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Abstract: Schuster introduced the notion of radial Blaschke-Minkowski homomorphism and
considered the Busemann-Petty problem for volume forms. Whereafter, Wang, Liu and He presented
the Lp radial Blaschke-Minkowski homomorphisms and extended Schuster’s results. In this paper,
associated with Lp dual affine surface areas, we give an affirmative and a negative form of
the Busemann-Petty problem and establish two Brunn-Minkowski inequalities for the Lp radial
Blaschke-Minkowski homomorphisms.
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1. Introduction

If K is a compact star shaped (about the origin) in n-dimensional Euclidean space Rn, then its
radial function, ρK = ρ(K, ·) : Rn\{0} → [0, ∞), is defined by (see [1])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0}.

If ρ(K, ·) is positive and continuous, K will be called a star body (about the origin). The set of all star
bodies in Rn denotes by Sn

o . For the set of all origin-symmetric star bodies, we write Sn
os. Let Sn−1

denote the unit sphere in Rn. Two star bodies K and L are said to be dilated (of one another) if
ρK(u)/ρL(u) is independent of u ∈ Sn−1.

Intersection bodies were explicitly defined and named by Lutwak (see [2]). For K ∈ Sn
o ,

the intersection body, IK, of K is a star body whose radial function is defined by

ρ(IK, u) = Vn−1(K ∩ u⊥)

for all u ∈ Sn−1. Here u⊥ is the (n− 1)-dimensional hyperplane orthogonal to u and Vn−1 denotes the
(n− 1)-dimensional volume.

During past three decades, the investigations of intersection bodies have received great attention
from many articles (see [1–12]). In particular, intersection bodies led to the following Busemann-Petty
problem (see [2]).

Problem 1 (Busemann-Petty problem). For K, L ∈ Sn
o , is there the implication

IK ⊆ IL⇒ V(K) ≤ V(L)?
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Here V(K) denotes the n-dimensional volume of body K.

Remark 1. Problem 1 was stated by Lutwak (see [2]). If K, L ∈ Sn
os, then Problem 1 is called the symmetric

Busemann-Petty problem. Gardner [13], Zhang [14] showed that the symmetric Busemann-Petty problem has
an affirmative answer for n ≤ 4 and a negative answer for n ≥ 5.

For Problem 1, Lutwak [2] gave its an affirmative answer if K is restricted to the class of intersection
bodies and two negative answers if K is not origin-symmetric star body or L is not intersection body.
For more research on solutions to the Busemann-Petty problem, see e.g., [1,13–20].

In 2006, based on the properties of intersection bodies, Schuster [21] introduced the radial
Blaschke-Minkowski homomorphism, which is the more general intersection operator as follows:

Definition 1. A map Ψ : Sn
o → Sn

o is called a radial Blaschke-Minkowski homomorphism if it satisfies the
following conditions:

(1) Ψ is continuous;
(2) For all M, N ∈ Sn

o , Ψ(M+̂N) = ΨM+̃ΨN;
(3) Ψ(ϕM) = ϕΨM for all M ∈ Sn

o and all ϕ ∈ SO(n).

Here “+̂” and “+̃” denote radial Blaschke addition and radial Minkowski addition, respectively; SO(n) denotes
the group of rotation transformations.

Whereafter, Schuster ([22]) considered the following Busemann-Petty problem for radial
Blaschke-Minkowski homomorphisms.

Problem 2. Let Ψ : Sn
o → Sn

o be a radial Blaschke-Minkowski homomorphism. For K, L ∈ Sn
o , is there

the implication
ΨK ⊆ ΨL⇒ V(K) ≤ V(L)?

Obviously, Problem 2 is a more general Busemann-Petty problem compared with Problem 1.
For Problem 2, Schuster [22] gave an affirmative answer if K belongs to ΨSn

o (the range of Ψ) and two
negative forms.

In 2011, Wang, Liu and He [23] extended Schuster’s radial Blaschke-Minkowski homomorphisms
to Lp analogies, and gave the notion of Lp radial Blaschke-Minkowski homomorphisms as follows:

Definition 2. For p > 0, a map Ψp : Sn
o → Sn

o is called a Lp radial Blaschke-Minkowski homomorphism if it
satisfies the following conditions:

(1) Ψp is continuous;
(2) For all M, N ∈ Sn

o , Ψp(M+̂pN) = Ψp M+̃pΨpN;
(3) Ψp(ϕM) = ϕΨp M for all M ∈ Sn

o and all ϕ ∈ SO(n).

Here “+̂p” and “+̃p” denote Lp radial Blaschke addition and Lp radial Minkowski addition, respectively.

Meanwhile, associated with Lp radial Blaschke-Minkowski homomorphisms, Wang et al. [23]
extended Schuster’s results including the Busemann-Petty Problem 2. In recent years, a lot of important
conclusions for the radial Blaschke-Minkowski homomorphisms and their Lp analogies were obtained
(see e.g., [22–33]).

The Lp dual affine surface areas firstly were introduced by Wang, Yuan and He (see [34]). Here,
we improve Wang, Yuan and He’s definition as follows: For K ∈ Sn

o and p > 0, the Lp dual affine
surface area, Ω̃p(K), of K is defined by

n−
p
n Ω̃p(K)

n+p
n = sup{nṼp(K, Q∗)V(Q)

p
n : Q ∈ Sn

o }. (1)
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Here Ṽp(M, N) denotes the Lp dual mixed volume of M, N ∈ Sn
o , and Q∗ denotes the polar of Q which

is defined by (see [1])
Q∗ = {x : x · y ≤ 1, y ∈ Q}, x ∈ Rn.

If Q belongs to the set of convex bodies (or star bodies) whose centroid at the origin, then Equation (1)
is just Wang, Yuan and He’s (or Wang and Wang’s) definition (see [34] or [35]). For the studies of Lp

dual affine surface areas, also see [36–41].

Remark 2. Recall that Lutwak’s Lp affine surface area was defined as follows (see [42]): For K ∈ Kn
o and p ≥ 1,

the Lp affine surface area, Ωp(K), of K is defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K, Q∗)V(Q)

p
n : Q ∈ Sn

o }. (2)

Here, Kn
o denotes the set of convex bodies (compact, convex subsets with nonempty interiors) containing the

origin in their interiors in Rn and Vp(M, N) is the Lp mixed volume of M and N (see [42]). Compare to
Equation (1) and Equation (2), we see that Equation (1) is really the duality of Equation (2).

In this paper, associated with Lp dual affine surface areas, we research the Lp radial
Blaschke-Minkowski homomorphisms. We firstly consider the following Busemann-Petty problem of
Lp radial Blaschke-Minkowski homomorphisms.

Problem 3. Let p > 0 and Ψp : Sn
o → Sn

o be a Lp radial Blaschke-Minkowski homomorphism. For K, L ∈ Sn
o ,

is there the implication
ΨpK ⊆ ΨpL⇒ Ω̃p(K) ≤ Ω̃p(L)?

Let ΨpSn
o denote the range of Ψp and Ψ∗pSn

o denote the set of polars of all elements in ΨpSn
o ,

then Ψ∗pSn
o ⊆ Sn

o . From this, we write that

n−
p
n Ω̃◦p(K)

n+p
n = sup{nṼp(K, Q∗)V(Q)

p
n : Q ∈ Ψ∗pSn

o }. (3)

For Problem 3, according to Equation (3), we obtain an affirmative form as follows:

Theorem 1. For p > 0, let Ψp : Sn
o → Sn

o be a Lp radial Blaschke-Minkowski homomorphism. If K, L ∈ Sn
o ,

then
ΨpK ⊆ ΨpL⇒ Ω̃◦p(K) ≤ Ω̃◦p(L).

In addition, Ω̃◦p(K) = Ω̃◦p(L) when ΨpK = ΨpL.

Furthermore, when K /∈ Sn
os, by Equation (1) we give the following a negative form of Problem 3.

Theorem 2. For K, L ∈ Sn
o and p > 0, let Ψp : Sn

o → Sn
o be a Lp radial Blaschke-Minkowski homomorphism.

If K /∈ Sn
os, then there exists L ∈ Sn

o such that

ΨpK ⊂ ΨpL.

However,
Ω̃p(K) > Ω̃p(L).

Next, associated with Lq radial Minkowski sum and Lq harmonic Blaschke sum of star bodies,
we establish the following Lp dual affine surface area forms of Brunn-Minkowski inequalities for the
Lp radial Blaschke-Minkowski homomorphisms, respectively.
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Theorem 3. If K, L ∈ Sn
o , 0 < p < n/2 and 0 < q ≤ n− p, then

Ω̃p(Ψp(K+̃qL))
pq(n+p)
n(n−p)2 ≤ Ω̃p(ΨpK)

pq(n+p)
n(n−p)2 + Ω̃p(ΨpL)

pq(n+p)
n(n−p)2 , (4)

with equality if and only if K and L are dilated.

Let q = n− p in Theorem 3 and notice that K+̃n−pL = K+̂pL (see Equation (7)), we obtain a
Brunn-Minkowski inequality for the Lp radial Blaschke sum K+̂pL.

Corollary 1. If K, L ∈ Sn
o , 0 < p < n/2, then

Ω̃p(Ψp(K+̂pL))
p(n+p)
n(n−p) ≤ Ω̃p(ΨpK)

p(n+p)
n(n−p) + Ω̃p(ΨpL)

p(n+p)
n(n−p) ,

with equality if and only if K and L are dilated.

Theorem 4. If K, L ∈ Sn
o , 0 < p < n/2 and 0 < p < −q < n, then

Ω̃p(Ψp(K∓q L))
p(n+p)(n+q)

n(n−p)2

V(K∓q L)
≤

Ω̃p(ΨpK)
p(n+p)(n+q)

n(n−p)2

V(K)
+

Ω̃p(ΨpL)
p(n+p)(n+q)

n(n−p)2

V(L)
, (5)

with equality if and only if K and L are dilated. Here K∓q L denotes the Lq harmonic Blaschke sum of K and L.

The proofs of Theorem 1 and Theorem 2 are completed in Section 3. In Section 4, we will give the
proofs of Theorem 3 and Theorem 4.

2. Background Materials

2.1. General Lp Radial Blaschke Bodies

For K, L ∈ Sn
o , real p 6= 0 and λ, µ ≥ 0 (not both 0), the Lp radial Minkowski combination,

λ · K+̃pµ · L ∈ Sn
o , of K and L is defined by (see [43,44])

ρ(λ · K+̃pµ · L, ·)p = λρ(K, ·)p + µρ(L, ·)p.

Here ”+̃p” denotes the Lp radial Minkowski sum and λ · K = λ1/pK. The case p = 1 yields the radial
Minkowski combination λ · K+̃µ · L.

In 2015, Wang and Wang [35] defined the Lp radial Blaschke combinations of star bodies as
follows: For K, L ∈ Sn

o , n > p > 0 and λ, µ ≥ 0 (not both 0), the Lp radial Blaschke combination,
λ ◦ K+̂pµ ◦ L ∈ Sn

o , of K and L is defined by

ρ(λ ◦ K+̂pµ ◦ L, ·)n−p = λρ(K, ·)n−p + µρ(L, ·)n−p. (6)

Here “+̂p” denotes the Lp radial Blaschke sum and λ ◦ K = λ1/(n−p)K. If p = 1, then λ ◦ K+̂pµ ◦ L is
the radial Blaschke combination λ ◦ K+̂µ ◦ L (see [1]).

From the definitions of above two combinations, we easily see

λ · K+̃n−pµ · L = λ ◦ K+̂pµ ◦ L. (7)

In Equation (6), let

λ = f1(τ) =
(1 + τ)2

2(1 + τ2)
, µ = f2(τ) =

(1− τ)2

2(1 + τ2)
(8)
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with τ ∈ [−1, 1] and L = −K, and write

∇̂τ
pK = f1(τ) ◦ K+̂p f2(τ) ◦ (−K). (9)

We call ∇̂τ
pK the general Lp radial Blaschke body of K. From Equations (8) and (9), we easily see that

∇̂1
pK = K, ∇̂−1

p K = −K and

∇̂0
pK =

1
2
◦ K+̂p

1
2
◦ (−K). (10)

For the general Lp radial Blaschke bodies, by Equation (8) we know that f1(τ) + f2(τ) = 1.
This and Equation (9) give that if K ∈ Sn

os then ∇̂τ
pK ∈ Sn

os. If K /∈ Sn
os, we have the following conclusion.

Theorem 5. For K, L ∈ Sn
o and p > 0. If K /∈ Sn

os, then for τ ∈ [−1, 1],

∇̂τ
pK ∈ Sn

os ⇔ τ = 0. (11)

Proof. If τ = 0, by Equation (10) we immediately get ∇̂τ
pK ∈ Sn

os.
Conversely, since ρM(−u) = ρ−M(u) for each M ∈ Sn

o and any u ∈ Sn−1, thus if ∇̂τ
pK ∈ Sn

os,
then for all u ∈ Sn−1,

ρ
n−p
∇̂τ

pK
(u) = ρ

n−p
−∇̂τ

pK
(u) = ρ

n−p
∇̂τ

pK
(−u).

By Equation (9) we have

ρ
n−p
f1(τ)◦K+̂p f2(τ)◦(−K)(u) = ρ

n−p
f1(τ)◦K+̂p f2(τ)◦(−K)(−u).

This together with Equation (6) yields

f1(τ)ρ
n−p
K (u) + f2(τ)ρ

n−p
−K (u) = f1(τ)ρ

n−p
K (−u) + f2(τ)ρ

n−p
−K (−u),

i.e.,
f1(τ)ρ

n−p
K (u) + f2(τ)ρ

n−p
−K (u) = f1(τ)ρ

n−p
−K (u) + f2(τ)ρ

n−p
K (u),

hence
[ f1(τ)− f2(τ)][ρ

n−p
K (u)− ρ

n−p
−K (u)] = 0.

Since K /∈ Sn
os implies ρ

n−p
K (u)− ρ

n−p
−K (u) 6= 0 for all u ∈ Sn−1, thus we obtain

f1(τ)− f2(τ) = 0.

This and Equation (8) give τ = 0.

2.2. Lp Dual Mixed Volumes

Based on the Lp radial Minkowski combinations of star bodies, a class of Lp dual mixed
volumes were introduced as follows (see [45,46]): For M, N ∈ Sn

o , p 6= 0 and ε > 0, the Lp dual mixed
volume, Ṽp(M, N), of M and N is defined by

n
p

Ṽp(M, N) = lim
ε→0+

V(M+̃pε · N)−V(M)

ε
.

From the above definition, Lp dual mixed volume has the following integral representation
(see [45,46]):

Ṽp(M, N) =
1
n

∫
Sn−1

ρ
n−p
M (u)ρp

N(u)du. (12)
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2.3. Lq Harmonic Blaschke Sums

The harmonic Blaschke sums of star bodies were introduced by Lutwak (see [47]). For M, N ∈ Sn
o ,

the harmonic Blaschke sum, M∓ N ∈ Sn
o , of M and N is defined by

ρ(M∓ N, ·)n+1

V(M∓ N)
=

ρ(M, ·)n+1

V(M)
+

ρ(N, ·)n+1

V(N)
.

Based on above definition, Feng and Wang ([48]) defined the Lq harmonic Blaschke sums as follows:
For M, N ∈ Sn

o , real q > −n, the Lq harmonic Blaschke sum, M∓q N ∈ Sn
o , of M and N is given by

ρ(M∓q N, ·)n+q

V(M∓q N)
=

ρ(M, ·)n+q

V(M)
+

ρ(N, ·)n+q

V(N)
. (13)

3. A Type of Busemann-Petty Problem

Theorems 1 and 2 show a type of Busemann-Petty Problem of the Lp radial Blaschke-Minkowski
homomorphisms for the Lp dual affine surface areas. In this section, we will prove them. In order to
prove Theorem 1, the following lemma is essential.

Lemma 1 ([23]). If M, N ∈ Sn
o and p > 0, then

Ṽp(M, ΨpN) = Ṽp(N, Ψp M). (14)

Proof of Theorem 1. Since ΨpK ⊆ ΨpL, thus using Equation (12) we know that for p > 0 and any
M ∈ Sn

o ,
Ṽp(M, ΨpK) ≤ Ṽp(M, ΨpL).

This together with Equation (14) yields

Ṽp(K, Ψp M) ≤ Ṽp(L, Ψp M). (15)

Hence, by Equation (3) we have

n−
p
n Ω̃◦p(K)

n+p
n = sup{nṼp(K, Q∗)V(Q)

p
n : Q ∈ Ψ∗pSn

o }

= sup{nṼp(K, Ψp M)V(Ψ∗p M)
p
n : Ψ∗p M ∈ Ψ∗pSn

o }

≤ sup{nṼp(L, Ψp M)V(Ψ∗p M)
p
n : Ψ∗p M ∈ Ψ∗pSn

o }

= n−
p
n Ω̃◦p(L)

n+p
n ,

this gives
Ω̃◦p(K) ≤ Ω̃◦p(L).

Obviously, we see that Ω̃◦p(K) = Ω̃◦p(L) when ΨpK = ΨpL.

The proof of Theorem 2 needs the following lemmas.

Lemma 2. If K, L ∈ Sn
o , λ, µ ≥ 0 (not both zero) and 0 < p < n, then

Ω̃p(λ ◦ K+̂pµ ◦ L)
n+p

n ≤ λΩ̃p(K)
n+p

n + µΩ̃p(L)
n+p

n . (16)

with equality in Equation (16) for λ, µ > 0 if and only if K and L are dilated. For λ = 0 or µ = 0, Equation (16)
becomes an equality.
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Proof. From Equations (2) and (6), we have

n−
p
n Ω̃p(λ ◦ K+̂pµ ◦ L)

n+p
n

= sup
{

nṼp(λ ◦ K+̂pµ ◦ L, Q∗)V(Q)
p
n : Q ∈ Sn

o

}
= sup

{[∫
Sn−1

ρ
n−p
λ◦K+̂pµ◦L(u)ρ

p
Q∗(u)du

]
V(Q)

p
n : Q ∈ Sn

o

}
= sup

{[∫
Sn−1

[λρ
n−p
K (u) + µρ

n−p
L (u)]ρ(Q∗, u)pdu

]
V(Q)

p
n : Q ∈ Sn

o

}
= sup

{
λ

[ ∫
Sn−1

ρ
n−p
K (u)ρp

Q∗(u)du
]

V(Q)
p
n

+µ

[ ∫
Sn−1

ρ
n−p
L (u)ρp

Q∗(u)du
]

V(Q)
p
n : Q ∈ Sn

o

}
= sup

{
nλṼp(K, Q∗)V(Q)

p
n + nµṼp(L, Q∗)V(Q)

p
n : Q ∈ Sn

o

}
≤ sup

{
nλṼp(K, Q∗)V(Q)

p
n : Q ∈ Sn

o

}
+ sup

{
nµṼp(L, Q∗)V(Q)

p
n : Q ∈ Sn

o

}
= λn−

p
n Ω̃p(K)

n+p
n + µn−

p
n Ω̃p(L)

n+p
n .

This gives inequality Equation (16).
We easily know that equality holds in Equation (16) for λ, µ > 0 if and only if K and L are dilated.

For λ = 0 or µ = 0, Equation (16) becomes an equality.

Lemma 3. If K ∈ Sn
o , 0 < p < n and τ ∈ [−1, 1], then

Ω̃p(∇̂τ
pK) ≤ Ω̃p(K). (17)

Equality holds in Equation (17) for τ ∈ (−1, 1) if and only if K is origin-symmetric. For τ = ±1, Equation (17)
becomes an equality.

Proof. Taking λ = f1(τ), µ = f2(τ) and L = −K in Equation (16), these and Equation (9) yield

Ω̃p(∇
τ
pK) ≤ f1(τ)Ω̃p(K) + f2(τ)Ω̃p(−K). (18)

However, by Equations (2) and (12) we have

n−
p
n Ω̃p(−K)

n+p
n = sup{nṼp(−K, Q∗)V(Q)

p
n : Q ∈ Sn

o }

= sup
{[ ∫

Sn−1
ρ

n−p
−K (u)ρp

Q∗(u)du
]

V(Q)
p
n : Q ∈ Sn

o

}

= sup
{[ ∫

Sn−1
ρ

n−p
K (−u)ρp

−Q∗(−u)du
]

V(Q)
p
n : Q ∈ Sn

o

}
= sup{nṼp(K,−Q∗)V(Q)

p
n : Q ∈ Sn

o }

= sup{nṼp(K, (−Q)∗)V(−Q)
p
n : −Q ∈ Sn

o }

= n−
p
n Ω̃p(K)

n+p
n ,
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i.e.,
Ω̃p(−K) = Ω̃p(K).

This together with Equation (18), and notice that f1(τ) + f2(τ) = 1, we obtain Equation (17).
According to the equality conditions of Equation (16), we see that equality holds in Equation (17)

for τ ∈ (−1, 1) if and only if K and−K are dilated, i.e., K is origin-symmetric. For τ = ±1, Equation (17)
becomes an equality.

Lemma 4 ([23]). For p > 0, a map Ψp : Sn
o → Sn

o is a Lp radial Blaschke-Minkowski homomorphism if and
only if there is a non-negative measure µ ∈ M(Sn−1, ê) such that for K ∈ Sn

o , ρ(ΨpK, ·)p is the convolution of
ρ(K, ·)n−p and µ, namely

ρ(ΨpK, ·)p = ρ(K, ·)n−p ∗ µ. (19)

Here ê denotes the pole point of Sn−1 andM(Sn−1, ê) denotes the signed finite Borel measure space on Sn−1

(see [21]).

Obviously, Equation (19) gives that for c > 0,

Ψp(cK) = c
n−p

p ΨpK. (20)

Lemma 5. For 0 < p < n, let Ψp be an even Lp radial Blaschke-Minkowski homomorphism. If K ∈ Sn
o and

τ ∈ [−1, 1], then
Ψp(∇̂τ

pK) = ΨpK. (21)

Proof. Since Ψp is an even Lp radial Blaschke-Minkowski homomorphism, thus for any K ∈ Sn
o ,

Ψp(−K) = ΨpK. From this, according to Equation (19), Equation (6) and Equation (9), we have for
0 < p < n and µ ∈ M(Sn−1, ê),

ρ(Ψp(∇̂τ
pK), ·) = ρ(∇̂τ

pK, ·)n−p ∗ µ

= [ f1(τ)ρ(K, ·)n−p + f2(τ)ρ(−K, ·)n−p] ∗ µ

= f1(τ)ρ(K, ·)n−p ∗ µ + f2(τ)ρ(−K, ·)n−p ∗ µ

= f1(τ)ρ(ΨpK, ·) + f2(τ)ρ(Ψp(−K), ·)

= f1(τ)ρ(ΨpK, ·) + f2(τ)ρ(ΨpK, ·) = ρ(ΨpK, ·).

This gives Equation (21).

Proof of Theorem 2. Since K /∈ Sn
os, thus for 0 < p < n, by Equation (17) we know that for τ ∈ (−1, 1),

Ω̃p(∇̂τ
pK) < Ω̃p(K).

Choose ε > 0 such that
Ω̃p((1 + ε)∇̂τ

pK) < Ω̃p(K).

From this, let L = (1 + ε)∇̂τ
pK, then L ∈ Sn

o (Theorem 5 gives that for τ = 0, L ∈ Sn
os; for τ ∈ (−1, 1)

and τ 6= 0, L ∈ Sn
o \Sn

os) and satisfies Ω̃p(L) < Ω̃p(K).
However, by Equations (20) and (21) we obtain for 0 < p < n,

ΨpL = Ψp((1 + ε)∇̂τ
pK) = (1 + ε)

n−p
p Ψp(∇̂τ

pK) = (1 + ε)
n−p

p ΨpK ⊃ ΨpK.
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4. Brunn-Minkowski Inequalities for the Lp Radial Blaschke-Minkowski Homomorphisms

Associated with Lq radial Minkowski sum and Lq harmonic Blaschke sum of star bodies,
Theorems 3 and 4 respectively give the Lp dual affine surface area forms of Brunn-Minkowski
inequalities for the Lp radial Blaschke-Minkowski homomorphisms. In this section, we will complete
their proofs. For the proof of Theorem 3, the following lemmas are essential.

Lemma 6. If K, L ∈ Sn
o , p > 0 and 0 < q ≤ n− p, then for any u ∈ Sn−1,

ρ
pq

n−p

Ψp(K+̃q L)(u) ≤ ρ
pq

n−p
ΨpK(u) + ρ

pq
n−p
Ψp L(u), (22)

with equality for 0 < q < n− p if and only if K and L are dilated. For q = n− p, Equation (22) becomes an
equality.

Proof. Because of 0 < q < n− p implies n−p
q > 1, thus by Equation (19) and the Minkowski integral

inequality we have for µ ∈ M(Sn−1, ê) and any u ∈ Sn−1,

ρ
pq

n−p

Ψp(K+̃q L)(u) =
(

ρ
p
Ψp(K+̃q L)(u)

) q
n−p

=

(
ρ

n−p
K+̃q L(u) ∗ µ

) q
n−p

=

[(
ρ

q
K+̃q L(u)

) n−p
q

∗ µ

] q
n−p

=

[(
ρ

q
K(u) + ρ

q
L(u)

) n−p
q

∗ µ

] q
n−p

≤
(

ρ
n−p
K (u) ∗ µ

) q
n−p

+

(
ρ

n−p
L (u) ∗ µ

) q
n−p

= ρ
pq

n−p
ΨpK(u) + ρ

pq
n−p
Ψp L(u).

This yields inequality Equation (22).
From the equality condition of Minkowski integral inequality, we know that equality holds in

Equation (22) for 0 < q < n− p if and only if K and L are dilated. Clearly, if q = n− p, Equation (22)
becomes an equality.

Lemma 7. If K, L ∈ Sn
o , 0 < p < n/2 and 0 < q ≤ n− p, then for any M ∈ Sn

o ,

Ṽp(Ψp(K+̃qL), M)
pq

(n−p)2 ≤ Ṽp(ΨpK, M)
pq

(n−p)2 + Ṽp(ΨpL, M)
pq

(n−p)2 , (23)

with equality if and only if K and L are dilated.

Proof. Since 0 < p < n/2 and 0 < q ≤ n− p, thus (n−p)2

pq > 1. Using Equation (12), Equation (22) and
the Minkowski integral inequality, we have for any M ∈ Sn

o ,

Ṽp(Ψp(K+̃qL), M)
pq

(n−p)2 =

[
1
n

∫
Sn−1

ρ
n−p
Ψp(K+̃q L)(u)ρ

p
M(u)du

] pq
(n−p)2

=

[
1
n

∫
Sn−1

(
ρ

pq
n−p

Ψp(K+̃q L)(u)
) (n−p)2

pq

ρ
p
M(u)du

] pq
(n−p)2
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≤
[

1
n

∫
Sn−1

(
ρ

pq
n−p
ΨpK(u) + ρ

pq
n−p
Ψp L(u)

) (n−p)2
pq

ρ
p
M(u)du

] pq
(n−p)2

≤
[

1
n

∫
Sn−1

ρ
n−p
ΨpK(u)ρ

p
M(u)du

] pq
(n−p)2

+

[
1
n

∫
Sn−1

ρ
n−p
Ψp L (u)ρ

p
M(u)du

] pq
(n−p)2

= Ṽp(ΨpK, M)
pq

(n−p)2 + Ṽp(ΨpL, M)
pq

(n−p)2 .

This yields inequality Equation (23).
For 0 < q < n− p, according to the equality conditions of Equation (22) and Minkowski integral

inequality, we see that equality holds in Equation (23) if and only if K and L are dilated, and ΨpK and
ΨpL are dilated. However, by Equation (19) we know that K and L are dilated is equivalent to ΨpK
and ΨpL are dilated. Therefore, equality holds in Equation (23) if and only if K and L are dilated.

For q = n− p, from equality condition of Minkowski integral inequality, we are aware of equality
holds in Equation (23) if and only if ΨpK and ΨpL are dilated, this is equivalent to K and L are
dilated.

Proof of Theorem 3. Because of pq
(n−p)2 > 0, thus by Equations (1) and (23), we obtain that

[
n−

p
n Ω̃p(Ψp(K+̃qL))

n+p
n

] pq
(n−p)2

=

[
sup{nṼp(Ψp(K+̃qL), Q∗)V(Q)

p
n : Q ∈ Sn

o }
] pq

(n−p)2

= sup
{

n
pq

(n−p)2 Ṽp(Ψp(K+̃qL), Q∗)
pq

(n−p)2 V(Q)
p2q

n(n−p)2 : Q ∈ Sn
o

}

≤ sup
{

n
pq

(n−p)2

[
Ṽp(ΨpK, Q∗)

pq
(n−p)2 + Ṽp(ΨpL, Q∗)

pq
(n−p)2

]
V(Q)

p2q
n(n−p)2 : Q ∈ Sn

o

}

≤ sup
{

n
pq

(n−p)2 Ṽp(ΨpK, Q∗)
pq

(n−p)2 V(Q)
p2q

n(n−p)2 : Q ∈ Sn
o

}

+ sup
{

n
pq

(n−p)2 Ṽp(ΨpL, Q∗)
pq

(n−p)2 V(Q)
p2q

n(n−p)2 : Q ∈ Sn
o

}

=

[
sup{nṼp(ΨpK, Q∗)V(Q)

p
n : Q ∈ Sn

o }
] pq

(n−p)2

+

[
sup{nṼp(ΨpL, Q∗)V(Q)

p
n : Q ∈ Sn

o }
] pq

(n−p)2

=

[
n−

p
n Ω̃p(ΨpK)

n+p
n

] pq
(n−p)2

+

[
n−

p
n Ω̃p(ΨpL)

n+p
n

] pq
(n−p)2

.

From this, we get inequality Equation (4), and equality holds in Equation (4) if and only if K and L are
dilated.

The proof of Theorem 1 requires the following lemmas.
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Lemma 8. If K, L ∈ Sn
o , 0 < p < −q < n, then for any u ∈ Sn−1,

ρ
p(n+q)

n−p
Ψp(K∓q L)(u)

V(K∓q L)
≤

ρ
p(n+q)

n−p
ΨpK (u)

V(K)
+

ρ
p(n+q)

n−p
Ψp L (u)

V(L)
, (24)

with equality if and only if K and L are dilated.

Proof. Since 0 < p < −q < n, thus n−p
n+q > 1. Hence, by Equation (13), Equation (19) and the

Minkowski integral inequality we have for µ ∈ M(Sn−1, ê) and any u ∈ Sn−1,

ρ
p(n+q)

n−p
Ψp(K∓q L)(u)

V(K∓q L)
=

[
ρ

p
Ψp(K∓q L)(u)

] n+q
n−p

V(K∓q L)
=

[
ρ

n−p
K∓q L(u) ∗ µ

] n+q
n−p

V(K∓q L)

=

[( ρ
n+q
K∓q L(u)

V(K∓q L)

) n−p
n+q

∗ µ

] n+q
n−p

=

[(
ρ

n+q
K (u)
V(K)

+
ρ

n+q
L (u)
V(L)

) n−p
n+q

∗ µ

] n+q
n−p

≤
[

ρ
n−p
K (u) ∗ µ

V(K)
n−p
n+q

] n+q
n−p

+

[
ρ

n−p
L (u) ∗ µ

V(L)
n−p
n+q

] n+q
n−p

=
ρ

p(n+q)
n−p

ΨpK (u)

V(K)
+

ρ
p(n+q)

n−p
Ψp L (u)

V(L)
.

This deduces Equation (24).
According to the equality condition of Minkowski integral inequality, we know that equality

holds in Equation (24) if and only if K and L are dilated.

Lemma 9. If K, L ∈ Sn
o , 0 < p < n/2 and 0 < p < −q < n, then for any M ∈ Sn

o ,

Ṽp(Ψp(K∓q L), M)
p(n+q)
(n−p)2

V(K∓q L)
≤

Ṽp(ΨpK, M)
p(n+q)
(n−p)2

V(K)
+

Ṽp(ΨpL, M)
p(n+q)
(n−p)2

V(L)
, (25)

with equality if and only if K and L are dilated.

Proof. Since 0 < p < n/2 and 0 < p < −q < n, thus (n−p)2

p(n+q) > 1. Using Equation (12), Equation (24)
and the Minkowski integral inequality, we have for any M ∈ Sn

o ,

Ṽp(Ψp(K∓q L), M)
p(n+q)
(n−p)2

V(K∓q L)

=

[
1
n
∫

Sn−1 ρ
n−p
Ψp(K∓q L)(u)ρ

p
M(u)du

] p(n+q)
(n−p)2

V(K∓q L)

=

[
1
n

∫
Sn−1

(ρ
p(n+q)

n−p
Ψp(K∓q L)(u)

V(K∓q L)

) (n−p)2

p(n+q)
ρ

p
M(u)du

] p(n+q)
(n−p)2
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≤
[

1
n

∫
Sn−1

(ρ
p(n+q)

n−p
ΨpK (u)

V(K)
+

ρ
p(n+q)

n−p
Ψp L (u)

V(L)

) (n−p)2

p(n+q)
ρ

p
M(u)du

] p(n+q)
(n−p)2

≤
[

1
n

∫
Sn−1

ρ
n−p
ΨpK(u)ρ

p
M(u)

V(K)
(n−p)2
p(n+q)

du
] p(n+q)

(n−p)2

+

[
1
n

∫
Sn−1

ρ
n−p
Ψp L (u)ρ

p
M(u)

V(L)
(n−p)2
p(n+q)

du
] p(n+q)

(n−p)2

=
Ṽp(ΨpK, M)

p(n+q)
(n−p)2

V(K)
+

Ṽp(ΨpL, M)
p(n+q)
(n−p)2

V(L)
.

From this, inequality Equation (25) is obtained.
By the equality conditions of Equation (24) and the Minkowski integral inequality, we see that

equality holds in Equation (25) if and only if K and L are dilated.

Proof of Theorem 1. From 0 < p < n/2 and 0 < p < −q < n, we know that p(n+q)
(n−p)2 > 0. Thus by

Equations (1) and (25), we obtain that

[
n−

p
n Ω̃p(Ψp(K∓q L))

n+p
n

] p(n+q)
(n−p)2

V(K∓q L)

=

[
sup{nṼp(Ψp(K∓q L), Q∗)V(Q)

p
n : Q ∈ Sn

o }
] p(n+q)

(n−p)2

V(K∓q L)

= sup
{
[nṼp(Ψp(K∓q L), Q∗)]

p(n+q)
(n−p)2 V(Q)

p2(n+q)
n(n−p)2

V(K∓q L)
: Q ∈ Sn

o

}

≤ sup
{[

[nṼp(ΨpK, Q∗)]
p(n+q)
(n−p)2

V(K)
+

[nṼp(ΨpL, Q∗)]
p(n+q)
(n−p)2

V(L)

]
V(Q)

p2(n+q)
n(n−p)2 : Q ∈ Sn

o

}

≤ sup
{
[nṼp(ΨpK, Q∗)]

p(n+q)
(n−p)2 V(Q)

p2(n+q)
n(n−p)2

V(K)
: Q ∈ Sn

o

}

+ sup
{
[nṼp(ΨpL, Q∗)]

p(n+q)
(n−p)2 V(Q)

p2(n+q)
n(n−p)2

V(L)
: Q ∈ Sn

o

}

=

[
sup{Ṽp(ΨpK, Q∗)V(Q)

p
n : Q ∈ Sn

o }
] p(n+q)

(n−p)2

V(K)

+

[
sup{Ṽp(ΨpL, Q∗)V(Q)

p
n : Q ∈ Sn

o }
] p(n+q)

(n−p)2

V(L)

=

[
n−

p
n Ω̃p(ΨpK)

n+p
n

] p(n+q)
(n−p)2

V(K)
+

[
n−

p
n Ω̃p(ΨpL)

n+p
n

] p(n+q)
(n−p)2

V(L)
.

This gives inequality Equation (5). In addition, equality holds in Equation (5) if and only if K and L are
dilated.
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