J.; Zhu, H.; Ardal, S.; Wu, J. Critical role of nosocomial transmission in the Toronto
SARS outbreak. Math. Biosci. Eng. 2004, 1, 1–13. [CrossRef] [PubMed]

9. Yan, X.; Zou, Y. Optimal and sub-optimal quarantine and isolation control in SARS epidemics.
Math. Comput. Model. 2008, 47, 235–245. [CrossRef]

10. Day, T.; Park, A.; Madras, N.; Gumel, A.B.; Wu, J. When is quarantine a useful control strategy for emerging
infectious diseases? Am. J. Epidemiol. 2006, 163, 479–485. [CrossRef] [PubMed]

11. Gumel, A.B.; Ruan, S.; Day, T.; Watmough, J.; Brauer, F.; van den Driessche, P.; Gabrielson, D.; Bowman, C.;
Alexander, M.E.; Ardal, S.; et al. Modelling strategies for controlling SARS outbreaks. Proc. R. Soc. Ser. B
2004, 271, 2223–2232. [CrossRef]

12. Safi, M.A.; Gumel, A.B. Mathematical analysis of a disease transmission model with quarantine, isolation and
an imperfect vaccine. Comput. Math. Appl. 2011, 61, 3044–3070. [CrossRef]

13. Safi, M.A.; Gumel, A.B. Qualitative study of the quarantine/isolation model with multiple disease stages.
Appl. Math. Comput. 2011, 218, 1941–1961. [CrossRef]

14. Capasso, V.; Serio, G. A generalization of the Kermack-Mckendrick deterministic epidemic model.
Math. Biosci. 1978, 42, 43–61. [CrossRef]

15. Liu, W.M.; Levin, S.A.; Iwasa, Y. Influence of nonlinear incidence rates upon the behavior of SIRS
epidemiological models. J. Math. Biol. 1985, 23, 187–204. [CrossRef]

16. Ruan, S.; Wang, W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ.
2003, 188, 135–163. [CrossRef]

17. Eichner, M.; Schwehm, M.; Duerr, H.; Brockmann, S.O. The influenza pandemic preparedness planning tool
InfluSim. BMC Infec. Dis. 2007, 7, 17. [CrossRef]

18. Sharomi, O.; Podder, C.N.; Gumel, A.B.; Elbasha, E.H.; Watmough, J. Role of incidence function in
vaccine-induced backward bifurcation in some HIV models. Math. Biosci. 2007, 210, 436–463. [CrossRef]

19. Safi, M.A.; Gumel, A.B. Globa Asymptotic Dynamics of a Model for Quarantine and Isolation. Discret. Contin.
Dyn. Syst. Ser. B 2011, 14, 209–231. [CrossRef]

20. Smith, H.L.; Waltman, P. The Theory of the Chemostat; Cambridge University Press: Cambridge, UK, 1995.
21. Hethcote, H.W.; Thieme, H.R. Stability of the endemic equilibrium in epidemic models with subpopulations.

Math. Biosci. 1985, 75, 205–227. [CrossRef]
22. van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]
23. Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and computation of the basic reproduction

ratio R0 in models for infectious disease in heterogeneous population. J. Math. Biol. 1990, 28, 365–382.
[CrossRef]

24. Anderson, R.M.; May, R.M. Population Biology of Infectious Diseases; Springer: Berlin/Heidelrberg, Germany;
New York, NY, USA, 1982.

25. Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [CrossRef]
26. Hale, J.K. Ordinary Differential Equations; John Wiley and Sons: New York, NY, USA, 1969.
27. Freedman, H.; Ruan, S.; Tang, M. Uniform persistence and flows near a closed positively invariant set. J. Dyn.

Differ. Equ. 1994, 6, 583–600. [CrossRef]
28. Thieme, H. Epidemic and demographic interaction in the spread of potentially fatal diseases in growing

populations. Math. Biosci. 1992, 1, 99–130. [CrossRef]
29. Li, M.; Graef, J.; Karsai, L.W.J. Global dynamics of a SEIR model with varying total population size.

Math. Biosci. 1999, 160, 191–213. [CrossRef]
30. Bhatia, N.P.; Szego, G.P. Dynamical Systems: Stability Theory and Applications; Springer: Berlin, Germany, 1967;

Volume 35.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jtbi.2003.11.014
http://www.ncbi.nlm.nih.gov/pubmed/15019504
http://dx.doi.org/10.3934/mbe.2004.1.1
http://www.ncbi.nlm.nih.gov/pubmed/20369956
http://dx.doi.org/10.1016/j.mcm.2007.04.003
http://dx.doi.org/10.1093/aje/kwj056
http://www.ncbi.nlm.nih.gov/pubmed/16421244
http://dx.doi.org/10.1098/rspb.2004.2800
http://dx.doi.org/10.1016/j.camwa.2011.03.095
http://dx.doi.org/10.1016/j.amc.2011.07.007
http://dx.doi.org/10.1016/0025-5564(78)90006-8
http://dx.doi.org/10.1007/BF00276956
http://dx.doi.org/10.1016/S0022-0396(02)00089-X
http://dx.doi.org/10.1186/1471-2334-7-17
http://dx.doi.org/10.1016/j.mbs.2007.05.012
http://dx.doi.org/10.3934/dcdsb.2010.14.209
http://dx.doi.org/10.1016/0025-5564(85)90038-0
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1007/BF00178324
http://dx.doi.org/10.1137/S0036144500371907
http://dx.doi.org/10.1007/BF02218848
http://dx.doi.org/10.1016/0025-5564(92)90081-7
http://dx.doi.org/10.1016/S0025-5564(99)00030-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Formulation
	Preliminaries and Basic Properties

	 Stability of DFE
	Local Stability
	Global Stability of DFE

	Existence and Stability for Endemic Equilibrium Point
	 Persistence of the Disease
	Uniqueness of Endemic Equilibrium Point (EEP)
	Global Stability for Endemic Equilibrium

	Conclusions
	References

