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Abstract: On account of the indeterminacy and subjectivity of decision makers (DMs) in complexity
decision-making environments, the evaluation information over alternatives presented by DMs is
usually fuzzy and ambiguous. As the generalization of intuitionistic fuzzy sets (IFSs), the Pythagorean
fuzzy set (PFS) is more useful in expressing fuzzy and ambiguous information. Meanwhile, in order
to consider human hesitance, dual hesitant Pythagorean fuzzy sets (DHPFSs) are presented, which
can be more valid for handling real multiple attribute decision-making (MADM) problems. To fuse
the information in DHPFSs more effectively, in this article, some dual hesitant Pythagorean fuzzy
Heronian mean operators, which can consider the relationships between arguments being fused,
are defined and studied. Evidently, the new proposed operators can obtain more exact results
than other existing methods. In addition, some important properties of these Heronian mean
(HM) operators are discussed. Subsequently, the defined aggregation operators are used in MADM
with dual hesitant Pythagorean fuzzy numbers (DHPFNs), and the MADM model is developed.
In accordance with the defined operators and the built model, the dual hesitant Pythagorean fuzzy
generalized weighted Heronian mean (DHPFGWHM) operator and dual hesitant Pythagorean fuzzy
generalized geometric weighted Heronian mean (DHPFGGWHM) operator are applied to deal with
the green supplier selection in supply chain management, and the availability and superiority of the
proposed operators are analyzed by comparing them with some existing approaches. The method
presented in this paper can effectively solve the MADM problems in which the decision-making
information is expressed by DHPFNs and the attributes are interactive.

Keywords: multiple attribute decision-making (MADM); dual hesitant Pythagorean fuzzy sets (DHPFSs);
dual hesitant Pythagorean fuzzy generalized weighted Heronian mean (DHPFGWHM) operator; dual
hesitant Pythagorean fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM) operator;
green supplier selection; supply chain management

1. Introduction

In practical decision making environments, it is difficult for decision makers (DMs) to give
evaluated information with exact real numbers. To overcome this disadvantage, Zadeh [1] has
developed the fuzzy set (FS) theory which utilizes the function of membership degree to express decision
making information instead of crisp results between 0 and 1. Based on studies of FS, Atanassov [2]
further proposed another function, named the non-membership degree, as a supplementary function.
Thus, the intuitionistic fuzzy set (IFS) was constructed; in the IFS each intuitionistic fuzzy set is
characterized by the functions of membership degree and non-membership degree between 0 and 1,
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and the sum of these are limited to 1. Subsequent to these studies, more and more scholars have studied
the IFS in relation to many multiple attribute decision making (MADM) problems [3–16]. Xu [17]
has defined some intuitionistic fuzzy weighted average operators. Xu and Yager [18] have proposed
some aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the
intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intuitionistic fuzzy hybrid
geometric (IFHG) operator, based on geometric operation laws and an intuitionistic fuzzy environment.
Hung and Yang [19] studied the similarity measures of intuitionistic fuzzy sets based on an Lp-metric.
Park et al. [20] have put forward some distance measures of interval-valued intuitionistic fuzzy sets.
To handle intuitionistic fuzzy MADM problems with incomplete weight information, Wei [21] utilized
the maximizing deviation method to build two intuitionistic fuzzy nonlinear programming models.
By considering the entropy weight of an intuitionistic fuzzy set, Hung et al. [22] established a fuzzy
TOPSIS decision making model. Luo [23] defined a projection method based on intuitionistic fuzzy
information with uncertain attribute weights for MADM. Ye [24] has provided a cross-entropy method
with which to handle decision making problems with interval-valued intuitionistic fuzzy information.
On account of the indeterminacy of DMs, Zhang [25] has presented some interval-valued hesitant fuzzy
aggregation operators and applied them to MADM problems. Liao and Xu [26] have defined some
intuitionistic fuzzy hybrid weighted aggregation operators. To express fuzzy information more easily,
Liu et al. [27] have developed the concepts of hesitant intuitionistic fuzzy linguistic elements (HLFLEs)
and have defined some weighted aggregation operators. Peng et al. [28] have discussed the MADM
approach under a hesitant interval-valued intuitionistic fuzzy environment. Chen and Huang [29]
have given the definition of hesitant triangular intuitionistic fuzzy set (HTIFS) and investigated its
applications in MADM problems.

In addition, some other fuzzy decision making approaches have been proposed by numerous
scholars [30–33]. Hu et al. [34] have proposed a novel approach combining fuzzy data envelopment
analysis (DEA) and the analytical hierarchical process (AHP) to rank units with multiple fuzzy criteria.
Ziemba et al. [35] have studied the online comparison system with certain and uncertain criteria. Diouf
and Kwak [36] have studied fuzzy AHP, DEA, and managerial analysis for supplier selection and
development from the perspective of open innovation. Dong et al. [37] utilized the modified fuzzy
VIKOR and scalable computing method to study the performance evaluation of residential demand
responses. Kim and Kim [38] have developed a new model for the optimal LNG import portfolio.
Chou et al. [39] have used fuzzy AHP and fuzzy TOPSIS to evaluate the human resource in science
and technology (HRST) performance of Southeast Asian countries.

In addition, as an effective MADM tool, the Pythagorean fuzzy set (PFS) [40,41] has emerged
as a means to describe the indeterminacy and complexity of evaluation information. Similarly to
the IFS, the PFS also consists of a membership degree and non-membership degree, the sum of the
squares of which is restricted to 1. Thus, it is clear that the PFS is more widespread than the IFS
and can express more decision-making information. For instance, the membership is given as 0.6
and the non-membership is given as 0.8; it is obvious that this problem is only valid for the PFS.
In other words, all intuitionistic fuzzy decision-making problems are a special case of Pythagorean
fuzzy decision-making problems, which means that the PFS is more efficient in dealing with MADM
problems. In previous literature, some research works have been studied by a large number of
investigators. Zhang and Xu [42] defined the Pythagorean fuzzy TOPSIS model to deal with MADM
problems. Peng and Yang [43] primarily proposed two Pythagorean fuzzy operations including the
division and subtraction operations to better understand PFS. Reformat and Yager [44] handled the
collaborative-based recommender system with Pythagorean fuzzy information. Gou et al. [45] have
studied some important properties of continuous Pythagorean fuzzy information. Garg [46] has
defined some new Pythagorean fuzzy aggregation operators, including Pthe ythagorean fuzzy Einstein
weighted averaging (PFEWA) operator, the Pythagorean fuzzy Einstein ordered weighted averaging
(PFEOWA) operator, the generalized Pythagorean fuzzy Einstein weighted averaging (GPFEWA)
operator and the generalized Pythagorean fuzzy Einstein ordered weighted averaging (GPFEOWA)
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operator. Zeng et al. [47] have utilized the Pythagorean fuzzy ordered weighted averaging weighted
average distance (PFOWAWAD) operator to study Pythagorean fuzzy MADM issues. Ren et al. [48]
built a Pythagorean fuzzy TODIM model. Liang et al. [49] investigated some Bonferroni mean operators
with Pythagorean fuzzy information. Liang et al. [50] have presented Pythagorean fuzzy Bonferroni
mean aggregation operators based on geometric averaging (GA) operations. Combining PFSs [40,41]
and dual hesitant fuzzy sets (DHFSs) [51,52], Wei and Lu [53] introduced a definition of dual hesitant
Pythagorean fuzzy sets (DHPFSs) and proposed some dual hesitant Pythagorean fuzzy Hamacher
aggregation operators. Obviously, the DHPFSs have the advantages of considering the hesitance of
DMs and expressing fuzzy information more effectively and reasonably.

However, in practical MADM problems, some relationships do exist between arguments being
fused, and it is obvious that the dual hesitant Pythagorean fuzzy Hamacher aggregation operators
defined by Wei and Lu [53] do not take the relationships between the arguments being fused into
consideration. Thus, it is necessary to find another more effective method with which to fuse dual
hesitant Pythagorean fuzzy information. To date, the Heronian mean (HM) [54] operator, which can
effectively take the interrelationship between arguments into account, has drawn a large quantity
of scholars’ attention [55–59]. Based on intuitionistic fuzzy information and a geometric operator,
Yu [54] developed the intuitionistic fuzzy geometric Heronian mean (IFGHM) operator and the
intuitionistic fuzzy geometric weighted Heronian mean (IFGWHM) operator. Liu et al. [60] further
proposed some Heronian mean operators under an intuitionistic uncertain linguistic environment for
MADM. Yu et al. [61] have defined some linguistic hesitant fuzzy Heronian mean (LHFHM) operators.
Li et al. [62] extended the Heronian mean operator to a single valued neutrosophic environment.
Wei et al. [63] have presented some q-rung orthopair Heronian mean operators. Considering linguistic
variables, Li et al. [64] developed some q-rung orthopair linguistic Heronian mean operators.

In this paper, based on the generalized Heronian mean (GHM) operator and generalized geometric
Heronian mean (GGHM) operator, we develop some dual hesitant Pythagorean fuzzy generalized
Heronian mean aggregation operators. The remainder of this paper is set out as follows. In the next
section, we introduce some basic concepts related to the Pythagorean fuzzy set (PFS), the dual hesitant
Pythagorean fuzzy set (DHPFS), and their operational laws. In Section 3, we propose some dual hesitant
Pythagorean fuzzy Heronian mean aggregation operators such as: the dual hesitant Pythagorean fuzzy
generalized weighted Heronian mean (DHPFGWHM) operator and the dual hesitant Pythagorean
fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM) operator. In Section 4, based
on the DHPFGWHM and DHPFGGWHM operators, we propose some models for MADM problems
with dual hesitant Pythagorean fuzzy information. In Section 5, we present a numerical example for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy information in
order to illustrate the method proposed in this paper. Section 6 concludes the paper with some remarks.

2. Preliminaries

2.1. Pythagorean Fuzzy Set

The fundamental definition of PFSs [40,41] are briefly introduced in this section. Then, novel
score and accuracy functions of Pythagorean fuzzy numbers (PFNs) are developed. Furthermore,
the comparison laws of PFNs are proposed.

Definition 1 [40,41]. Let X be a fixed set. A Pythagorean fuzzy set (PFS) is an object which can be denoted as

P =
{〈

x, (αP(x), βP(x))
〉
|x ∈ X

}
(1)

where the function αP : X→ [0, 1] indicates the degree of membership and the function βP : X→ [0, 1]
indicates the degree of non-membership of the element x ∈ X to P, respectively, and, for each x ∈ X, it holds that(

αp(x)
)2
+

(
βp(x)

)2
≤ 1 (2)
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Definition 2 [42]. Assume that p1 = (α1, β1) , p2 = (α2, β2), and p = (α, β) are three Pythagorean fuzzy
numbers (PFNs). Then, some basic operation laws of them can be expressed as:

(1) p1 ⊕ p2 =

(√(
αp1

)2
+

(
αp2

)2
−

(
αp1

)2(
αp1

)2
, βp1βp2

)
;

(2) p1 ⊗ p2 =

(
αp1αp2 ,

√(
βp1

)2
+

(
βp2

)2
−

(
βp1

)2(
βp2

)2
)
;

(3)λp =

(√
1− (1− α2)λ, βλ

)
,λ > 0;

(4) (p)λ =

(
αλ,

√
1− (1− β2)λ

)
,λ > 0;

(5) pc = (β,α).

Example 1. Assume that p1 = (0.5, 0.7), p2 = (0.3, 0.4), and p = (0.6, 0.3) are three Pythagorean fuzzy
numbers (PFNs). Suppose λ = 3. Then, according to the above operation laws, we can obtain:

(1) p1 ⊕ p2 =

(√
(0.5)2 + (0.3)2

− (0.5)2
× (0.3)2, 0.7× 0.4

)
= (0.56, 0.28);

(2) p1 ⊗ p2 =

(
0.5× 0.3,

√
(0.7)2 + (0.4)2

− (0.7)2
× (0.4)2

)
= (0.15, 0.64);

(3) 3× p =

(√
1− (1− 0.62)3, 0.33

)
= (0.8590, 0.0270);

(4) (p)3 =

(
0.63,

√
1− (1− 0.32)3

)
= (0.4964, 0.2160);

(5) pc = (0.3, 0.6).

2.2. Dual Hesitant Pythagorean Fuzzy Set

In this section, we shall introduce the basic definition of the dual hesitant Pythagorean fuzzy set
(DHPFS), which is the generalization of the PFS [40,41] and the dual hesitant fuzzy set (DHFS) [51,52].
It is obvious that the DHPFSs consist of two parts, namely, the function of membership hesitancy
and the function of non-membership hesitancy, which support more exemplary and flexible access to
assigning values for each element in the domain, meaning we have to handle two kinds of hesitancy in
this situation.

Definition 3 [53]. Assume that X is a fixed set. Then, a dual hesitant Pythagorean fuzzy set (DHPFS) on X
can be developed as

P̃ =
(〈

x, hP̃(x), gP̃(x)
〉
|x ∈ X

)
(3)

in which hP̃(x) and gP̃(x) are two sets of some values in [0, 1], indicating that the function of membership
degrees and non-membership degrees of the element x ∈ X to the set P̃, respectively, satisfies the condition

α2 + β2
≤ 1

where α ∈ hP̃(x), β ∈ gP̃(x), for all x ∈ X. For convenience, the pair p̃(x) =
(
hp̃(x), gp̃(x)

)
is called a dual

hesitant Pythagorean fuzzy number (DHPFN) denoted by p̃ = (h, g), with the conditions α ∈ h, β ∈ g ,
0 ≤ α, β ≤ 1, 0 ≤ α2 + β2

≤ 1.
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Definition 4 [53]. Let p̃ = (h, g) be a DHPFN. Then, s(p̃) = 1
2

(
1 + 1

#h
∑
α∈h α

2
−

1
#g

∑
β∈g β

2
)

is the score

function of p̃, and H(p̃) = 1
#h

∑
α∈h α

2 + 1
#g

∑
β∈g β

2 is the accuracy function of p̃, where #h and #g are the
numbers of the elements in h and g respectively. Then, let p̃i = (hi, gi)(i = 1, 2) be any two DHPFNs.
Subsequently, we have the following comparison laws:

• If s(p̃1) > s(p̃2), then p̃1 is superior to p̃2, denoted by p̃1 � p̃2;
• If s(p̃1) = s(p̃2), then:

(1) If p(p̃1) = p(p̃2), then p̃1 is equivalent to p̃2, denoted by p̃1 ∼ p̃2 ;
(2) If p(p̃1) > p(p̃2), then p̃1 is superior to p̃2, denoted by p̃1 � p̃2.

Definition 5 [53]. Assume that p̃1 = (h1, g1) , p̃2 = (h2, g2), and p̃ = (h, g) are three DHPFNs. Then, some
basic operation laws of these can be expressed as:

(1) p̃λ = ∪α∈h,β∈g

{{
αλ

}
,
{√

1− (1− β2)λ
}}

,λ > 0;

(2) λp̃ = ∪α∈h,β∈g

{{√
1− (1− α2)λ

}
,
{
βλ

}}
,λ > 0;

(3) p̃1 ⊕ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{{√
(α1)

2 + (α2)
2
− (α1)

2(α2)
2
}

,
{
β1β2

}}
;

(4) p̃1 ⊗ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{
{α1α2},

{√
(β1)

2 + (β2)
2
− (β1)

2(β2)
2
}}

.

Example 2. Assume that p1 = {{0.7}, {0.3}}, p2 = {{0.1, 0.2}, {0.4}}, and p = {{0.5, 0.6}, {0.4}} are three
Pythagorean fuzzy numbers. Suppose λ = 3. Then, according to the above operation laws, we can obtain

(1) p̃3 = ∪α∈h,β∈g

{{
0.53, 0.63

}
,
{√

1− (1− 0.42)3
}}

= {{0.125, 0.216}, {0.638}};

(2) 3p̃ = ∪α∈h,β∈g




√
1− (1− 0.52)3,√
1− (1− 0.62)3

,
{
0.43

} = {{0.760, 0.859}, {0.064}};

(3)
p̃1 ⊕ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

 √0.72 + 0.12 − 0.72 × 0.12,
√

0.72 + 0.22 − 0.72 × 0.22

, {0.3× 0.4}


= {{0.704, 0.714}, {0.120}}

(4)
p̃1 ⊗ p̃2 = ∪α1∈h1,α2∈h2,β1∈g1,β2∈g2

{
{0.7× 0.1, 0.7× 0.2},

{√
0.32 + 0.42 − 0.32 × 0.42

}}
= {{0.070, 0.140}, {0.485}}

2.3. The Heronian Mean Operator

Definition 6 [65]. Let bi (i = 1, 2, · · · , n) be a group of nonnegative real numbers. Then, the Heronian mean
(HM) operator can be defined as:

HM(b1, b2, . . . , bn) =
2

n(n + 1)

n∑
i=1

n∑
j=i

(
bib j

) 1
2 (4)
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Definition 7 [54]. Assume that ξ, ζ > 0, and bi (i = 1, 2, · · · , n) are a group of nonnegative real numbers.
Then, the GHM operator can be defined as:

GHMξ,ζ(a1, a2, . . . , an) =

 2
n(n + 1)

n∑
i=1

n∑
j=i

aξi aζj


1/(ξ+ζ)

(5)

When ξ = ζ = 1/2, the GHM operator will reduce to the Heronian mean (HM) operator, which indicates
that the HM operator is a special case of the GHM operator.

3. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators

In the following section Xu et al. [66] proposed the dual hesitant Pythagorean fuzzy generalized
Heronian mean (DHPFGHM) operators based on dual hesitant Pythagorean fuzzy numbers (DHPFNs)
and GHM operations. In addition, some important properties, such as idempotency, boundedness,
and monotonicity are discussed.

3.1. The DHPFGHM Aggregation Operator

Definition 8 [66]. Let ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a group of DHPFNs. Then, we can define

the DHPFGHM operator as

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n + 1)
n
⊕

i=1

n
⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

(6)

where “ ⊕ ” indicates the addition operation law and “ ⊗ ” indicates the multiplication operation law of the
DHPFNs described in Definition 5. Then, according to these operation laws, Xu et al. [66] obtained Theorem 1.

Theorem 1 [66]. Let ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a group of dual hesitant Pythagorean fuzzy

numbers, meaning their fused results by utilizing the DHPFGHM operator is also a DHPFN, and

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n+1)

n
⊕

i=1

n
⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j





√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)


1
ξ+ζ

,


√√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)


1
ξ+ζ





(7)

Proof. Based on Definition 5:

p̃ξi = ∪αi∈hi,βi∈gi

{αξi },

√

1−
(
1− β2

i

)ξ
 (8)

p̃ζj = ∪α j∈h j,β j∈g j

{αζj },


√

1−
(
1− β2

j

)ζ
 (9)
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Thus,

p̃ξi ⊗ p̃ζj = ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,

{αξi αζj },


√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζ
 (10)

Therefore,
n
⊕

i=1

n
⊕
j=i

(
p̃ξi ⊗ p̃ζj

)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

),


√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)


(11)

Furthermore,

2
n(n+1)

n
⊕

i=1

n
⊕
j=i

(
p̃ξi ⊗ p̃ζj

)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)

,


√√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)




(12)

Therefore,

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =

(
2

n(n+1)

n
⊕

i=1

n
⊕
j=i

(
p̃ξi ⊗ p̃ζj

)) 1
ξ+ζ

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j





√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)


1
ξ+ζ

,


√√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)


1
ξ+ζ





(13)

Thus, the proof has been finished.

Example 3. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3. Then according to the DHPFGHM
operator, we can obtain the fused results as follows. For the membership degree function α, the fused results are
shown as:

α1 = DHPFGHM2,3(0.7, 0.3, 0.1, 0.5) =


√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

) 2
n(n+1)


1
ξ+ζ

=



√√√√√√√√√√√√√√√√√√√√√√√√1−



(
1− 0.72×2

× 0.72×3
)
×

(
1− 0.72×2

× 0.32×3
)
×

(
1− 0.72×2

× 0.12×3
)

×

(
1− 0.72×2

× 0.52×3
)
×

(
1− 0.32×2

× 0.32×3
)
×

(
1− 0.32×2

× 0.12×3
)

×

(
1− 0.32×2

× 0.52×3
)
×

(
1− 0.12×2

× 0.12×3
)
×

(
1− 0.12×2

× 0.52×3
)

×

(
1− 0.52×2

× 0.52×3
)



1
10



1
2+3

= 0.5658



Mathematics 2019, 7, 344 8 of 27

Similarly, we can obtain

α2 = DHPFGHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5664
α3 = DHPFGHM2,3(0.8, 0.3, 0.1, 0.5) = 0.6492
α4 = DHPFGHM2,3(0.8, 0.3, 0.3, 0.5) = 0.6432

Hence, we can get α = {0.5658, 0.5664, 0.6429, 0.6432}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGHM2,3(0.4, 0.6, 0.4, 0.5) =

√√√√
1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ) 2
n(n+1)


1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√



1−



(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)
×

(
1−

(
1− 0.42

)2
×

(
1− 0.62

)3
)

×

(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)
×

(
1−

(
1− 0.42

)2
×

(
1− 0.52

)3
)

×

(
1−

(
1− 0.62

)2
×

(
1− 0.62

)3
)
×

(
1−

(
1− 0.62

)2
×

(
1− 0.42

)3
)

×

(
1−

(
1− 0.62

)2
×

(
1− 0.52

)3
)
×

(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)

×

(
1−

(
1− 0.42

)2
×

(
1− 0.52

)3
)
×

(
1−

(
1− 0.52

)2
×

(
1− 0.52

)3
)



1
10


1
2+3

= 0.4698

Similarly, we can obtain

β2 = DHPFGHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5211
β3 = DHPFGHM2,3(0.4, 0.7, 0.4, 0.5) = 0.4856
β4 = DHPFGHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5383

Hence, we can get β = {0.4698, 0.5211, 0.4856, 0.5383}.Therefore,

DHPFGHM(p̃1, p̃2, p̃3, p̃4) =

{
{0.5658, 0.5664, 0.6429, 0.6432},
{0.4698, 0.5211, 0.4856, 0.5383}

}
.

It can be easily proven that the DHPFGHM operator satisfies the following properties.

Property 1. (Idempotency) If all p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) = p̃ (14)

Property 2. (Boundedness) Let p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈h j,β j∈g j

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈h j,β j∈g j

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ p̃+ (15)
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Property 3. (Monotonicity) Let p̃ j =
(
h j, g j

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs.

If p̃ j ≤ p̃′j, for all j, then

DHPFGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ DHPFGHMξ,ζ
(
p̃′1, p̃′2, . . . , p̃′n

)
(16)

3.2. The DHPFGWHM Aggregation Operator

Using Definition 8, we can conclude that the DHPFGHM operator didn’t take the importance
of arguments being fused into account. However, in many practical MADM problems, we should
consider the weights of attributes. To overcome this limitation of the DHPFGHM operator, we propose
a novel DHPFGWHM operator as follows.

Definition 9. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a group of dual hesitant Pythagorean

fuzzy numbers (DHPFNs). Then, we define the DHPFGWHM operator as follows:

DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

(
n
⊕

i=1

n
⊕
j=i

(
wiw j

(
p̃ξi p̃ζj

))) 1
ξ+ζ

(17)

According to the operation laws of the DHPFNs described in Definition 5, we can obtain Theorem 2.

Theorem 2. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a collection of DHPFNs with the

weighting vector w = (w1, w2, . . . , wn)
T, which satisfies w j > 0, i = 1, 2, . . . , n and

n∑
j=1

w j = 1. Then, their

fused result obtained by utilizing the DHPFGWHM operator is also a DHPFN, and

DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

(
n
⊕

i=1

n
⊕
j=i

(
wiw j

(
p̃ξi p̃ζj

))) 1
ξ+ζ

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,





√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiw j


1
ξ+ζ

,


√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiw j


1
ξ+ζ





(18)

Proof. Based on Definition 5, we can obtain:

p̃ξi = ∪αi∈hi,βi∈gi

{αξi },

√

1−
(
1− β2

i

)ξ
 (19)

p̃ζj = ∪α j∈h j,β j∈g j

{αζj },


√

1−
(
1− β2

j

)ζ
 (20)

Thus,

p̃ξi p̃ζj = ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,

{αξi αζj },


√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζ
 (21)
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Therefore,

wiw j

(
p̃ξi p̃ζj

)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,




√

1−
(
1− α2ξ

i α
2ζ
j

)wiw j

,



√

1−
(
1− β2

i

)ξ(
1− β2

j

)ζwiw j



(22)

Thereafter,
n
⊕

i=1

n
⊕
j=i

(
wiw j

(
p̃ξi p̃ζj

))

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,




√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiw j

,



√

n∏
i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)
wiw j


(23)

Therefore,

DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

(
n
⊕

i=1

n
⊕
j=i

(
wiw j

(
p̃ξi p̃ζj

))) 1
ξ+ζ

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,





√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiw j


1
ξ+ζ

,


√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiw j


1
ξ+ζ





(24)

Thus, we have finished the proof.

Example 4. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3 and w j = (0.3, 0.2, 0.1, 0.4). Then,
according to the DHPFGWHM operator, we can obtain the fused results as follows. For the membership degree
function α, the fused results are shown as:

α1 = DHPFGWHM2,3(0.7, 0.3, 0.1, 0.5) =


√

1−
n∏

i=1, j=i

(
1− α2ξ

i α
2ζ
j

)wiw j


1
ξ+ζ

=



√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−
(
1− 0.72×2

× 0.72×3
)0.3×0.3

×

(
1− 0.72×2

× 0.32×3
)0.3×0.2

×

(
1− 0.72×2

× 0.12×3
)0.3×0.1

×

(
1− 0.72×2

× 0.52×3
)0.3×0.4

×

(
1− 0.32×2

× 0.32×3
)0.2×0.2

×

(
1− 0.32×2

× 0.12×3
)0.2×0.1

×

(
1− 0.32×2

× 0.52×3
)0.2×0.4

×

(
1− 0.12×2

× 0.12×3
)0.1×0.1

×

(
1− 0.12×2

× 0.52×3
)0.1×0.4

×

(
1− 0.52×2

× 0.52×3
)0.4×0.4



1
5

= 0.5630
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Similarly, we can obtain

α2 = DHPFGWHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5632
α3 = DHPFGWHM2,3(0.8, 0.3, 0.1, 0.5) = 0.6376
α4 = DHPFGWHM2,3(0.8, 0.3, 0.3, 0.5) = 0.6377

Hence, we can get α = {0.5630, 0.5632, 0.6376, 0.6377}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGWHM2,3(0.4, 0.6, 0.4, 0.5) =

√√√
1−

1−
n∏

i=1, j=i

(
1−

(
1− β2

i

)ξ(
1− β2

j

)ζ)wiw j


1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√



1−
(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)0.3×0.3

×

(
1−

(
1− 0.42

)2
×

(
1− 0.62

)3
)0.3×0.2

×

(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)0.3×0.1

×

(
1−

(
1− 0.42

)2
×

(
1− 0.52

)3
)0.3×0.4

×

(
1−

(
1− 0.62

)2
×

(
1− 0.62

)3
)0.2×0.2

×

(
1−

(
1− 0.62

)2
×

(
1− 0.42

)3
)0.2×0.1

×

(
1−

(
1− 0.62

)2
×

(
1− 0.52

)3
)0.2×0.4

×

(
1−

(
1− 0.42

)2
×

(
1− 0.42

)3
)0.1×0.1

×

(
1−

(
1− 0.42

)2
×

(
1− 0.52

)3
)0.1×0.4

×

(
1−

(
1− 0.52

)2
×

(
1− 0.52

)3
)0.4×0.4



1
2+3

= 0.5333

Similarly, we can obtain

β2 = DHPFGWHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5480
β3 = DHPFGWHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5438
β4 = DHPFGWHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5586

Hence, we can get β = {0.5333, 0.5480, 0.5438, 0.5586}. Therefore,

DHPFGWHM(p̃1, p̃2, p̃3, p̃4) =

{
{0.5630, 0.5632, 0.6376, 0.6377},
{0.5333, 0.5480, 0.5438, 0.5586}

}
.

It can be easily proven that the DHPFGWHM operator satisfies the following properties.

Property 4. (Idempotency) If all p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) = p̃ (25)

Property 5. (Boundedness) Let p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈h j,β j∈g j

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈h j,β j∈g j

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) ≤ p̃+ (26)
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Property 6. (Monotonicity) Let p̃ j =
(
h j, g j

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs. If

p̃ j ≤ p̃′j, for all j, then

DHPFGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) ≤ DHPFGWHMξ,ζ

w

(
p̃′1, p̃′2, . . . , p̃′n

)
(27)

3.3. The DHPFGGHM Aggregation Operator

In the following, based on the geometric mean (GM) operator, Yu [54] extended the GHM operator
to a GGHM operator which can be depicted as follows.

Definition 10 [54]. Assume that ξ, ζ > 0 and bi(i = 1, 2, · · · , n) are a group of non-negative real numbers.
Then, the generalizeGGHM) operator can be expressed as:

GHMξ,ζ(a1, a2, · · · , an) =
1

ξ+ ζ

 n∏
i=1, j=i

(
ξai + ζa j

)
2

n(n+1)

(28)

In this section, we introduced the GGHM operator with dual hesitant Pythagorean fuzzy
information. According to Definition 5, Xu et al. [66] gave the definition of the DHPFGGHM operator
as follows.

Definition 11 [66]. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a collection of DHPFNs. Then,

the DHPFGGHM operator can be defined as:

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1

ξ+ ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

(29)

According to the operation laws of the DHPFNs described in Definition 5, Xu et al. [66] obtained Theorem 3.

Theorem 3 [66]. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a group of DHPFNs. Then, their

fused results obtained by utilizing the DHPFGGHM operator is also a DHPFN, and

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)


1
ξ+ζ

,



√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)


1
ξ+ζ





(30)

Proof. Based on Definition 5:

ξp̃i = ∪αi∈hi,βi∈gi



√

1−
(
1− α2

i

)ξ,
{
βξi

} (31)

ζp̃ j = ∪α j∈h j,β j∈g j



√

1−
(
1− α2

j

)ζ,
{
βζj

} (32)
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Thus,

ξp̃i ⊕ ζp̃ j = ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,



√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζ,
{
βξi β

ζ
j

} (33)

Therefore,
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ),


√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

)


(34)

Furthermore, (
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)

,


√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)




(35)

Therefore,

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) =
1
ξ+ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)) 2
n(n+1)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j




√√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)


1
ξ+ζ

,



√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)


1
ξ+ζ





(36)

Thus, the proof have been finished.

Example 5. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3. Then, according to the DHPFGGHM
operator, we can obtain the fused results as follows. For the membership degree function α, the fused results are
shown as:
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α1 = DHPFGGHM2,3(0.7, 0.3, 0.1, 0.5) =

√√√√
1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ) 2
n(n+1)


1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√



1−



(
1−

(
1− 0.72

)2
×

(
1− 0.72

)3
)
×

(
1−

(
1− 0.72

)2
×

(
1− 0.32

)3
)

×

(
1−

(
1− 0.72

)2
×

(
1− 0.12

)3
)
×

(
1−

(
1− 0.72

)2
×

(
1− 0.52

)3
)

×

(
1−

(
1− 0.32

)2
×

(
1− 0.32

)3
)
×

(
1−

(
1− 0.32

)2
×

(
1− 0.12

)3
)

×

(
1−

(
1− 0.32

)2
×

(
1− 0.52

)3
)
×

(
1−

(
1− 0.12

)2
×

(
1− 0.12

)3
)

×

(
1−

(
1− 0.12

)2
×

(
1− 0.52

)3
)
×

(
1−

(
1− 0.52

)2
×

(
1− 0.52

)3
)



1
10


1
2+3

= 0.3461

Similarly, we can obtain

α2 = DHPFGGHM2,3(0.7, 0.3, 0.3, 0.5) = 0.4236
α3 = DHPFGGHM2,3(0.8, 0.3, 0.1, 0.5) = 0.3545
α4 = DHPFGGHM2,3(0.8, 0.3, 0.3, 0.5) = 0.4343

Hence, we can get α = {0.3461, 0.4236, 0.3545, 0.4343}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGGHM2,3(0.4, 0.6, 0.4, 0.5) =


√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

) 2
n(n+1)


1
ξ+ζ

=



√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√1−



(
1− 0.42×2

× 0.42×3
)
×

(
1− 0.42×2

× 0.62×3
)
×

(
1− 0.42×2

× 0.42×3
)

×

(
1− 0.42×2

× 0.52×3
)
×

(
1− 0.62×2

× 0.62×3
)
×

(
1− 0.62×2

× 0.42×3
)

×

(
1− 0.62×2

× 0.52×3
)
×

(
1− 0.42×2

× 0.42×3
)
×

(
1− 0.42×2

× 0.52×3
)

×

(
1− 0.52×2

× 0.52×3
)



1
10



1
2+3

= 0.5100

Similarly, we can obtain

β2 = DHPFGGHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5516
β3 = DHPFGGHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5734
β4 = DHPFGGHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5968

Hence, we can get β = {0.5100, 0.5516, 0.5734, 0.5968}.Therefore,

DHPFGGHM(p̃1, p̃2, p̃3, p̃4) =

{
{0.3461, 0.4236, 0.3545, 0.4343},
{0.5100, 0.5516, 0.5734, 0.5968}

}
.
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It can be easily proven that the DHPFGGHM operator satisfies the following properties.

Property 7. (Idempotency) If all p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) = p̃ (37)

Property 8. (Boundedness) Let p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈h j,β j∈g j

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈h j,β j∈g j

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ p̃+ (38)

Property 9. (Monotonicity) Let p̃ j =
(
h j, g j

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two set of DHPFNs.

If p̃ j ≤ p̃′j, for all j, then

DHPFGGHMξ,ζ(p̃1, p̃2, . . . , p̃n) ≤ DHPFGGHMξ,ζ
(
p̃′1, p̃′2, . . . , p̃′n

)
(39)

3.4. The DHPFGGWHM Aggregation Operator

Using Definition 11, we can conclude that the DHPFGGHM operator didn’t take the importance of
arguments being fused into account. However, in many practical MADM problems, we should consider
the weights of attributes. To overcome the limitations of the DHPFGGHM operator, we propose a
novel DHPFGGWHM operator as follows.

Definition 12. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a collection of DHPFNs. Then,

the DHPFGGWHM operator can be defined as:

DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

1
ξ+ ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiw j
)

(40)

According to the operation laws of the DHPFNs described in Definition 5, we can obtain Theorem 4.

Theorem 4. Assume that ξ, ζ > 0 and p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are a collection of DHPFNs with the

weighting vector w = (w1, w2, . . . , wn)
T which satisfies w j > 0, i = 1, 2, . . . , n and

n∑
j=1

w j = 1. Then, their

fused result obtained by utilizing the DHPFGGWHM operator is also a DHPFN, and

DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

1
ξ+ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiw j
)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,




√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiw j


1
ξ+ζ

,



√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiw j


1
ξ+ζ





(41)
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Proof. Based on Definition 5, we can obtain:

ξp̃i = ∪αi∈hi,βi∈gi



√

1−
(
1− α2

i

)ξ,
{
βξi

} (42)

ζp̃ j = ∪α j∈h j,β j∈g j



√

1−
(
1− α2

j

)ζ,
{
βζj

} (43)

Thus,

ξp̃i ⊕ ζp̃ j = ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,



√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζ,
{
βξi β

ζ
j

} (44)

Therefore, (
ξp̃i ⊕ ζp̃ j

)wiw j

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,





√

1−
(
1− α2

i

)ξ(
1− α2

j

)ζwiw j
,


√

1−
(
1− β2ξ

i β
2ζ
j

)wiw j




(45)

Thereafter,
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiw j

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,





√

n∏
i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)
wiw j,


√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiw j




(46)

Therefore,

DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) =

1
ξ+ζ

(
n
⊗

i=1

n
⊗
j=i

(
ξp̃i ⊕ ζp̃ j

)wiw j
)

= ∪αi∈hi,α j∈h j,βi∈gi,α j∈h j,




√√√

1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiw j


1
ξ+ζ

,



√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiw j


1
ξ+ζ





(47)

Thus, we have finished the proof.

Example 6. Assume that p̃1 = {{0.7, 0.8}, {0.4}}, p̃2 = {{0.3}, {0.6, 0.7}}, p̃3 = {{0.1, 0.3}, {0.4, 0.6}} and
p̃4 = {{0.5}, {0.5}} are four DHPFNs, and suppose that ξ = 2, ζ = 3 and w j = (0.3, 0.2, 0.1, 0.4). Then,
according to the DHPFGGWHM operator, we can obtain the fused results as follows. For the membership degree
function α, the fused results are shown as:
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α1 = DHPFGGWHM2,3(0.7, 0.3, 0.1, 0.5) =

√√√
1−

1−
n∏

i=1, j=i

(
1−

(
1− α2

i

)ξ(
1− α2

j

)ζ)wiw j


1
ξ+ζ

=

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√



1−
(
1−

(
1− 0.72

)2
×

(
1− 0.72

)3
)0.3×0.3

×

(
1−

(
1− 0.72

)2
×

(
1− 0.32

)3
)0.3×0.2

×

(
1−

(
1− 0.72

)2
×

(
1− 0.12

)3
)0.3×0.1

×

(
1−

(
1− 0.72

)2
×

(
1− 0.52

)3
)0.3×0.4

×

(
1−

(
1− 0.32

)2
×

(
1− 0.32

)3
)0.2×0.2

×

(
1−

(
1− 0.32

)2
×

(
1− 0.12

)3
)0.2×0.1

×

(
1−

(
1− 0.32

)2
×

(
1− 0.52

)3
)0.2×0.4

×

(
1−

(
1− 0.12

)2
×

(
1− 0.12

)3
)0.1×0.1

×

(
1−

(
1− 0.12

)2
×

(
1− 0.52

)3
)0.1×0.4

×

(
1−

(
1− 0.52

)2
×

(
1− 0.52

)3
)0.4×0.4



1
2+3

= 0.5156

Similarly, we can obtain

α2 = DHPFGGWHM2,3(0.7, 0.3, 0.3, 0.5) = 0.5378
α3 = DHPFGGWHM2,3(0.8, 0.3, 0.1, 0.5) = 0.5273
α4 = DHPFGGWHM2,3(0.8, 0.3, 0.3, 0.5) = 0.5503

Hence, we can get α = {0.5156, 0.5378, 0.5273, 0.5503}.
For the non-membership degree function β, the fused results are shown as:

β1 = DHPFGGWHM2,3(0.4, 0.6, 0.4, 0.5) =


√

1−
n∏

i=1, j=i

(
1− β2ξ

i β
2ζ
j

)wiw j


1
ξ+ζ

=



√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−
(
1− 0.42×2

× 0.42×3
)0.3×0.3

×

(
1− 0.42×2

× 0.62×3
)0.3×0.2

×

(
1− 0.42×2

× 0.42×3
)0.3×0.1

×

(
1− 0.42×2

× 0.52×3
)0.3×0.4

×

(
1− 0.62×2

× 0.62×3
)0.2×0.2

×

(
1− 0.62×2

× 0.42×3
)0.2×0.1

×

(
1− 0.62×2

× 0.52×3
)0.2×0.4

×

(
1− 0.42×2

× 0.42×3
)0.1×0.1

×

(
1− 0.42×2

× 0.52×3
)0.1×0.4

×

(
1− 0.52×2

× 0.52×3
)0.4×0.4



1
5

= 0.4850

Similarly, we can obtain

β2 = DHPFGGWHM2,3(0.4, 0.6, 0.6, 0.5) = 0.5006
β3 = DHPFGGWHM2,3(0.4, 0.7, 0.4, 0.5) = 0.5338
β4 = DHPFGGWHM2,3(0.4, 0.7, 0.6, 0.5) = 0.5433

Hence, we can get β = {0.4850, 0.5006, 0.5338, 0.5433}. Therefore,

DHPFGGWHM(p̃1, p̃2, p̃3, p̃4) =

{
{0.5156, 0.5378, 0.5273, 0.5503},
{0.4850, 0.5006, 0.5338, 0.5433}

}
.
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It can be easily proven that the DHPFGGWHM operator satisfies the following properties.

Property 10. (Idempotency) If all p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) are equal, i.e., p̃ j = p̃ for all j, then

DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) = p̃ (48)

Property 11. (Boundedness) Let p̃ j =
(
h j, g j

)
( j = 1, 2, · · · , n) be a collection of DHPFNs, and let

p̃+ = ∪α j∈h j,β j∈g j

{{
maxi(αi)

}
,
{
mini(βi)

}}
, p̃− = ∪α j∈h j,β j∈g j

{{
mini(αi)

}
,
{
maxi(βi)

}}
Then

p̃− ≤ DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) ≤ p̃+ (49)

Property 12. (Monotonicity) Let p̃ j =
(
h j, g j

)
and p̃′j =

(
h′j, g′j

)
, j = 1, 2, · · · , n, be two sets of DHPFNs. If

p̃ j ≤ p̃′j, for all j, then

DHPFGGWHMξ,ζ
w (p̃1, p̃2, . . . , p̃n) ≤ DHPFGGWHMξ,ζ

w

(
p̃′1, p̃′2, . . . , p̃′n

)
(50)

4. An Approach to MADM with DHPFNs Information

In this section, we shall use the DHPFGWHM and DHPFGGWHM operators to deal with MADM
problems with dual hesitant Pythagorean fuzzy information. Suppose that there are m alternatives
η =

{
η1, η2, · · · , ηm

}
, and each alternative is characterized by n attributes δ = {δ1, δ2, · · · , δn}with the

weighting vector being w j = {w1, w2, · · · , wn}. Then, the dual hesitant Pythagorean fuzzy matrix can be
constructed as P̃ =

(
p̃i j

)
m×n

, with each element p̃i j =
(
hi j, gi j

)
(i = 1, 2, · · · , m, j = 1, 2, · · · , n) indicating

a dual hesitant Pythagorean fuzzy number, where hi j means the membership degree set with several
values in [0, 1], and gi j means the no-membership degree set with several values in [0, 1].

In what follows, we apply the DHPFGWHM or DHPFGGWHM operator to MADM problems for
supplier selection in supply chain management with dual hesitant Pythagorean fuzzy information.

Step 1. In order to derive the fused results of each alternative, for alternatives η =
{
η1, η2, · · · , ηm

}
,

based on the weighting vector w j = {w1, w2, · · · , wn} and dual hesitant Pythagorean fuzzy information
p̃i j =

(
hi j, gi j

)
(i = 1, 2, · · · , m, j = 1, 2, · · · , n) given in matrix P̃ =

(
p̃i j

)
m×n

, we can aggregate all the
DHPFNs by the DHPFGWHM operator

p̃i = DHPFGWHMξ,ζ
w (p̃i1, p̃i2, . . . , p̃in) =

(
n
⊕

k=1

n
⊕

j=k

(
wikwi j

(
p̃ξikp̃ζi j

))) 1
ξ+ζ

= ∪αik∈hik,αi j∈hi j,βi j∈gi j,αi j∈hi j,





√

1−
n∏

k=1, j=k

(
1− α2ξ

ik α
2ζ
i j

)wiw j


1
ξ+ζ

,



√√√

1−

1−
n∏

k=1, j=k

(
1−

(
1− β2

ik

)ξ(
1− β2

i j

)ζ)wiw j


1
ξ+ζ






(51)



Mathematics 2019, 7, 344 19 of 27

or the DHPFGGWHM operator

p̃i = DHPFGGWHMξ,ζ
w (p̃i1, p̃i2, . . . , p̃in) =

1
ξ+ζ

(
n
⊗

k=1

n
⊗

j=k

(
ξp̃ik ⊕ ζp̃i j

)wikwi j
)

= ∪αik∈hik,αi j∈hi j,βi j∈gi j,αi j∈hi j,





√√√

1−

1−
n∏

k=1, j=k

(
1−

(
1− α2

ik

)ξ(
1− α2

i j

)ζ)wiw j


1
ξ+ζ


,



√

1−
n∏

k=1, j=k

(
1− β2ξ

ik β
2ζ
i j

)wiw j


1
ξ+ζ





(52)

to obtain the overall fused results p̃i(i = 1, 2, · · · , m).

Step 2. To obtain the rank of all the alternatives, we need to adapt the score function and accuracy
function described in Definition 4. Firstly, based on the score function equation, we can compute the
score values S(p̃i) (i = 1, 2, · · · , m) of p̃i(i = 1, 2, · · · , m). If all the score values of p̃i(i = 1, 2, · · · , m) are
different, we can easily obtain the ordering of alternatives. Then, if there is no difference between
any two scores S(p̃i) and S

(
p̃ j

)
, we need to compute the accuracy values H(p̃i) and H

(
p̃ j

)
of p̃i and p̃ j,

respectively, and then determine the ordering of all the alternatives ηi and η j based on the accuracy
results H(p̃i) and H

(
p̃ j

)
.

Step 3. Determine the ordering of all the alternatives ηi(i = 1, 2, · · · , m) and select the best one(s)
according to the scores values S(p̃i)(i = 1, 2, · · · , m) and accuracy results H(p̃i). Thus, we have finished
the decision making process by using the DHPFGWHM operator or the DHPFGGWHM operator.

5. Numerical Example and Comparative Analysis

5.1. Numerical Example

In this section we present a numerical example for supplier selection in supply chain management
with dual hesitant Pythagorean fuzzy information in order to demonstrate the method proposed in this
paper. Suppose there is a problem to do with the supplier selection in supply chain management which
is a classical MADM problem. There are five prospective suppliers ηi(i = 1, 2, 3, 4, 5) for four attributes
δ j( j = 1, 2, 3, 4). The four attributes include product quality (δ1), service (δ2), delivery, (δ3) and price
(δ4), respectively. In order to avoid influencing each other, the decision makers are required to evaluate
the five suppliers ηi(i = 1, 2, 3, 4, 5) under the above four attributes in anonymity. The decision matrix
P̃ =

(
p̃i j

)
5×4

is presented in Table 1, where p̃i j(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) are in the form of DHPFNs.
(Suppose the weighting vector is w j = (0.25, 0.34, 0.27, 0.14))

Table 1. Dual hesitant Pythagorean fuzzy decision matrix.

Alternatives δ1 δ2 δ3 δ4

η1 {{0.4,0.5},{0.7}} {{0.5,0.6},{0.4,0.5)} {{0.3,0.4},{0.8)} {{0.5,0.6},{0.6}}
η2 {{0.7},{0.5}} {{0.3,0.5,0.6},{0.5}} {{0.3},{0.7,0.8,0.9}} {{0.6),{0.5,0.6)}
η3 {{0.6,0.8},{0.3}} {{0.3},{0.8,0.9}} {{0.3,0.4,0.5},{0.7}} {{0.6,0.7,0.8},{0.4}}
η4 {{0.8},{0.4})} {{0.7,0.8,0.9},{0.3}} {{0.2,0.3},{0.4}} {{0.2},{0.7,0.8,0.9}}
η5 {{0.1,0.2},{0.3}} {{0.3,0.4,0.5},{0.6}} {{0.5,0.6},{0.3}} {{0.3,0.4,0.5},{0.6}}

In what follows, we can utilize our developed methods to deal with the supplier selection in
supply chain management with dual hesitant Pythagorean fuzzy information.

Step 1. We aggregate the dual hesitant Pythagorean fuzzy information given in the matrix by utilizing
the DHPFGWHM operator to obtain the overall preference values p̃i of the supplier in supply chain
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management ηi(i = 1, 2, 3, 4, 5). Taking the alternative η1 as an example (here, we take ξ = ζ = 2),
we have

p̃1 = DHPFGWHMξ,ζ
w (p̃11, p̃12, p̃13, p̃14) =

(
4
⊕

k=1

4
⊕

j=k

(
wikwi j

(
p̃ξikp̃ζi j

))) 1
ξ+ζ

= ∪αik∈hik,αi j∈hi j,βi j∈gi j,αi j∈hi j,





√

1−
4∏

k=1, j=k

(
1− α2ξ

ik α
2ζ
i j

)wiw j


1
ξ+ζ

,



√√√

1−

1−
4∏

k=1, j=k

(
1−

(
1− β2

ik

)ξ(
1− β2

i j

)ζ)wiw j


1
ξ+ζ





=

{
{{0.4, 0.5}, {0.7}}, {{0.5, 0.6}, {0.4, 0.5) }, {{0.3, 0.4}, {0.8)}, {{0.5, 0.6}, {0.6}}

}
= {{0.4234, 0.4461, 0.4335, 0.4547, 0.4824, 0.4964, 0.4887, 0.5023, 0.4448, 0.4642,

0.4536, 0.4719, 0.4957, 0.5087, 0.5016, 0.5143}, {0.6319, 0.6725}}

Step 2. Compute the scores results s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy
preference values p̃i (i = 1, 2, 3, 4, 5):

s(p̃1) = 0.3998, s(p̃2) = 0.4536, s(p̃3) = 0.4669
s(p̃4) = 0.6255, s(p̃5) = 0.4674

Step 3. Determine the ordering of all the suppliers ηi(i = 1, 2, 3, 4, 5) based on the scores values
s(p̃i) (i = 1, 2, 3, 4, 5): η4 � η5 � η3 � η2 � η1, and it is clear that the most desirable supplier is η4.

Similarly, if we utilize the DHPFGGWHM operator to solve this MADM, the decision making
steps can be described as follows.

Step 1′. Aggregate all dual hesitant Pythagorean fuzzy values p̃i j( j = 1, 2, 3, 4) by using the
DHPFGGWHM operator to derive the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5)
of the supplier ηi. Taking supplier η1 for an example (here, we take ξ = ζ = 2), we have

p̃1 = DHPFGGWHMξ,ζ
w (p̃11, p̃12, p̃13, p̃14) =

1
ξ+ζ

(
4
⊗

k=1

4
⊗

j=k

(
ξp̃ik ⊕ ζp̃i j

)wikwi j
)

= ∪αik∈hik,αi j∈hi j,βi j∈gi j,αi j∈hi j,





√√√

1−

1−
4∏

k=1, j=k

(
1−

(
1− α2

ik

)ξ(
1− α2

i j

)ζ)wiw j


1
ξ+ζ


,



√

1−
4∏

k=1, j=k

(
1− β2ξ

ik β
2ζ
i j

)wiw j


1
ξ+ζ




=

{
{{0.4, 0.5}, {0.7}}, {{0.5, 0.6}, {0.4, 0.5) }, {{0.3, 0.4}, {0.8)}, {{0.5, 0.6}, {0.6}}

}
= {{0.4929, 0.5022, 0.5190, 0.5287, 0.5186, 0.5283, 0.5460, 0.5560, 0.5140, 0.5236,

0.5406, 0.5506, 0.5406, 0.5505, 0.5686, 0.5790}, {0.6421, 0.6493}}

Step 2′. Compute the scores results s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy
values p̃i(i = 1, 2, 3, 4, 5) of the supplier p̃i:

s(p̃1) = 0.4349, s(p̃2) = 0.4549, s(p̃3) = 0.3976
s(p̃4) = 0.5240, s(p̃5) = 0.4780
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Step 3′. Determine the ordering of all the suppliers ηi(i = 1, 2, 3, 4, 5) based on the score results
s(p̃i) (i = 1, 2, 3, 4, 5) of p̃i(i = 1, 2, · · · , 5): η4 � η5 � η2 � η1 � η3 and it is clear that the most desirable
supplier in supply chain management is η4.

According to the above analysis, we can easily find that although the overall rating values of the
alternatives are slightly different by using two operators respectively, the most desirable supplier in
supply chain management is η4.

5.2. Influence of Parameters on the Final Result

The parameters ξ and ζ play an important role in the final ranking of alternatives. We may obtain
different ordering results by assigning different values to ξ and ζ. By altering the values of ξ and
ζ, different ranking results are obtained, as shown in Tables 2 and 3. Therefore, the DHPFGWHM
and DHPFGGWHM operators are shown to be considerably flexible by using a parameter vector.
Tables 2 and 3 show that the ranking results increase and become steady with the increase of values
in the parameter vector. That is, the final results become increasingly objective by considering the
interrelationship among the attribute values. These features of the DHPFGWHM and DHPFGGWHM
operators are crucial in real MADM problems.

Table 2. Ordering by the DHPFGWHM operators.

Parameter s(η1) s(η2) s(η3) s(η4) s(η5) Ordering

ξ = ζ = 0.5 0.2989 0.3322 0.3126 0.4804 0.3732 η4 � η5 � η2 � η3 � η1
ξ = ζ = 1 0.3504 0.3921 0.3834 0.5540 0.4208 η4 � η5 � η2 � η3 � η1
ξ = ζ = 2 0.3998 0.4536 0.4669 0.6255 0.4674 η4 � η5 � η3 � η2 � η1
ξ = ζ = 3 0.4288 0.4887 0.5197 0.6621 0.4933 η4 � η3 � η5 � η2 � η1
ξ = ζ = 4 0.4493 0.5117 0.5559 0.6846 0.5108 η4 � η3 � η2 � η5 � η1
ξ = ζ = 5 0.4647 0.5280 0.5822 0.7001 0.5235 η4 � η3 � η2 � η5 � η1

Table 3. Ordering by the DHPFGGWHM operators.

Parameter s(η1) s(η2) s(η3) s(η4) s(η5) Ordering

ξ = ζ = 0.5 0.5484 0.5775 0.5431 0.6850 0.5728 η4 � η2 � η5 � η1 � η3
ξ = ζ = 1 0.4901 0.5176 0.4710 0.6165 0.5256 η4 � η5 � η2 � η1 � η3
ξ = ζ = 2 0.4349 0.4549 0.3976 0.5240 0.4780 η4 � η5 � η2 � η1 � η3
ξ = ζ = 3 0.4033 0.4146 0.3563 0.4591 0.4515 η4 � η5 � η2 � η1 � η3
ξ = ζ = 4 0.3815 0.3854 0.3290 0.4139 0.4344 η5 � η4 � η2 � η1 � η3
ξ = ζ = 5 0.3653 0.3633 0.3094 0.3817 0.4223 η5 � η4 � η1 � η2 � η3

5.3. Comparative Analysis

The prominent characteristic of the DHPFGWHM and DHPFGGWHM operators is that they can
consider the interrelationship among the DHFNs. Next, we shall compare our developed methods
with the dual hesitant Pythagorean fuzzy weighted average (DHPFWA) and dual hesitant Pythagorean
fuzzy weighted geometric (DHPFWG) operators [53], with the comparative analysis results listed
as follows.

According to Table 1 and attribute weights, the fused values obtained by the DHPFGWA
operator are:

p̃1 = DHPFWA(p̃11, p̃12, p̃13, p̃14) =
4
⊕

j=1
w jp̃1 j

=

{{
0.4325, 0.4527, 0.4522, 0.4711, 0.4793, 0.4967, 0.4962, 0.5126,
0.4580, 0.4766, 0.4761, 0.4936, 0.5013, 0.5174, 0.5170, 0.5323

}
,
{

0.5872,
0.6334

}}
;
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p̃2 = DHPFWA(p̃21, p̃22, p̃23, p̃24) =
4
⊕

j=1
w jp̃2 j

= {{0.5005, 0.5461, 0.5788}, {0.5476, 0.5617, 0.5677, 0.5823, 0.5860, 0.6011}};

p̃3 = DHPFWA(p̃31, p̃32, p̃33, p̃34) =
4
⊕

j=1
w jp̃3 j

=

{{
0.4547, 0.4812, 0.5178, 0.4775, 0.5022, 0.5364, 0.5071, 0.5296, 0.5610,
0.5595, 0.5784, 0.6051, 0.5757, 0.5936, 0.6190, 0.5973, 0.6139, 0.6376

}
,
{

0.5480,
0.5704

}}
;

p̃4 = DHPFWA(p̃41, p̃42, p̃43, p̃44) =
4
⊕

j=1
w jp̃4 j

= {{0.6278, 0.6347, 0.6796, 0.6852, 0.7529, 0.7570}, {0.3923, 0.3997, 0.4063}};

p̃5 = DHPFWA(p̃51, p̃52, p̃53, p̃54) =
4
⊕

j=1
w jp̃5 j

=




0.3434, 0.3574, 0.3761, 0.3936, 0.4053, 0.4213, 0.3763, 0.3888, 0.4056,
0.4214, 0.4321, 0.4467, 0.4172, 0.4281, 0.4428, 0.4568, 0.4663, 0.4794,
0.3531, 0.3666, 0.3848, 0.4017, 0.4132 0.4287, 0.3849, 0.3971, 0.4134,
0.4288, 0.4393, 0.4535, 0.4247, 0.4353, 0.4497, 0.4634, 0.4727, 0.4855

, {0.4184}

.

Then, based on the score function of the dual hesitant Pythagorean fuzzy elements (DHPFEs),
we can obtain the score results of p̃i as:

s(p̃1) = 0.4317, s(p̃2) = 0.4822, s(p̃3) = 0.4977
s(p̃4) = 0.6592, s(p̃5) = 0.5005

Then, we rank all the suppliers in supply chain management ηi(i = 1, 2, 3, 4, 5) in accordance with
the scores s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5):
η4 � η5 � η3 � η2 � η1 and thus the most desirable supplier in supply chain management is obtained,
which is η4.

According to Table 1 and attribute weights, the fused values by the DHPFWG operator are:

p̃1 = DHPFWG(p̃11, p̃12, p̃13, p̃14) =
4
⊗

j=1

(
p̃1 j

)w j

=

{{
0.4119, 0.4226, 0.4452, 0.4567, 0.4383, 0.4496, 0.4737, 0.4859,
0.4356, 0.4468, 0.4708, 0.4829, 0.4634, 0.4754, 0.5009, 0.5138

}
,
{

0.6574,
0.6735

}}
;

p̃2 = DHPFWG(p̃21, p̃22, p̃23, p̃24) =
4
⊗

j=1

(
p̃2 j

)w j

= {{0.4086, 0.4861, 0.5171}, {0.5694, 0.5822, 0.6203, 0.6311, 0.6945, 0.7026}};

p̃3 = DHPFWG(p̃31, p̃32, p̃33, p̃34) =
4
⊗

j=1

(
p̃3 j

)w j

=

{{
0.3931, 0.4017, 0.4093, 0.4335, 0.4430, 0.4513, 0.4677, 0.4779, 0.4869,
0.4224, 0.4316, 0.4398, 0.4658, 0.4760, 0.4850, 0.5026, 0.5135, 0.5232

}
,
{

0.6622,
0.7404

}}
;

p̃4 = DHPFWG(p̃41, p̃42, p̃43, p̃44) =
4
⊗

j=1

(
p̃4 j

)w j

= {{0.6278, 0.6347, 0.6796, 0.6852, 0.7529, 0.7570}, {0.3923, 0.3997, 0.4063}};

p̃5 = DHPFWG(p̃51, p̃52, p̃53, p̃54) =
4
⊗

j=1

(
p̃5 j

)w j

=




0.2617, 0.2724, 0.2811, 0.2749, 0.2862, 0.2952, 0.2885, 0.3004, 0.3099,
0.3031, 0.3156, 0.3256, 0.3113, 0.3241, 0.3344, 0.3270, 0.3404, 0.3512,
0.3112, 0.3240, 0.3342, 0.3269, 0.3403, 0.3511, 0.3431, 0.3572, 0.3686,
0.3605, 0.3753, 0.3872, 0.3702, 0.3854, 0.3976, 0.3889, 0.4049, 0.4177

, {0.4811}

.
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Then, based on the score function of the DHPFEs, we can obtain the score results of p̃i as:

s(p̃1) = 0.3851, s(p̃2) = 0.4099, s(p̃3) = 0.3584
s(p̃4) = 0.4939, s(p̃5) = 0.4410

Then, we rank all the suppliers in supply chain management ηi(i = 1, 2, 3, 4, 5) in accordance with
the scores s(p̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant Pythagorean fuzzy values p̃i(i = 1, 2, · · · , 5):
η4 � η5 � η2 � η1 � η3 and thus the most desirable supplier in supply chain management is obtained,
which is η4.

According to Table 4, we can easily conclude that the ordering is slightly different and that these are
some of the best alternatives. However, our defined operators are mainly characteristic of the advantages
that can consider the interrelationship between the arguments being fused into consideration and
consider the human hesitance in practical MADM problems. Obviously, the DHPFWA and DHPFWG
operators defined by Wei and Lu [53] cannot consider the interrelationship between the arguments
being fused. In addition, in a complicated decision-making environment, the decision maker’s risk
attitude is an important factor to think about, and our methods can do this by altering the parameters
ξ and ζ, whereas the DHPFWA and DHPFWG operators presented by Wei and Lu [53] do not have
the ability to dynamically adjust to the parameters according to the decision maker’s risk attitude,
meaning it is difficult to solve risk multiple attribute decision making in real practice.

Table 4. Ordering of the suppliers by the DHPFGGWHM operators.

Methods Ordering

The DHPFWA operator [53] η4 � η5 � η3 � η2 � η1
The DHPFWG operator [53] η4 � η5 � η2 � η1 � η3
The DHPFGWHM operator η4 � η5 � η3 � η2 � η1

The DHPFGGWHM operator η4 � η5 � η2 � η1 � η3

6. Conclusions

Dual hesitant Pythagorean fuzzy numbers have applied the advantages of DHFSs and PFSs. They
can flexibly denote decision-making information as well as effectively characterize the reliability of
information. Thus, it is meaningful to study MADM problems with DHPFNs. In this paper, based
on the generalized Heronian mean operator and generalized geometric Heronian mean operator,
we developed some dual hesitant Pythagorean fuzzy Heronian mean aggregation operators: dual
hesitant Pythagorean fuzzy generalized weighted Heronian mean (DHPFGWHM) operator and
dual hesitant Pythagorean fuzzy generalized geometric weighted Heronian mean (DHPFGGWHM)
operator. The significant merits of these defined operators are investigated. Moreover, we have
adopted DHPFGWHM and DHPFGGWHM operators to build a decision-making model for MADM
problems. In the end, we utilize a concrete instance for suppliers selection in supply chain management
to demonstrate our defined model and to testify its accuracy and scientific ability. However, our
developed methods can only deal with MADMs with dual hesitant Pythagorean fuzzy information,
and it is clear that these operators cannot handle more complicated decision making problems, such as
when the sum square of the membership and non-membership is more than 1. In the future, we shall
continue studying MADM problems with the application and extension of the developed operators to
other domains [67,68] and proposed more suitable methods [69–75].
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