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Abstract: In this paper, we establish two best proximity point theorems in the setting of metric-like
spaces that are based on cyclic contraction: Meir–Keeler–Kannan type cyclic contractions and a
generalized Ćirić type cyclic ϕ-contraction via theMT -function. We express some examples to indicate
the validity of the presented results. Our results unify and generalize a number of best proximity point
results on the topic in the corresponding recent literature.
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MT -Ćirić -function type cyclic ϕ-contraction; metric-like space

MSC: 47H10; 54C60; 54H25; 55M20

1. Introduction and Preliminaries

Fixed point theory provided not only the traditional tools but also the most crucial tools to
prove the existence of solutions for several distinct and interesting problems both in pure and applied
mathematics. For a self-mapping F on a non-empty set S, the equation Fx = x is named a fixed point
equation. If a fixed point equation possesses a solution, we say that F has a fixed point. For example,
if F is linear operator, then the fixed point equation Fx = x has no solution, or infinite solutions, or a
unique solution. In this paper, we shall focus on the case that the fixed point equation Fx = x has
no solution, which is also to say that F is fixed point free. In the setting of a metric space (S, d), if F
is fixed point free, then we have d(x, Fx) > 0 for all x ∈ S. It is quite natural to ask the following:
If d(x, Fx) > 0 for all x ∈ S is there x∗ ∈ S such that d(x∗, Fx∗) ≤ d(x, Fx) for all x ∈ S, that is, is there
any point x∗ ∈ S such that d(x∗, Fx∗) is the minimum throughout the domain of F? Roughly speaking,
if we have no exact solution of the fixed point equation Fx = x, we look for the approximative solution
of the fixed point equation Fx = x. If the answer is affirmative, the point x∗ ∈ S is named the best
proximity point of the domain and range of the mapping F. In the last decades, this topic has been
discussed densely by several authors, see, e.g., [1–12].

In what follows, we simply describe the research backgrounds and preliminaries. As it is used
commonly, we shall denote the set of all non-negative real numbers by R+

0 . Through the paper,
instead of considering the whole metric space (S, d), we shall restrict ourselves to two nonempty
subsets, A and B, of it. Further, instead of considering self-mapping, we shall consider non-self
mapping F : A→ B. We formalize our consideration with

d(x, Fx) = d(A, B) := in f {d(a, b) : a ∈ A, b ∈ B}.
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In the case of the existence of such x ∈ A we shall say that x is the best proximity point of F for the
pair (A, B). Commonly, the pair (A, B) is not mentioned and we only say that x is the best proximity
point of F. Hence, x is an approximative solution of the fixed point equation Fx = x. Note that in
case of A ∩ B 6= ∅, the best proximity point coincides with fixed point. On the other hand, even if
A ∩ B = ∅, the corresponding fixed point equation still may not possess a solution.

First, we recall the notion of cyclic contraction.

Definition 1. Ref. [13] A mapping F : A ∪ B → A ∪ B is called cyclic if F(A) ⊂ B and F(B) ⊂ A,
where A, B are nonempty subsets of a metric space (S, d). In addition, if there exists k ∈ [0, 1) such that

d(Fx, Fy) ≤ kd(x, y) + (1− k)d(A, B),

for all x ∈ A and y ∈ B, then a mapping F is called cyclic contraction.

Now, we shall mention the result of Eldred and Veeramani [13] in which one of the initial results
in this direction was given.

Theorem 1. Ref. [13] Suppose that a mapping F : A ∪ B → A ∪ B is cyclic contraction, where A, B are
nonempty, closed, and convex subsets of a metric space (S, d) and k ∈ [0, 1). If we set xn+1 = Fxn for
each n ∈ N ∪ {0}, for an arbitrary x0 ∈ A, then there exists a unique x ∈ A such that x2n → x and
d(x, Tx) = d(A, B). That is, x is the best proximity point of T.

In [14], Hitzler and Seda introduced a new notion of metric-like space. In what follows, we recall
some notations and definitions:

Definition 2. For a nonempty set X, distance function σ : X×X → R+
0 is named as metric-like (or dislocated)

if for any p, q, r ∈ X, if the following conditions are fulfilled

(1) σ(p, q) = 0⇒ p = q;
(2) σ(p, q) = σ(q, p);
(3) σ(q, r) ≤ σ(q, p) + σ(p, r).

Here, we use the couple (X, σ) to describe “a metric-like space”.

Let {pn} be a sequence in a metric-like space (X, σ). Then

(1) {pn} converges to p ∈ X if and only if limn→∞ σ(pn, p) = σ(p, p).
(2) if limn→∞ σ(pn, pm) exists and is finite, then we say that {pn} is fundamental (or, Cauchy)
(3) if each fundamental (Cauchy) sequence is convergent, then we say that (X, σ) is complete.

The characterization of a best proximity point of F in the setting of metric-like space (X, σ) is
follows: Let F : A → B be a mapping where A and B be two nonempty subsets X. Consider the
distance of the sets A and B:

σ(A, B) = in f {σ(a, b) : a ∈ A, b ∈ B}.

Then, a ∈ A is called a best proximity point of F if σ(a, Fa) = σ(A, B).

2. The Best Proximity Point Results of Meir–Keeler–Kannan Type Cyclic Contractions

A mapping F : A ∪ B→ A ∪ B is called Kannan type cyclic contraction, if there exists k ∈ (0, 1
2 )

such that
σ(Fp, Fq) ≤ k[σ(p, Fp) + σ(q, Fq)] + (1− 2k)σ(A, B),

for all p ∈ A, and q ∈ B where A, B are nonempty subsets of a metric-like space (X, σ).
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In 2016, Aydi and Felhi [15] established the following best proxmity point result for a Kannan
type cyclic contraction.

Theorem 2. Ref. [15] Suppose that a mapping F : A ∪ B → A ∪ B is a Kannan type cyclic contraction,
where A, B are nonempty, closed subsets of a metric-like space (X, σ) and k ∈ [0, 1

2 ). If we set pn+1 = Fpn for
each n ∈ N∪ {0}, for an arbitrary p0 ∈ A, then

σ(pn, pn+1)→ σ(A, B), as n→ ∞.

We have the following:

(1) If p0 ∈ A and {p2n} has a subsequence {p2nk} which converges to x∗ ∈ A with σ(p∗, p∗) = 0, then,
σ(p∗, Fp∗) = σ(A, B).

(2) If p0 ∈ B and {p2n−1} has a subsequence {p2nk−1} which converges to q∗ ∈ B with σ(q∗, q∗) = 0,
then σ(q∗, Fq∗) = σ(A, B).

A function ξ : R+
0 → R+

0 called Meir–Keeler type (see, [16]), if

∀θ > 0 ∃δ > 0 ∀t ∈ R+
0 (θ ≤ t < θ + δ⇒ ξ(t) < θ).

We shall useM to denote set of all Meir–Keeler type function ξ. Note that if ξ ∈ M then, for all
t ∈ (0, ∞), we have

ξ(t) < t.

By using the Kannan type cyclic contraction and Meir–Keeler function, we define the new notion
of Meir–Keeler–Kannan type cyclic contraction, as follows:

Definition 3. Let φ ∈ M and T : A ∪ B→ A ∪ B be a cyclic mapping, where A and B be nonempty subsets
of a metric-like space (X, σ). Then, the mapping T is said to be a Meir–Keeler–Kannan type cyclic contraction, if

σ(Tx, Ty)− σ(A, B) ≤ φ(
σ(x, Tx) + σ(y, Ty)

2
− σ(A, B)),

for all x ∈ A and all y ∈ B.

In this section, we establish the best proximity point results of Meir–Keeler–Kannan type cyclic
contraction. Our results generalize and improve Theorem 2.

Lemma 1. Let T : A ∪ B → A ∪ B be a cyclic Meir–Keeler–Kannan type contraction, where A and B
be nonempty closed subsets of a metric-like space (X, σ), and φ : R+

0 → R+
0 ∈ M and it is increasing.

For x0 ∈ A ∪ B, define xn+1 = Txn for each n ∈ N∪ {0}. Then

σ(xn, xn+1)→ σ(A, B), as n→ ∞.

Proof. Since T : A ∪ B→ A ∪ B is a Meir–Keeler–Kannan type cyclic contraction, we obtain that for
each n ∈ N∪ {0},

σ(xn+2, xn+1)− σ(A, B)

=σ(Txn+1, Txn)− σ(A, B)

≤φ(
σ(xn+1, Txn+1) + σ(xn, Txn)

2
− σ(A, B))

≤φ(
σ(xn+1, xn+2) + σ(xn, xn+1)

2
− σ(A, B)).
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Since φ ∈ M, we find that

σ(xn+2, xn+1)− σ(A, B) <
σ(xn+1, xn+2) + σ(xn, xn+1)

2
− σ(A, B).

Attendantly, we deduce, for each n ∈ N∪ {0}, that

σ(xn+2, xn+1)− σ(A, B) ≤ σ(xn+1, xn)− σ(A, B).

In other words, {σ(xn+1, xn) − σ(A, B)} is bounded below and monotone (non-increasing).
Accordingly, there exists ` ≥ 0 such that

σ(xn, xn+1)− σ(A, B)→ `, as n→ ∞.

Notice that
` = in f {σ(xn, xn+1)− σ(A, B) : n ∈ N∪ {0}}.

In what follows, we assert that ` = 0. Suppose, on the contrary, that ` > 0. Keeping, φ ∈ M,
in mind, corresponding to `, there exist an η and a positive integer k0 such that

` ≤ σ(xk+1, xk)− d(A, B) ≤ `+ η, for all k ≥ k0.

Since T : A ∪ B→ A ∪ B is a Meir–Keeler–Kannan type cyclic contraction, we have

σ(xk+2, xk+1)− σ(A, B)

=σ(Txk+1, Txk)− σ(A, B)

≤φ(
σ(xk+1, Txk+1) + σ(xk, Txk)

2
− σ(A, B)

≤φ(
σ(xk+1, xk+2) + σ(xk, xk+1)

2
− σ(A, B))

≤φ(σ(xk+1, xk)− σ(A, B)) < `,

a contradiction. Consequently, we get ` = 0, and we have

σ(xn, xn+1)− σ(A, B)→ 0, as n→ ∞,

that is,
σ(xn, xn+1)→ σ(A, B), as n→ ∞.

By Lemma 1, we shall derive the following result in the framework of best proximity theory.

Theorem 3. Let T : A ∪ B → A ∪ B be a cyclic Meir–Keeler–Kannan type contraction, where A and B are
nonempty closed subsets of a complete metric-like space (X, σ).

If we set xn+1 = Txn for each n ∈ N∪ {0}, for an arbitrary x0 ∈ A ∪ B, then we have the following:

(1) If x0 ∈ A and {x2n} has a subsequence {x2nk} which converges to x∗ ∈ A with σ(x∗, x∗) = 0,
then σ(x∗, Tx∗) = σ(A, B).

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} which converges to x∗ ∈ B with σ(x∗, x∗) = 0,
then σ(x∗, Tx∗) = σ(A, B).

Proof. Suppose x0 ∈ A. Due to the fact that T is cyclic, we have x2n ∈ A and x2n+1 ∈ B for all
n ∈ N∪ {0}. Next, if {x2n} has a subsequence {x2nk}which converges to x∗ ∈ A with σ(x∗, x∗) = 0, then
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lim
n→∞

σ(x2n, x∗) = σ(x∗, x∗) = 0.

Since φ ∈ M is increasing, we have

σ(x∗, Tx∗)− σ(A, B) ≤ σ(x∗, x2nk ) + σ(x2nk , Tx∗)− σ(A, B)

≤ σ(x∗, x2n) + σ(Tx2nk−1, Tx∗)− σ(A, B)

≤ σ(x∗, x2nk ) + φ(
σ(x2nk−1, Tx2nk−1) + σ(x∗, Tx∗)

2
− σ(A, B))

≤ σ(x∗, x2nk ) + φ(
σ(x2nk−1, x2nk ) + σ(x∗, Tx∗)

2
− σ(A, B))

< σ(x∗, x2nk ) +
σ(x2nk−1, x2nk ) + σ(x∗, Tx∗)

2
− σ(A, B).

We claim that σ(x∗, Tx∗)− σ(A, B) = 0. If not, we assume that

σ(x∗, Tx∗)− σ(A, B) > 0.

Letting k→ ∞, by Lemma 1, we find that

σ(x∗, Tx∗)− σ(A, B) < 0 +
σ(A, B) + σ(x∗, Tx∗)

2
− σ(A, B) =

σ(x∗, Tx∗)− σ(A, B)
2

,

which implies a contradiction. Thus, σ(x∗, Tx∗) = σ(A, B), that is, x∗ is a best proximity point of T.
The proof of (2) is a verbatim of (1), thus we omit it.

By using (Example 2.6, [15]), we give an example to support Theorem 3.

Example 1. Let X = R+
0 ×R+

0 be endowed with the metric-like σ : X× X → R+
0 defined by:

σ((x1, y1), (x2, y2)) =

{
|x1 − x2|+ |y1 − y2|, if (x1, y1), (x2, y2) ∈ [0, 1]× [0, 1];

x1 + x2 + y1 + y2, if not.

Let φ : R+
0 → R+

0 be defined by:

φ(t) =
3t
4

.

Clearly, (X, σ) is a complete metric-like space, and φ is an increasing Meir–Keeler function.
Take A = [0, 1]× {0} and B = [0, 1]× {1}, and let T : A ∪ B→ A ∪ B be defined by

T((x, 0)) = (
1
4

x, 1), for all x ∈ [0, 1],

and
T((x, 1)) = (

1
4

x, 0), for all x ∈ [0, 1].

Then we have σ(A, B) = 1 and T is a cyclic mapping.
For (x1, 0) ∈ A and (x2, 1) ∈ B, we have that x1, x2 ∈ [0, 1] and

σ(T((x1, 0)), T((x2, 1)))− σ(A, B)

=σ((
1
4

x1, 1), (
1
4

x2, 0))− 1

=
1
4
|x1 − x2|

≤1
4
(x1 + x2),
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and

φ(
σ((x1, 0), T((x1, 0))) + σ((x2, 1), T((x2, 1))

2
− σ(A, B))

=φ(
σ((x1, 0), (x1, 1)) + σ((x2, 1), (x2, 0))

2
− 1)

=φ(
σ(( 1

4 x1, 0), (x1, 1)) + σ(( 1
4 x2, 1), (x2, 0))

2
− 1)

=φ(
3
8
(x1 + x2)) =

9
32

(x1 + x2).

Then T is a Meir–Keeler–Kannan type cyclic contraction.
Let ξ0 = (a, 0) ∈ A. Then for all n ∈ N∪ {0}, we have

ξ2n+1 = T2n+1((a, 0)) = (
1

42n+1 a, 1) ∈ B,

and
ξ2n+2 = T2n+2((a, 0)) = (

1
42n+2 a, 0) ∈ A.

Thus, we get that as n→ ∞

σ(ξ2n+1, ξ2n+2) = |
1

42n+2 −
1

42n+1 |a + 1→ 1 = σ(A, B)

So, Lemma 1 holds and we also get that (0, 0) ∈ A and (0, 1) ∈ B are the two best proximity points of T.

3. The Best Proximity Point Results of a Generalized Ćirić Type Cyclic ϕ-Contraction via the
MT -Function

A mapping T : A ∪ B→ A ∪ B is said to be a cyclic Ćirić type contraction if there exists k ∈ (0, 1)
such that

σ(Tx, Ty) ≤ k max{σ(x, y), σ(x, Tx), σ(y, Ty)}+ (1− k)σ(A, B),

for all x ∈ A, and y ∈ B, where A and B are nonempty subsets of a metric-like space (X, σ).
In 2016, Aydi and Felhi [15] established the following best proximity point result for the cyclic

Ćirić type contraction.

Theorem 4. Ref. [15] Let a mapping T : A ∪ B → A ∪ B be a cyclic Ćirić type contraction, where A and B
are nonempty closed subsets of a complete metric-like space (X, σ). If we set xn+1 = Txn for each n ∈ N∪ {0}
and for an arbitrary x0 ∈ A ∪ B, then

σ(xn, xn+1)→ σ(A, B), as n→ ∞.

We have the following:

(1) If x0 ∈ A and {x2n} has a subsequence {x2nk} which converges to x∗ ∈ A with σ(x∗, x∗) = 0, then,
σ(x∗, Tx∗) = σ(A, B).

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} which converges to x∗ ∈ B with σ(x∗, x∗) = 0, then,
σ(x∗, Tx∗) = σ(A, B).

In what follows, we recall the notion ofMT -function (or, called the Reich’s function).

Definition 4. A function ψ : R+ → [0, 1) is said to be anMT -function, if

lim
s→t+

sup ψ(s) = inf
α>0

sup
0<s−t<α

ψ(s) < 1 for all t ∈ R+.
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In 2012, Du [17] proved the following theorem and remark.

Theorem 5. Ref. [17] Let ψ : R+ → [0, 1) be a function. Then the following two statements are equivalent.

(a) ψ is anMT -function.
(b) For any non-increasing sequence {`n}n∈N in R+, we have

0 ≤ sup
n∈N

ψ(`n) < 1.

Remark 1. Ref. [17] It is obvious that if ψ : R+ → [0, 1) is non-increasing or non-decreasing, then ψ is an
MT -function.

In the sequel, assume that a function ϕ : R+3 → R+
0 satisfies the following conditions:

(1) ϕ is an increasing, continuous function in each coordinate;
(2) for all t > 0, ϕ(t, t, t) ≤ t;
(3) ϕ(t1, t2, t3) = 0 if and only if t1 = t2 = t3 = 0.

By using the above mapping ϕ : R+3 → R+
0 andMT -function, we introduce a new notion of a

generalizedMT -Ćirić -function type cyclic ϕ-contraction.

Definition 5. A mapping T : A ∪ B → A ∪ B is said to be a generalizedMT -Ćirić -function type cyclic
ϕ-contraction, if

σ(Tx, Ty)− σ(A, B) ≤ ψ(σ(x, y))[ϕ(σ(x, y), σ(x, Tx), σ(y, Ty))− σ(A, B)],

for all x ∈ A and all y ∈ B, where A and B are nonempty subsets of a metric-like space (X, σ), and ψ is an
MT -function.

In this section, we establish the best proximity point results of a generalizedMT -Ćirić -function
type cyclic ϕ-contraction. Our results generalize and improve Theorem 4.

Lemma 2. Let A and B be nonempty closed subsets of a metric-like space (X, σ). Let T : A ∪ B→ A ∪ B be
a generalizedMT -Ćirić -function type cyclic ϕ-contraction. For x0 ∈ A ∪ B, define xn+1 = Txn for each
n ∈ N∪ {0}. Then

σ(xn, xn+1)→ σ(A, B), as n→ ∞.

Proof. Since T : A ∪ B → A ∪ B is a generalized MT -Ćirić -function type cyclic ϕ-contraction,
we obtain that for each n ∈ N∪ {0},

σ(xn+2, xn+1)− σ(A, B)

=σ(Txn+1, Txn)− σ(A, B)

≤ψ(σ(xn+1, xn))[ϕ(σ(xn+1, xn), σ(xn+1, Txn+1), σ(xn, Txn))− σ(A, B)]

≤ψ(σ(xn+1, xn))[ϕ(σ(xn+1, xn), σ(xn+1, xn+2), σ(xn, xn+1))− σ(A, B)].

If σ(xn+2, xn+1) > σ(xn+1, xn) for some n, then by the conditions of the function ϕ we have that

σ(xn+2, xn+1)− σ(A, B)

=σ(Txn+1, Txn)− σ(A, B)

≤ψ(σ(xn+1, xn))[ϕ(σ(xn+1, xn+2), σ(xn+1, xn+2), σ(xn+1, xn+2))− σ(A, B)]

<σ(xn+2, xn+1)− σ(A, B),
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which implies a contraction. So, we conclude that σ(xn+2, xn+1) ≤ σ(xn+1, xn) for all n ∈ N. On the
other hand,

σ(xn+1, xn+2)− σ(A, B)

=σ(Txn, Txn+1)− σ(A, B)

≤ψ(σ(xn, xn+1))[ϕ(σ(xn, xn+1), σ(xn, Txn), σ(xn+1, Txn+1))− σ(A, B)]

≤ψ(σ(xn, xn+1))[ϕ(σ(xn, xn+1), σ(xn, xn+1), σ(xn+1, xn+2))− σ(A, B)].

If σ(xn+1, xn+2) > σ(xn, xn+1) for some n, then by the conditions of the function ϕ we have that

σ(xn+1, xn+2)− σ(A, B)

=σ(Txn, Txn+1)− σ(A, B)

≤ψ(σ(xn, xn+1))[ϕ(σ(xn, xn+1), σ(xn, Txn), σ(xn+1, Txn+1))− σ(A, B)]

<σ(xn+1, xn+2)− σ(A, B),

which implies a contraction. So, we conclude that σ(xn+1, xn+2) ≤ σ(xn, xn+1) for all n ∈ N.
From above argument, the sequence {σ(xn+1, xn)}n∈N is non-increasing and bounded below

in R+
0 . Since ψ is anMT -function, by Theorem 5 we conclude that

0 ≤ ψ(supn∈Nσ(xn, xn+1)) < 1.

Let λ = supn∈Nψ(σ(xn, xn+1)) < 1. Then

0 ≤ ψ(σ(xn, xn+1)) ≤ λ, for all n ∈ N.

Since T : A ∪ B → A ∪ B is a generalized MT -Ćirić -function type cyclic ϕ-contraction,
we obtain that

σ(xn, xn+1)− σ(A, B)

=σ(Txn−1, Txn)− σ(A, B)

≤λ · [σ(xn−1, xn)− σ(A, B)]

≤λ2 · [σ(xn−2, xn−1)− σ(A, B)]

≤ · · ·
≤λn · [σ(x0, x1)− σ(A, B)].

Since λ < 1, limn→∞ λn = 0, and we also get that

lim
n→∞

[σ(xn, xn+1)− σ(A, B)] = 0,

that is,
lim

n→∞
σ(xn, xn+1) = σ(A, B).

By Lemma 2, we obtain the following best proximity point result of a generalizedMT -Ćirić
-function type cyclic ϕ-contraction.

Theorem 6. Let T : A ∪ B→ A ∪ B be a generalizedMT -Ćirić -function type cyclic ϕ-contraction, where A
and B are nonempty closed subsets of a complete metric-like space (X, σ). If we construct a sequence xn+1 = Txn

for each n ∈ N∪ {0} for an arbitrary x0 ∈ A ∪ B, then we have the following:
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(1) If x0 ∈ A and {x2n} has a subsequence {x2nk} which converges to x∗ ∈ A with σ(x∗, x∗) = 0,
then σ(x∗, Tx∗) = σ(A, B).

(2) If x0 ∈ B and {x2n−1} has a subsequence {x2nk−1} which converges to x∗ ∈ B with σ(x∗, x∗) = 0,
then σ(x∗, Tx∗) = σ(A, B).

Proof. Suppose that x0 ∈ A. On account of the fact that T is cyclic, we get x2n ∈ A and x2n+1 ∈ B for all
n ∈ N∪ {0}. Here, if {x2n} has a subsequence {x2nk}which converges to x∗ ∈ A with σ(x∗, x∗) = 0, then

lim
n→∞

σ(x2n, x∗) = σ(x∗, x∗) = 0.

Since T is a generalizedMT -Ćirić -function type cyclic ϕ-contraction, we have

σ(x∗, Tx∗)− σ(A, B)

≤ σ(x∗, x2nk ) + σ(x2nk , Tx∗)− σ(A, B)

≤ σ(x∗, x2nk ) + σ(Tx2nk−1, Tx∗)− σ(A, B)

≤ σ(x∗, x2nk ) + ψ(σ(x2nk−1, x∗))[ϕ(σ(x2nk−1, x∗), σ(x2nk−1, Tx2nk−1), σ(x∗, Tx∗))− σ(A, B)]

≤ σ(x∗, x2nk ) + ψ(σ(x2nk−1, x∗))[ϕ(σ(x2nk−1, x∗), σ(x2nk−1, x2nk ), σ(x∗, Tx∗))− σ(A, B)]

≤ σ(x∗, x2nk ) + ψ(σ(x2nk−1, x∗))[ϕ(σ(x2nk−1, x2nk ) + σ(x2nk , x∗), σ(x2nk−1, x2nk ), σ(x∗, Tx∗))− σ(A, B)]

We claim that σ(x∗, Tx∗)− σ(A, B) = 0. If not, we assume that

σ(x∗, Tx∗)− σ(A, B) > 0.

Letting k→ ∞, by Lemma 1, we obtain

σ(x∗, Tx∗)− σ(A, B) < 0 + ϕ(σ(A, B) + 0, σ(A, B), σ(x∗, Tx∗))− σ(A, B)

≤ ϕ(σ(x∗, Tx∗), σ(x∗, Tx∗), σ(x∗, Tx∗))− σ(A, B)

≤ σ(x∗, Tx∗)− σ(A, B),

which implies a contradiction. Thus, σ(x∗, Tx∗) = σ(A, B), that is, x∗ is the best proximity point of T.
The proof of (2) is similar to (1), we omit it.

Example 2. Let X = R+
0 ×R+

0 be endowed with the metric-like σ : X× X → R+
0 defined by:

σ((x1, y1), (x2, y2)) =

{
|x1 − x2|+ |y1 − y2|, if (x1, y1), (x2, y2) ∈ [0, 1]× [0, 1];

x1 + x2 + y1 + y2, if not.

Let φ : R+
0 → [0, 1) be defined by

ϕ(t1, t2, t3) =
t1 + t2 + t3

3
,

and

ψ(t) =

{
11
14 + 1

14 t, if t ∈ [0, 1]× [0, 1];
13
14 , if t > 1.

Clearly, (X, σ) is a complete metric-like space, and ψ is anMT -function.
Take A = [0, 1]× {0} and B = [0, 1]× {1}, and let T : A ∪ B→ A ∪ B be defined by

T((x, 0)) = (
1
4

x, 1), for all x ∈ [0, 1],

and
T((x, 1)) = (

1
4

x, 0), for all x ∈ [0, 1].
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Then we have σ(A, B) = 1 and T is a cyclic mapping.
For (x1, 0) ∈ A and (x2, 1) ∈ B, we have that x1, x2 ∈ [0, 1] and

σ(T((x1, 0)), T((x2, 1)))− σ(A, B)

=σ((
1
4

x1, 1), (
1
4

x2, 0))− 1

=
1
4
|x1 − x2|,

and

ψ(σ((x1, 0), (x2, 0)))[ϕ(σ((x1, 0), (x2, 0)), σ((x1, 0), T((x1, 0)), σ((x2, 1), T((x2, 1)))− σ(A, B)]

=(
11
14

+
1

14
σ((x1, 0), (x2, 0)))[ϕ(σ((x1, 0), (x2, 0)), σ((x1, 0), (

1
4

x1, 1)), σ((x2, 1), (
1
4

x2, 0))− 1]

=(
11
14

+
1

14
(1 + |x1 − x2|))[

1 + |x1 − x2|+ 1 + 3
4 x1 + 1 + 3

4 x2

3
− 1]

=(
11
14

+
1

14
(1 + |x1 − x2|))[

1
3
|x1 − x2|+

1
4
(x1 + x2)].

Then T is a generalizedMT -Ćirić -function type cyclic ϕ-contraction, and we also get that (0, 0) ∈ A
and (0, 1) ∈ B are the two best proximity points of T.

Example 3. Let A = [0, 1] and B = [−1, 0] be two subsets of X = R, and let σ(x, y) = max{|x|, |y|}.
Define T : A∪ B→ A∪ B be defined by Tx = −x

4 for all x ∈ A∪ B and ψ(t) = 1
3 . Let ϕ(t1, t2, t3) =

t1+t2+t3
3 .

Then σ(A, B) = 0 and Theorem 6 holds.

Example 4. Let A = B = [0, 1] be two subsets of X = R and σ(x, y) = max{x, y}. Define T : A ∪ B →
A ∪ B be defined by

Tx =

{
1
4 , if x = 1;
1
2 , if x ∈ [0, 1).

Let ψ(t) = t
8 , and let ϕ(t1, t2, t3) =

t1+t2+t3
3 . Then σ(A, B) = 0 and Theorem 6 holds.

Example 5. Let X = R+
0 ×R+

0 be endowed with the metric-like σ : X× X → R+
0 defined by:

σ((x1, y1), (x2, y2)) = max{|x1|, |x2|}+ max{|y1|, |y2|}.

For A = {a1 = (5, 2), a2 = (1, 2)}, B = {b1 = (3, 0), b2 = (0, 4), define T : A ∪ B → A ∪ B by
T(a1) = b2, T(a2) = b1, T(b1) = a2, T(b2) = a1. Then σ(A, B) = 5. All conditions are satisfied and both a2

and b1 are the best proximity points of T.
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