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Abstract: This manuscript deals with the existence theory, uniqueness, and various kinds of
Ulam–Hyers stability of solutions for a class and coupled system of fractional order differential
equations involving Caputo derivatives. Applying Schaefer and Banach’s fixed point approaches,
existence and uniqueness results are obtained for the proposed problems. Stability results are
investigated by using the classical technique of nonlinear functional analysis. Examples are given
with each problem to illustrate the main results.

Keywords: Caputo fractional derivative; implicit differential equation; Green’s function; implicit
coupled system; existence theory; Ulam stability
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1. Introduction

Fractional order differential equations (FODE) are generalizations of ordinary differential
equations to an arbitrary order. The aforesaid equations have obtained considerable attention from
researchers because of their ability to model different complex phenomena. The foregoing equations
capture nonlocal relations in space and time with power-law memory kernels. Due to the widespread
applications of FODE in science and engineering, research in this field has grown significantly all
around the world. The aforesaid equations arise in many disciplines of science and engineering as the
mathematical modeling of systems and processes in the fields of biophysics, blood flow phenomena,
signal and image processing, polymer rheology, control theory, the electrodynamics of a complex
medium, physics, aerodynamics, economics, chemistry, etc. For details, see [1–7] and the references
cited therein. However, the theory of boundary value problems for nonlinear FODE remains within
the initial stages, and plenty of aspects of this theory have to need to be explored.

The research area, that is most ideal within the field of FODE and has received extraordinary
interest from researchers, is devoted to the existence theory of solutions. Several researchers have
built up some attention-grabbing results of the existence of solutions to boundary value problems
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for FODE by using standard fixed point theorems. For a detailed study, see [8–10] and the references
cited therein. However, the study of coupled systems of differential equations of different orders is
also very significant because this kind of system appears in different problems of an applied nature;
see [11–19] and the references cited therein. Ahmad and Nieto [20] studied the existence of the solution
to the following nonlinear FODE involving the Caputo derivative of fractional order, by using the
Leray–Schauder degree theory:{

cDpu(t)− α(t, u(t)) = 0; t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

,

where 1 < p ≤ 2, J = [0,T] with T > 0, and α : J ×R → R is continuous.
The implicit FODE represent a very important class of differential equations. This manuscript is

motivated by the importance of implicit ordinary differential equations of the form:

α(t, u(t), u′(t), . . . , u(n−1)(t)) = 0

under different initial and boundary conditions. Implicit equations have been considered by many
researchers; see [21–25] and the references cited therein. Many researchers have extended the above
results to the foregoing equations by the use of different fixed point approaches. Recently, some
existence results for an implicit FODE on compact intervals have been: Benchohra and Lazreg [26],
who investigated the existence results for the following nonlinear implicit FODE involving the Caputo
derivative of fractional order:{

cDpu(t)− α(t, u(t),c Dpu(t)) = 0; t ∈J ,

u(t)
∣∣
t=0 = u0, u(t)

∣∣
t=T

= u1,

where 1 < p ≤ 2, J = [0,T] with T > 0, u0, u1 ∈ R, and α : J ×R ×R → R is continuous.
For more examples, the reader may see [27,28] and the references cited therein.

Another area of research, which has received considerable attention from researchers, is the
Ulam–Hyers stability analysis of the differential equations and their different kinds. The aforesaid
stability was first introduced by Ulam [29] in 1940. The problem posed by Ulam was the following:
“Under what conditions does there exist an additive mapping near an approximately additive
mapping?”. A significant breakthrough came in 1941 when Hyers [30] gave an answer to Ulam’s
problem in the case of Banach spaces: Let E1, E2 be real Banach spaces and ε > 0. Then, for each
mapping α : E1 → E2 satisfying:

‖α(u+ y)− α(u)− α(y)‖ ≤ ε

for all u, y ∈ E1, there is a unique additive mapping χ : E1 → E2 with:

‖α(u)− χ(u)‖ ≤ ε, for all u ∈ E1.

Afterward, this type of stability was known as the Ulam–Hyers stability. In addition to the
aforesaid investigations, many researchers have investigated the Ulam stability for differential
equations of different orders; see [31–34] and the references cited therein. The mentioned stability
analysis is extremely helpful in numerous applications, for example numerical analysis and
optimization and so forth, where it is very difficult to find the exact solution of a nonlinear problem and
to provide a bridge between numerical and analytical solutions. The aforementioned stabilities [35]
for FODE are rather significant in practical problems, economics, biology, and numerical analysis.
For examples, see [36–40] and the references cited therein. Furthermore, the fractional order system
may have an additional attractive feature over the integer order system. Let us suppose the following
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example to show which one is more stable in the aforementioned (fractional order and integer
order) systems.

Example. [41]

Example 1. We have the following two systems with initial condition u(0) for υ ∈ (0, 1),

d
dt

u(t) = υtυ−1, (1)

c
0D

p
tu(t) = υtυ−1, 0 < p < 1. (2)

Then, the analytical solutions of (1) and (2) are tυ + u(0) and υΓ(υ)tυ+p−1

Γ(υ+p) + u(0), respectively.
Clearly, the integer order system (1) is unstable for 0 < υ < 1. However, the fractional dynamic
system (2) is stable for each 0 < υ ≤ 1− p. Therefore, the fractional order system may have better
features than the integer order system.

Benchohra and Lazreg [42] investigated the existence and different kinds of Ulam–Hyers stability
for the following nonlinear implicit FODE involving the Caputo derivative of fractional order:{

cDpu(t)− α(t, u(t),c Dpu(t)) = 0; t ∈J ,

u(t)
∣∣
t=0 = u0,

where 1 < p ≤ 2, J = [0,T] with T > 0, u0 ∈ R, and α : J ×R ×R → R is continuous.
Ali et al. [43] investigated existence theory and different kinds of Ulam–Hyers stability for the

following nonlinear implicit FODE involving the Riemann–Liouville fractional order derivative:
Dpu(t)− α(t, u(t), Dpu(t)) = 0; t ∈J ,

Dp−2u(t)
∣∣
t=0+ = aDp−2u(t)

∣∣
t=T− ,

Dp−1u(t)
∣∣
t=0+ = bDp−1u(t)

∣∣
t=T− ,

where 1 < p ≤ 2 and J = [0,T] with T > 0, a, b 6= 1, and α : J ×R ×R → R is continuous.
Currently, mathematicians have devoted their work to the investigation of various kinds of

Ulam–Hyers stability for coupled systems of FODE. For details, see [44–48]. Currently, to the best
of our knowledge, very few papers can be found in the literature in which the authors studied the
existence theory and different kinds of Ulam–Hyers stability for the aforesaid system of nonlinear
implicit FODE. Ali et al. [49] investigated existence theory and different kinds of Ulam–Hyers stability
for the following implicit coupled system involving the Caputo derivative of fractional order:

cDpu(t)− α(t, y(t),c Dpu(t)) = 0; t ∈J ,
cDqy(t)− χ(t, u(t),c Dqy(t)) = 0; t ∈J ,

u′(t)
∣∣
t=0 = u′′(t)

∣∣
t=0 = 0, u(t)

∣∣
t=1 = τu(ς),

y′(t)
∣∣
t=0 = y′′(t)

∣∣
t=0 = 0, y(t)

∣∣
t=1 = τy(ς),

where J = [0, 1], 2 < p, q ≤ 3, 0 < τ, ς < 1, and α, χ : J ×R ×R → R are continuous functions.
Motivated by the aforesaid discussion, in this manuscript, our target is to study the existence,

uniqueness, and different kinds of Ulam–Hyers stability for the following nonlinear implicit FODE
involving the Caputo derivative of fractional order:{

cDpu(t)− α(t, u(t),c Dpu(t)) = 0; t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

(3)
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where 3 < p ≤ 4, J = [0,T] with T > 0, and α : J ×R ×R → R is a continuous function.
Furthermore, we investigate the same aforementioned analysis for the proposed implicit coupled
system involving the Caputo fractional order derivative. The proposed system is given by:

cDpu(t)− α(t, y(t),c Dpu(t)) = 0; t ∈J ,
cDqy(t)− χ(t, u(t),c Dqy(t)) = 0; t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

y(t)
∣∣
t=0 = −y(t)

∣∣
t=T

, y′(t)
∣∣
t=0 = −y′(t)

∣∣
t=T

, y′′(t)
∣∣
t=0 = y′′′(t)

∣∣
t=0 = 0,

(4)

where 3 < p, q ≤ 4, J = [0,T] with T > 0. The functions α, χ : J ×R ×R → R are continuous.
The structure of the manuscript is as follows: In Section 2, we present some basic materials needed

to prove our main results. In Sections 3 and 4, we set up some adequate conditions for the uniqueness,
existence, and various kinds of the Ulam–Hyers stability of solutions to the proposed problems (3)
and (4), respectively, by applying some standard fixed point principles mentioned in the Abstract.
An example to illustrate our results is presented with each proposed problem in the concerned section.
In Section 5, we present the conclusion of the manuscript.

2. Preliminaries

Here, we present some basic definitions and auxiliary results, which will be used throughout the
manuscript. The following definitions are adopted from [2].

Definition 1. The Riemann–Liouville fractional integral of order p > 0 for a continuous function u : R+ → R

is defined as:

Ipu(t) =
1

Γ(p)

∫ t

0
(t− s)p−1u(s)ds,

provided the integral exists.

Definition 2. Let u : R+ → R be an at least n-times continuously differentiable function, then the fractional
derivative of order p ∈ R+ in the sense of Caputo is defined as:

cDpu(t) =
1

Γ(n− p)

∫ t

0

u(n)(s)
(t− s)p−n+1 ds,

where n = [p] + 1 and [p] denotes the integer part of real number p.

Lemma 1. The general solution of the following FODE of order p > 0:

cDpu(t) = β(t)

is given by:
Ip
[
Dpu(t)

]
= Ipβ(t) + k0 + k1t+ k2t2 + · · ·+ kn−1t

n−1, ki ∈ R,

where n = [p] + 1 and i = 0, 1, . . . , n− 1.

The following theorems are adopted from [43].

Theorem 1. (Schaefer’s fixed point theorem). Let E be a Banach space. Suppose that the operator F : E →
E is a continuous compact mapping (or completely continuous). Moreover, suppose:

B = {u ∈ E |u = κF (u), 0 < κ < 1}

is a bounded set. Then, F has at least one fixed point in E .
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Theorem 2. (Banach’s fixed point theorem). Let B be a non–empty closed subset of a Banach space E . Then,
any contraction mapping F of B into itself has a unique fixed point.

3. Existence, Uniqueness, and Stability Results for (3)

3.1. Existence and Uniqueness Results

This section deals with the existence and uniqueness of solutions for the problems (3).

Lemma 2. Suppose β ∈ C (J , R), then the equivalent Fredholm integral equation of:{
cDpu(t) = β(t); p ∈ (3, 4]; t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

is given by:

u(t) =
∫ T

0
Gp(t, s)β(s)ds,

where Green’s function Gp(t, s) is given as:

Gp(t, s) =


− (T−s)p−1

2Γ(p) + (T−2t)(T−s)p−2

4Γ(p−1) , 0 ≤ t ≤ s ≤ T,

(t−s)p−1−(T−s)p−1/2
Γ(p) + (T−2t)(T−s)p−2

4Γ(p−1) , 0 ≤ s ≤ t ≤ T.

(5)

Proof. Using Lemma 1, we have:

u(t) = Ipβ(t)− k0 − k1t− k2t2 − k3t3

=
1

Γ(p)

∫ t

0
(t− s)p−1β(s)ds− k0 − k1t− k2t2 − k3t3. (6)

Applying the boundary conditions u(0) = −u(T), u′(0) = −u′(T), u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

in (6), we get the following values:

k0 =
1

2Γ(p)

∫ T

0
(T− s)p−1β(s)ds− T

4Γ(p− 1)

∫ T

0
(T− s)p−2β(s)ds,

k1 =
1

2Γ(p− 1)

∫ T

0
(T− s)p−2β(s)ds,

k2 =0,

k3 =0.

Therefore, (6) becomes:

u(t) =
∫ t

0

(t− s)p−1

Γ(p)
β(s)ds− 1

2

∫ T

0

(T− s)p−1

Γ(p)
β(s)ds+

1
4
(T− 2t)

∫ T

0

(T− s)p−2

Γ(p− 1)
β(s)ds

=
∫ T

0
Gp(t, s)β(s)ds,

where Green’s function Gp(t, s) is given in (5).

Therefore, in view of Lemma 2, the solution of the proposed problem (3) is equivalent to the
following integral equation:

u(t) =
∫ T

0
Gp(t, s)α(s, y(s),c Dpu(s))ds, t ∈J . (7)
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We use the following notion for convenience:

v(t) = α(t, u(t),c Dpu(t)) = α(t, u(t), v(t)).

Hence, (7) becomes:

u(t) =
∫ T

0
Gp(t, s)v(s)ds, t ∈J . (8)

Lemma 3. Green’s function Gp(t, s) has the following properties:

(A1) Gp(t, s) is continuous function on J ×J ;

(A2) maxt∈J

∫ T
0

∣∣Gp(t, s)
∣∣ds ≤ tp

Γ(p+1) +
Tp

2Γ(p+1) +

∣∣T−2t
∣∣Tp−1

4Γ(p) = 3Tp

2Γ(p+1) +
Tp

4Γ(p) , t, s ∈J .

Proof. (A1) : Green’s function will always be continuous on J ×J .
(A2) : Due to Green’s function, we have:

∫ T

0

∣∣Gp(t, s)
∣∣ds =

∣∣∣∣ 1
Γ(p)

∫ t

0
(t− s)p−1ds− 1

2Γ(p)

∫ T

0
(T− s)p−1ds+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2ds

∣∣∣∣,
so, we get:

max
t∈J

∫ T

0

∣∣Gp(t, s)
∣∣ds ≤ tp

Γ(p+ 1)
+

Tp

2Γ(p+ 1)
+

∣∣T− 2t
∣∣Tp−1

4Γ(p)

=
3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)
.

Suppose E = C (J , R) is a Banach space endowed with given norm:

‖u‖E = max
t∈J

{∣∣u(t)∣∣ : t ∈J
}

.

If u is the solution of the problem (3), then:

u(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds, t ∈J .

Now, to transform the problem (3) into a fixed point problem, define an operator F : E → E as:

F (u)(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds, t ∈J , (9)

where v ∈ E .
In the sequel, we need the following hypothesis:

Hypothesis 1 (H1). For every t ∈ J and u, u, v, v ∈ R, there are constants 0 < Lα < 1 and Kα > 0,
such that: ∣∣α(t, u, v)− α(t, u, v)

∣∣ ≤ Kα

∣∣u− u
∣∣+Lα

∣∣v− v
∣∣.
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The first result is based on Theorem 1 and concerned with the existence of solutions for the
problem (3).

Theorem 3. Let the hypothesis H1 hold, and if Q < 1, then the problem (3) has at least one solution in E .

Proof. Consider the operator F defined in (9), and suppose a(t) = α(t, 0, 0) with a∗ =

maxt∈J α(t, 0, 0) where a∗ < 8. We have to show that the problem (3) has at least one solution.
Suppose the operator F is continuous, and consider a sequence {un} such that un → u in E and

t ∈J , then:

∣∣F (un)(t)−F (u)(t)
∣∣ ≤ 1

Γ(p)

∫ t

0
(t− s)p−1∣∣vn(s)− v(s)

∣∣ds− 1
2Γ(p)

∫ T

0
(T− s)p−1∣∣vn(s)− v(s)

∣∣ds
+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2∣∣vn(s)− v(s)

∣∣ds, (10)

where vn, v ∈ E and :
vn = α(t, un(t), vn(t)),

v = α(t, u(t), v(t)).

By utilizing H1, we have:∣∣vn(t)− v(t)
∣∣ = ∣∣α(t, un(t), vn(t)− α(t, u(t), v(t))

∣∣
≤ Kα

∣∣un(t)− u(t)
∣∣+Lα

∣∣vn(t)− v(t)
∣∣,

and we obtain: ∣∣vn(t)− v(t)
∣∣ ≤ Kα

1−Lα

∣∣un(t)− u(t)
∣∣.

Since we supposed that un → u, then vn → v as n→ 8 for each t ∈J , by the Lebesgue dominated
convergence theorem, (10) implies that:∣∣F (un)(t)−F (u)(t)

∣∣→ 0 as n→ 8,

hence:
‖F (un)−F (u)‖E → 0 as n→ 8.

Therefore, F is continuous.
Now, we show that F is bounded in E . Therefore, for any ξ∗ > 0, there isRE > 0, such that:

E = {u ∈ E : ‖u‖E ≤ ξ∗},

then, we have:
‖F (u)‖E ≤ RE.

Taking the absolute of (9), it becomes:

∣∣F (u)(t)
∣∣ =∣∣∣∣ 1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣. (11)
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Now, by H1, we have: ∣∣v(t)∣∣ = ∣∣α(t, u(t), v(t))
∣∣

≤
∣∣α(t, u(t), v(t))− α(t, 0, 0)

∣∣+ ∣∣α(t, 0, 0)
∣∣

≤ Kα

∣∣u(t)∣∣+Lα

∣∣v(t)∣∣+ a(t)

≤ a∗ +Kαξ∗ +Lα‖v‖E .

Therefore, we get:

‖v‖E ≤
a∗ +Kαξ∗

1−Lα
= M0. (12)

By using (12) and (A2), (11) becomes:

∣∣F (u)(t)
∣∣ ≤M0

(
3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
,

which implies that:

‖F (u)‖E ≤M0

(
3T2

2Γ(p+ 1)
+

T2

4Γ(p)

)
= RE.

Hence, F (E) is uniformly bounded.
Now, we show that the operator F is equicontinuous in E . Suppose 0 < t1 < t2 < T, and let u ∈ E,
then:

∣∣F (u)(t2)−F (u)(t1)
∣∣ =∣∣∣∣ 1

Γ(p)

∫ t2

0
(t2 − s)p−1v(s)ds− (T− 2t2)

4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

− 1
Γ(p)

∫ t1

0
(t1 − s)p−1v(s)ds− (T− 2t1)

4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣
≤
∣∣∣∣ 1
Γ(p)

∫ t1

0

[
(t2 − s)p−1 − (t1 − s)p−1]v(s)ds∣∣∣∣+ ∣∣∣∣ 1

Γ(p)

∫ t2

t1

(t2 − s)p−1v(s)ds
∣∣∣∣

+

∣∣∣∣− (t2 − t1)

2Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣,
by using (12), we get:

∣∣F (u)(t2)−F (u)(t1)
∣∣ ≤M0

(
1

Γ(p)
∣∣(t2 − s)p−1 − (t1 − s)p−1∣∣ds+ Tp−1

Γ(p)

∫ t2

t1

ds

+
(t2 − t1)T

p−2

2Γ(p− 1)

∫ T

0
ds
)

. (13)

The right-handed side of (13) tends to zero, when t2 → t1. Thus, F is equicontinuous and therefore
completely continuous.
Finally, we consider a set B ⊂ E , which is defined as:

B = {u ∈ E : u = κF (u), 0 < κ < 1}.

We need to prove that the set B is bounded. Suppose u ∈ B, such that:

u(t) = κF (u)(t), where κ ∈ (0, 1).
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Then, for every t ∈J , we have:

∣∣u(t)∣∣ =∣∣∣∣κ( 1
Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

)∣∣∣∣
≤ Tp

Γ(p+ 1)

∣∣v(s)∣∣+ Tp

2Γ(p+ 1)

∣∣v(s)∣∣+ ∣∣T− 2t
∣∣Tp−1

4Γ(p)
∣∣v(s)∣∣. (14)

Now, by H1 for t ∈J , ∣∣v(t)∣∣ = ∣∣α(t, u(t), v(t))
∣∣

≤
∣∣α(t, u(t), v(t))− α(t, 0, 0)

∣∣+ ∣∣α(t, 0, 0)
∣∣

≤ Kα

∣∣u(t)∣∣+Lα

∣∣v(t)∣∣+ a(t).

Therefore, we get: ∣∣v(t)∣∣ ≤ 1
1−Lα

(
a(t) +Kα

∣∣u(t)∣∣). (15)

Plugging (15) in (14) and taking the maximum on both sides, it becomes:

‖u‖E ≤
Tp[ 1

1−Lα

(
a∗ +Kα‖u‖E

)]
Γ(p+ 1)

+
Tp[ 1

1−Lα

(
a∗ +Kα‖u‖E

)]
2Γ(p+ 1)

+

∣∣T− 2t
∣∣Tp−1

4Γ(p)

×
[ 1

1−Lα

(
a∗ +Kα‖u‖E

)]
. (16)

For simplicity, let:

W =
Tpa∗

(1−Lα)Γ(p+ 1)
+

Tpa∗

2(1−Lα)Γ(p+ 1)
+

∣∣T− 2t
∣∣Tp−1a∗

4(1−Lα)Γ(p)
,

Q =
TpKα

(1−Lα)Γ(p+ 1)
+

TpKα

2(1−Lα)Γ(p+ 1)
+

∣∣T− 2t
∣∣Tp−1Kα

4(1−Lα)Γ(p)
.

Therefore, (16) becomes:
‖u‖E ≤ Q‖u‖E +W .

We obtain:
‖u‖E ≤

W

1−Q
.

Hence, B is bounded. Thus, by Theorem 1, we get that the operator F has at least one fixed point.
Therefore, the considered problem (3) has at least one solution in E .

The following result is based on Theorem 2 and concerned with the uniqueness of solutions for
the problem (3).

Theorem 4. Suppose that the hypothesis H1 holds. In addition, assume that:

3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)
< 1. (17)

Then, the problem (3) has a unique solution in E .
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Proof. Suppose u, u ∈ E , and for t ∈J , we have:

∣∣F (u)(t)−F (u)(t)
∣∣ ≤ 1

Γ(p)

∫ t

0
(t− s)p−1∣∣v(s)− v(s)

∣∣ds− 1
2Γ(p)

∫ T

0
(T− s)p−1∣∣v(s)− v(s)

∣∣ds
+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2∣∣v(s)− v(s)

∣∣ds, (18)

where v, v ∈ E , such that:
v(t) = α(t, u(t), v(t))

v(t) = α(t, u(t), v(t)).

By use of H1, we have:

|v(t)− v(t)| =
∣∣α(s, u(s), v(s))− α(s, u(s), v(s))

∣∣
≤ Kα|u(t)− u(t)|+Lα|v(t)− v(t)|.

Thus:

|v(t)− v(t)| ≤ Kα

1−Lα

∣∣u(t)− u(t)
∣∣.

Therefore, (18) becomes:

∣∣F (u)(t)−F (u)(t)
∣∣ ≤ Kα

1−Lα

(
1

Γ(p)

∫ t

0
(t− s)p−1∣∣u(s)− u(s)

∣∣ds− 1
2Γ(p)

∫ T

0
(T− s)p−1∣∣u(s)− u(s)

∣∣ds
+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2∣∣u(s)− u(s)

∣∣ds).

Now, taking the maximum on both sides, we get:

‖F (u)−F (u)‖E ≤
(

3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

)
‖u− u‖E .

Hence, the operator F is a contraction. Thus, F has a unique fixed point, so the problem (3) has a
unique solution.

3.2. Ulam Stability Results

In this section, we introduce Ulam–Hyers stability concepts for the problem (3). The following
definitions were adopted from [50].

Let ε > 0, α : J ×R ×R → R be a continuous function and ϑ : J → R+ nondecreasing.
Consider the following inequalities.∣∣cDpu(t)− α(t, u(t),c Dpu(t))

∣∣ ≤ ε, t ∈J , (19)

∣∣cDpu(t)− α(t, u(t),c Dpu(t))
∣∣ ≤ ϑ(t), t ∈J , (20)

∣∣cDpu(t)− α(t, u(t),c Dpu(t))
∣∣ ≤ ϑ(t)ε, t ∈J . (21)

Definition 3. Problem (3) is called Ulam–Hyers stable if there is Cp ∈ R+ such that for each ε > 0 and each
solution u ∈ E of (19), there is a solution v ∈ E of (3) with:∣∣u(t)− v(t)

∣∣ ≤ Cpε, t ∈J .
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Definition 4. Problem (3) is called generalized Ulam–Hyers stable if there is Ψ ∈ C (R+, R+), Ψ(0) = 0,
such that for each solution u ∈ E of (19), there is a solution v ∈ E of (3) with:∣∣u(t)− v(t)

∣∣ ≤ Ψ(ε), t ∈J .

Definition 5. Problem (3) is called Ulam–Hyers–Rassias stable with respect to ϑ if there is Cϑ ∈ R+, such
that for each ε > 0 and each solution u ∈ E of (21), there is a solution v ∈ E of (3) with:∣∣u(t)− v(t)

∣∣ ≤ Cϑϑ(t)ε, t ∈J .

Definition 6. Problem (3) is called generalized Ulam–Hyers–Rassias stable with respect to ϑ if there is
Cϑ ∈ R+, such that for each solution u ∈ E of (20), there is a solution v ∈ E of (3) with:∣∣u(t)− v(t)

∣∣ ≤ Cϑϑ(t), t ∈J .

Remark 1. A function u ∈ E is a solution of (19) if there is ωα ∈ E (dependent on u), such that:

(b1)
cDpu(t) = α(t, u(t),c Dpu(t)) + ωα(t), t ∈J ;

(b2)
∣∣ωα(t)

∣∣ ≤ ε, for all t ∈J .

Lemma 4. If u ∈ E is the solution of the inequality (19), then u will be the solution of the following inequality:

|u(t)− m(t)| ≤
(

3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
ε.

Proof. Let u be the solution of Inequality (19). Then, by (b1) of Remark 1, we have:{
cDpu(t) = α(t, u(t),c Dpu(t)) + ωα, t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0.

(22)

Then, the solution of (22) is given as:

u(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds+

1
Γ(p)

∫ t

0
(t− s)p−1

×ωα(s)ds−
1

2Γ(p)

∫ T

0
(T− s)p−1ωα(s)ds+

(T− 2t)
4Γ(p− 1)

×
∫ T

0
(T− s)p−2ωα(s)ds. (23)

For simplicity, let m(t) be used for the terms that are free of ωα, so we have:

m(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds.

Therefore, (23) can be written as:

∣∣u(t)− m(t)
∣∣ ≤ 1

Γ(p)

∫ t

0
(t− s)p−1∣∣ωα(s)

∣∣ds+ 1
2Γ(p)

∫ T

0
(T− s)p−1∣∣ωα(s)

∣∣ds
+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2∣∣ωα(s)

∣∣ds.
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By using (b2) of Remark 1, we get:

∣∣u(t)− m(t)
∣∣ ≤ ( 3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
ε.

Theorem 5. Suppose the hypothesis H1 and:

3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)
< 1 (24)

hold. Then, Problem (3) will be Ulam–Hyers stable and generalized Ulam–Hyers stable.

Proof. Suppose u ∈ E is any solution of the inequality (19) and v is the solution of the considered
problem (3), then:{

cDpv(t)− α(t, v(t),c Dpv(t)) = 0; t ∈J ,

v(t)
∣∣
t=0 = −v(t)

∣∣
t=T

, v′(t)
∣∣
t=0 = −v′(t)

∣∣
t=T

, v′′(t)
∣∣
t=0 = v′′′(t)

∣∣
t=0 = 0.

Let: ∣∣u(t)− v(t)
∣∣ ≤ ∣∣u(t)− m(t)

∣∣+ ∣∣m(t)− v(t)
∣∣. (25)

Utilizing Lemma 4 in (25), we have:

∣∣u(t)− v(t)
∣∣ ≤( 3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
ε +

∣∣∣∣ 1
Γ(p)

∫ t

0
(t− s)p−1(yu(s)− gv(s)

)
ds− 1

2Γ(p)

∫ T

0
(T− s)p−1

×
(
yu(s)− gv(s)

)
ds+

(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2(yu(s)− gv(s)

)
ds
∣∣∣∣.

We get:

∣∣u(t)− v(t)
∣∣ ≤ ( 3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
ε +

(
3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)∣∣yu(s)− gv(s)
∣∣. (26)

For yu, gv ∈ E , where:
yu(t) = α(t, u(t), yu(t)),

gv(t) = α(t, v(t), gv(t)).

By H1: ∣∣yu(t)− gv(t)
∣∣ = ∣∣α(t, u(t), yu(t)) + α(t, v(t), gv(t))

∣∣
≤ Kα

∣∣u(t)− v(t)
∣∣+Lα

∣∣yu(t)− gv(t)
∣∣.

We get: ∣∣yu(t)− gv(t)
∣∣ ≤ Kα

1−Lα

∣∣u(t)− v(t)
∣∣. (27)

For t ∈J and utilizing (27), (26) implies that:

‖u− v‖E ≤
(

3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
ε +

(
3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

)
‖u− v‖E .
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After simplification, we get:

‖u− v‖E ≤
[ 3Tp

2Γ(p+1) +
Tp

4Γ(p)

1− 3TpKα
2(1−Lα)Γ(p+1) +

TpKα
4(1−Lα)Γ(p)

]
ε.

Thus, we have:

|u(t)− v(t)| ≤ Cpε,

where:

Cp =

3Tp

2Γ(p+1) +
Tp

4Γ(p)

1− 3TpKα
2(1−Lα)Γ(p+1) +

TpKα
4(1−Lα)Γ(p)

.

Thus, the problem (3) is Ulam–Hyers stable.
Now, by putting Ψ(ε) = Cpε, Ψ(0) = 0 yields that the problem (3) is generalized Ulam–Hyers stable.
This completes the proof.

Hypothesis 2 (H2). Suppose an increasing function ϑp ∈ (J , R+) and t ∈ J . Then, there is µϑ,p > 0,
such that the given integral inequalities:

Ipϑp(t) ≤ µϑ,pϑp(t); consequently Ip−1ϑp(t) ≤ µϑ,pϑp(t)

holds.

Remark 2. Under the hypotheses H1 and H2 and condition (24), Problem (3) will be Ulam–Hyers–Rassias
and generalized Ulam–Hyers–Rassias stable.

3.3. Example

Example 2. 
cD

7
2 u(t) =

∣∣u(t)∣∣
30(t+ 2)(1 +

∣∣u(t)∣∣) + cos
∣∣cD 7

2 u(t)
∣∣

30 + t2 , t ∈ [0, 1],

u(0) = −u(1), u′(0) = −u′(1), u′′(0) = u′′′(0) = 0,

(28)

where p = 7
2 and T = 1. Now, for any u, u, v, v ∈ R and t ∈ [0, 1], we get:

∣∣α(t, u, v)− α(t, u, v)
∣∣ ≤ 1

30

∣∣u− u
∣∣+ 1

30

∣∣v− v
∣∣.

Therefore, H1 is satisfied with Kα = Lα = 1
30 .

Furthermore, plug T = 1, p = 7
2 and Kα = Lα = 1

30 in (17); we get:(
3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

)
≈ 0.007040789549 < 1.

The solution of the problem (28) is unique, and the problem is Ulam–Hyers, generalized Ulam–Hyers stable,
Ulam–Hyers–Rassias stable, and generalized Ulam–Hyers–Rassias stable.

4. Existence, Uniqueness, and Stability Results for (4)

4.1. Existence and Uniqueness Results

In this section, we will investigate coupled systems of nonlinear implicit FODE.
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Lemma 5. For any β, γ ∈ C (J , R), then the problem:

cDpu(t) = β(t); p ∈ (3, 4], t ∈J ,
cDqy(t) = γ(t); q ∈ (3, 4], t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

y(t)
∣∣
t=0 = −y(t)

∣∣
t=T

, y′(t)
∣∣
t=0 = −y′(t)

∣∣
t=T

, y′′(t)
∣∣
t=0 = y′′′(t)

∣∣
t=0 = 0,

has a solution if and only if: 
u(t) =

∫ T

0
Gp(t, s)β(s)ds, t ∈J ,

y(t) =
∫ T

0
Gq(t, s)γ(s)ds, t ∈J ,

(29)

where Gp and Gq are Green’s functions as given by:

Gp(t, s) =


− (T−s)p−1

2Γ(p) + (T−2t)(T−s)p−2

4Γ(p−1) , 0 ≤ t ≤ s ≤ T,

(t−s)p−1−(T−s)p−1/2
Γ(p) + (T−2t)(T−s)p−2

4Γ(p−1) , 0 ≤ s ≤ t ≤ T.

Gq(t, s) =


− (T−s)q−1

2Γ(q) + (T−2t)(T−s)q−2

4Γ(q−1) , 0 ≤ t ≤ s ≤ T,

(t−s)q−1−(T−s)q−1/2
Γ(q) + (T−2t)(T−s)q−2

4Γ(q−1) , 0 ≤ s ≤ t ≤ T.

Proof. The proof is similar as given in Lemma 2.

Let E =
{
u(t)| u ∈ C (J )

}
be a Banach space endowed with a norm defined as ‖u‖E =

maxt∈J

∣∣u(t)∣∣. Similarly, the norm defined on the product space is ‖(u, y)‖E×E = ‖u‖E + ‖y‖E .
Obviously,

(
E × E , ‖(u, y)‖E×E

)
is a Banach space.

Definition 7. (u, y) ∈ E × E is said to be a solution of the system (4) if (u, y) satisfies the system cDpu(t) =
α(t, y(t),c Dpu(t)), cDqy(t) = χ(t, u(t),c Dqy(t)) on [0,T] and the conditions u(0) = −u(T), u′(0) =

−u′(T), u′′(0) = u′′′(0) = 0 and y(0) = −y(T), y′(0) = −y′(T), y′′(0) = y′′′(0) = 0.

Therefore, in view of Lemma 5, the solution of the proposed system (4) is equivalent to the integral
equations given by: 

u(t) =
∫ T

0
Gp(t, s)α(s, y(s),c Dpu(s))ds, t ∈J ,

y(t) =
∫ T

0
Gq(t, s)χ(s, u(s),c Dqy(s))ds, t ∈J .

(30)

We use the following notions for convenience:

v(t) = α(t, y(t),c Dpu(t)) = α(t, y(t), v(t)),

z(t) = χ(t, u(t),c Dqy(t)) = χ(t, u(t), z(t)).

Hence, (30) becomes: 
u(t) =

∫ T

0
Gp(t, s)v(s)ds, t ∈J ,

y(t) =
∫ T

0
Gq(t, s)z(s)ds, t ∈J ,

where v, z ∈ E satisfies the implicit functional equations.
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Lemma 6. We use Gp,q(t, s) =
(
Gp(t, s), Gq(t, s)

)
as the Green’s function of the proposed system (4),

having the following properties:

(A3) Gp,q(t, s) is continuous on J ×J ;

(A4) maxt∈J

∫ T
0

∣∣Gp(t, s)
∣∣ds ≤ tp

Γ(p+1) +
Tp

2Γ(p+1) +

∣∣T−2t
∣∣Tp−1

4Γ(p) = 3Tp

2Γ(p+1) +
Tp

4Γ(p) , t, s ∈J ,

maxt∈J

∫ T
0

∣∣Gq(t, s)
∣∣ds ≤ tq

Γ(q+1) +
Tq

2Γ(q+1) +

∣∣T−2t
∣∣Tq−1

4Γ(q) = 3Tq

2Γ(q+1) +
Tq

4Γ(q) , t, s ∈J .

Proof. The proofs are similar as given in Lemma 3.

For computational convenience, we introduce the following notations:

Sp =max
{

3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

}
, (31)

Sq =max
{

3Tq

2Γ(q+ 1)
+

Tq

4Γ(q)

}
, (32)

Zα =max
{

3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

}
, (33)

Zχ =max
{

3TqKχ

2(1−Lχ)Γ(q+ 1)
+

TqKχ

4(1−Lχ)Γ(q)

}
. (34)

Now, System (4) transforms into a fixed point problem. Therefore, in view of Lemma 5, an operator
F : E × E → E × E is defined as:

F (u, y)(t) =


T∫
0

Gp(t, s)α(t, y(s), v(s))ds

T∫
0

Gq(t, s)χ(t, u(s), z(s))ds

 =

(
Fp(y, v)(t)
Fq(u, z)(t)

)
=

(
Fp(u)(t)
Fq(y)(t)

)
. (35)

Then, the solution of the proposed system (4) coincides with the fixed point of the operator F , where:

Fp(u)(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds, t ∈J

and:

Fq(y)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1z(s)ds− 1

2Γ(q)

∫ T

0
(T− s)q−1z(s)ds

+
(T− 2t)
4Γ(q− 1)

∫ T

0
(T− s)q−2z(s)ds, t ∈J .

In the sequel, we need the following hypothesis:

Hypothesis 3 (H3). For every t ∈J and y, v, y, v ∈ R, there are constants Kα > 0, 0 < Lα < 1, such that:∣∣α(t, y, v)− α(t, y, v)
∣∣ ≤ Kα

∣∣y− y
∣∣+Lα

∣∣v− v
∣∣.

Similarly, for every t ∈J and u, z, u, z ∈ R, there are constants Kχ > 0, 0 < Lχ < 1, such that:∣∣χ(t, u, z)− χ(t, u, z)
∣∣ ≤ Kχ

∣∣u− u
∣∣+Lχ

∣∣z− z
∣∣.
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The following result is based on Theorem 1 and concerned with the existence of solutions for the
problem (4).

Theorem 6. Suppose the functions α, χ : J × R × R → R are continuous and hypothesis H3 hold.
In addition, it is assumed that:

Q1 < 1, Q2 < 1.

Then, there is at least one solution for the proposed system (4).

Proof. Since α, χ, Gp(t, s) and Gq(t, s) are continuous, so the operator F : E × E → E × E is also
continuous. Suppose a1(t) = α(t, 0, 0) with a∗1 = maxt∈J α(t, 0, 0) and a2(t) = χ(t, 0, 0) with
a∗2 = maxt∈J χ(t, 0, 0), where a∗1 , a∗2 < 8, such that for any ξ∗ = max

{
ξp, ξq

}
> 0, there exist

RE > 0, such that:
RE ≥ SpM

∗ +SqN
∗.

We have to show that F (E) ⊂ E, where:

E = {(u, y) ∈ E × E : ‖(u, y)‖E×E ≤ ξ∗},

then, we have:
‖F (u, y)‖E×E ≤ RE.

Then, for every v ∈ E, we have:

∣∣Fp(u)(t)
∣∣ =∣∣∣∣ 1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣. (36)

Now, by using (31) and H3 in (36), we get:

‖Fp(u)‖E ≤
(

3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
M ∗, (37)

where:

‖v‖E ≤
a∗1 +Kαξp

1−Lα
= M ∗. (38)

with ‖y‖ ≤ ξp. In the same fashion, we obtain:

‖Fq(y)‖E ≤
(

3Tq

2Γ(q+ 1)
+

Tq

4Γ(q)

)
N ∗, (39)

where

N ∗ =
a∗2 +Kχξq

1−Lχ
(40)

with ‖u‖ ≤ ξq. Thus, from (37) and (39), we get:

‖Fp(u)‖E + ‖Fq(y)‖E ≤
(

3Tp

2Γ(p+ 1)
+

Tp

4Γ(p)

)
M ∗ +

(
3Tq

2Γ(q+ 1)
+

Tq

4Γ(q)

)
N ∗

= SpM
∗ +SqN

∗ ≤ RE,

which implies that:
‖F (u, y)‖E×E ≤ RE.
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Thus, the operator F is uniformly bounded. Next, we show that the operator F is equicontinuous.
Suppose 0 < t1 < t2 < T and u ∈ E, then:

∣∣Fp(u)(t2)−Fp(u)(t1)
∣∣ =∣∣∣∣ 1

Γ(p)

∫ t2

0
(t2 − s)p−1v(s)ds− (T− 2t2)

4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

− 1
Γ(p)

∫ t1

0
(t1 − s)p−1v(s)ds− (T− 2t1)

4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣
≤
∣∣∣∣ 1
Γ(p)

∫ t1

0

[
(t2 − s)p−1 − (t1 − s)p−1]v(s)ds∣∣∣∣+ ∣∣∣∣ 1

Γ(p)

∫ t2

t1

(t2 − s)p−1v(s)ds
∣∣∣∣

+

∣∣∣∣− (t2 − t1)

2Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds

∣∣∣∣,
by using (38), we get:

∣∣Fp(u)(t2)−Fp(u)(t1)
∣∣ ≤M ∗

(
1

Γ(p)
∣∣(t2 − s)p−1 − (t1 − s)p−1∣∣ds+ Tp−1

Γ(p)

∫ t2

t1

ds

+
(t2 − t1)T

p−2

2Γ(p− 1)

∫ T

0
ds
)

. (41)

In the same fashion and by using (40), we can show that:

∣∣Fq(y)(t2)−Fq(y)(t1)
∣∣ ≤N ∗

(
1

Γ(q)
∣∣(t2 − s)q−1 − (t1 − s)q−1∣∣ds+ Tq−1

Γ(q)

∫ t2

t1

ds

+
(t2 − t1)T

q−2

2Γ(q− 1)

∫ T

0
ds
)

(42)

The right-hand sides of (41) and (42) tend to zero, when t2 → t1. Therefore, by the result, we
infer that F is equicontinuous and hence uniformly equicontinuous. Therefore, the operator F is
completely continuous.
Finally, it will be verified that the set:

B = {(u, y) ∈ E × E | (u, y) = κF (u, y), 0 < κ < 1}

is bounded. Suppose (u, y) ∈ B, then by definition (u, y) = κF (u, y). Now, for u ∈ B, then in a
similar way as in Theorem 3 and by using H3, we have:

‖u‖E ≤
W1

1−Q1
. (43)

Similarly, for y ∈ B, we can obtain:

‖y‖E ≤
W2

1−Q2
, (44)

where:

W1 =
Tpa∗1

(1−Lα)Γ(p+ 1)
+

Tpa∗1
2(1−Lα)Γ(p+ 1)

+

∣∣T− 2t
∣∣Tp−1a∗1

4(1−Lα)Γ(p)
,

Q1 =
TpKα

(1−Lα)Γ(p+ 1)
+

TpKα

2(1−Lα)Γ(p+ 1)
+

∣∣T− 2t
∣∣Tp−1Kα

4(1−Lα)Γ(p)
,

W2 =
Tqa∗2

(1−Lχ)Γ(q+ 1)
+

Tqa∗2
2(1−Lχ)Γ(q+ 1)

+

∣∣T− 2t
∣∣Tq−1a∗2

4(1−Lχ)Γ(q)
,

Q2 =
TqKχ

(1−Lχ)Γ(q+ 1)
+

TqKχ

2(1−Lχ)Γ(q+ 1)
+

∣∣T− 2t
∣∣Tq−1Kχ

4(1−Lχ)Γ(q)
.
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From (43) and (44), it is implied:

‖u‖E + ‖y‖E ≤
W1

1−Q1
+

W2

1−Q2
.

Consequently,

‖(u, y)‖E×E ≤
W1

1−Q1
+

W2

1−Q2

for any t ∈ J , and set B is bounded. Hence, by Theorem 1, the operator F has at least one fixed
point. Thus, the proposed system (4) has at least one solution on J .

The following result is concerned with the uniqueness of solutions for the problem (4) and is
based on Theorem 2.

Theorem 7. Suppose the hypothesis H3 holds and if:

Zα +Zχ < 1. (45)

Then, the proposed system (4) has a unique solution on J .

Proof. Let u, u ∈ E , and consider:

∣∣Fp(u)(t)−Fp(u)(t)
∣∣ =∣∣∣∣ 1

Γ(p)

∫ t

0
(t− s)p−1ds− 1

2Γ(p)

∫ T

0
(T− s)p−1ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2ds

∣∣∣∣∣∣v(s)− v(s)
∣∣. (46)

where:
v(t) = α(t, y(t), v(t)),

v(t) = α(t, y(t), v(t)).

By using H3: ∣∣v(t)− v(t)
∣∣ = ∣∣α(t, y(t), v(t))− α(t, y(t), v(t))

∣∣
≤ Kα

∣∣y(t)− y(t)
∣∣+Lα

∣∣v(t)− v(t)
∣∣.

We get: ∣∣v(t)− v(t)
∣∣ ≤ Kα

1−Lα

∣∣y(t)− y(t)
∣∣. (47)

Put (47) in (46) and taking max on both sides over J , we get:

‖Fp(u)−Fp(u)‖E ≤
(

3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

)
‖y− y‖E . (48)

In the same fashion, we can obtain:

‖Fq(y)−Fq(y)‖E ≤
(

3TqKχ

2(1−Lχ)Γ(q+ 1)
+

TqKχ

4(1−Lα)Γ(q)

)
‖u− u‖E . (49)

Therefore, from (48) and (49), we get:

‖F (u, y)−F (u, y)‖E×E ≤
(
Zα +Zχ

)
‖(u, y)− (u, y)‖E×E .
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Thus, F is a contraction. Therefore, we infer by Theorem 2 that F has a fixed point that is the unique
solution of the considered system (4).

4.2. Ulam Stability Results

In the current section, we study the Ulam–Hyers stability results of the proposed system (4).
The following definitions were adopted from [50].

Let εp, εq > 0, α, χ : J ×R ×R → R be continuous functions, and Ωp, Ωq : J → R+ are
nondecreasing. Consider the following inequalities.{∣∣Dpu(t)− α(t, y(t), Dpu(t))

∣∣ ≤ εp, t ∈J ,∣∣Dqy(t)− χ(t, u(t), Dqy(t))
∣∣ ≤ εq, t ∈J ,

(50)

{∣∣Dpu(t)− α(t, y(t), Dpu(t))
∣∣ ≤ Ωp(t)εp, t ∈J ,∣∣Dqy(t)− χ(t, u(t), Dqy(t))
∣∣ ≤ Ωq(t)εq, t ∈J ,

(51)

{∣∣Dpu(t)− α(t, y(t), Dpu(t))
∣∣ ≤ Ωp(t), t ∈J ,∣∣Dqy(t)− χ(t, u(t), Dqy(t))
∣∣ ≤ Ωq(t), t ∈J .

(52)

Definition 8. System (4) is Ulam–Hyers stable if there is Cp,q = (Cp, Cq) > 0 such that for some ε =

(εp, εq) > 0 and for each solution (u, y) ∈ E × E of (50), there is a solution ($, σ) ∈ E × E of (4) with:∣∣(u, y)(t)− ($, σ)(t)
∣∣ ≤ Cp,qε, t ∈J . (53)

Definition 9. System (4) is generalized Ulam–Hyers stable, if there is Θ ∈ C (R+, R+) with Θ(0) = 0, such
that for each solution (u, y) ∈ E × E of (50), there is a solution (σ, $) ∈ E × E of the system (4) that satisfies:∣∣(u, y)(t)− ($, σ)(t)

∣∣ ≤ Θ(ε), t ∈J . (54)

Definition 10. System (4) is Ulam–Hyers–Rassias stable with respect to Ωp,q = (Ωp, Ωq) ∈ C 1(J , R),
if there is constant CΩp,Ωq = (CΩp , CΩq) > 0 such that for some ε = (εp, εq) > 0 and for each solution
(u, y) ∈ E × E of (51), there is a solution ($, σ) ∈ E × E of the system (4) with:∣∣(u, y)(t)− ($, σ)(t)

∣∣ ≤ CΩp,ΩqΩp,q(t)ε, t ∈J . (55)

Definition 11. System (4) is generalized Ulam–Hyers–Rassias stable with respect to Ωp,q = (Ωp, Ωq) ∈
C (J , R), and there is constant CΩp,Ωq = (CΩp , CΩq) > 0, such that for each solution (u, y) ∈ E × E of
(52), there is a solution (σ, $) ∈ E × E of the system (4), which satisfies:∣∣(u, y)(t)− ($, σ)(t)

∣∣ ≤ CΩp,ΩqΩp,q(t), t ∈J . (56)

Remark 3. We say that (u, y) ∈ E × E is a solution of (50), if there are functions ωα, ψχ ∈ C (J , R) that
depend on u, y, respectively, such that:

(b3)
∣∣ωα(t)

∣∣ ≤ εp,
∣∣ψχ(t)

∣∣ ≤ εq, t ∈J ;
(b4) {

Dpu(t) = α(t, y(t), Dpu(t)) + ωα(t), t ∈J ,

Dqy(t) = χ(t, u(t), Dqy(t)) + ψχ(t), t ∈J .

Lemma 7. Consider (u, y) ∈ E × E to be the solution of the inequality (50), then:{∣∣u(t)− m(t)
∣∣ ≤ Spεp, t ∈J ,∣∣y(t)− n(t)
∣∣ ≤ Sqεq, t ∈J .
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Proof. Using (b4) of Remark 3, we have:

cDpu(t) = α(t, y(t), cDpu(t)) + ωα(t), t ∈J ,
cDqy(t) = χ(t, u(t), cDqy(t)) + ψχ(t), t ∈J ,

u(t)
∣∣
t=0 = −u(t)

∣∣
t=T

, u′(t)
∣∣
t=0 = −u′(t)

∣∣
t=T

, u′′(t)
∣∣
t=0 = u′′′(t)

∣∣
t=0 = 0,

y(t)
∣∣
t=0 = −y(t)

∣∣
t=T

, y′(t)
∣∣
t=0 = −y′(t)

∣∣
t=T

, y′′(t)
∣∣
t=0 = y′′′(t)

∣∣
t=0 = 0.

(57)

Therefore, by Lemma 1, the solution of (57) will be in the given form:
u(t) =

∫ T

0
Gp(T, s)α(s, y(s), cDpu(s))ds+

∫ T

0
Gp(t, s)ωα(s)ds, t ∈J ,

y(t) =
∫ T

0
Gq(t, s)χ(s, u(s), cDqy(s))ds+

∫ T

0
Gq(t, s)ψχ(s)ds, t ∈J .

(58)

From the first equation of the system (58), we have:

u(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds+

1
Γ(p)

∫ t

0
(t− s)p−1

×ωα(s)ds−
1

2Γ(p)

∫ T

0
(T− s)p−1ωα(s)ds+

(T− 2t)
4Γ(p− 1)

×
∫ T

0
(T− s)p−2ωα(s)ds. (59)

Therefore, (59) becomes after taking the absolute:

∣∣u(t)− m(t)
∣∣ ≤∣∣∣∣ 1

Γ(p)

∫ t

0
(t− s)p−1ωα(s)ds−

1
2Γ(p)

∫ T

0
(T− s)p−1ωα(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2ωα(s)ds

∣∣∣∣,
where:

m(t) =
1

Γ(p)

∫ t

0
(t− s)p−1v(s)ds− 1

2Γ(p)

∫ T

0
(T− s)p−1v(s)ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2v(s)ds.

Using (b3) of Remark 3 and by (31), we obtain:∣∣u(t)− m(t)
∣∣ ≤ Spεp.

Repeating the similar procedure for the second equation of the system (58) and using (32) and (b3) of
Remark 3, we have: ∣∣y(t)− n(t)

∣∣ ≤ Sqεq,
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where:

n(t) =
1

Γ(q)

∫ t

0
(t− s)q−1z(s)ds− 1

2Γ(q)

∫ T

0
(T− s)q−1z(s)ds

+
(T− 2t)
4Γ(q− 1)

∫ T

0
(T− s)q−2z(s)ds.

Hence, this completes the proof.

Theorem 8. Under the hypothesis H3 and if:

∆ = 1−ZαZχ > 0 (60)

holds, then the proposed system (4) is Ulam–Hyers stable.

Proof. Suppose (u, y) ∈ E × E is the solution of the inequality (50) and ($, σ) ∈ E × E is the solution
to the given system:

cDp$(t)− α(t, σ(t), cDp$(t)) = 0; t ∈J ,
cDqσ(t)− χ(t, $(t), cDqσ(t)) = 0; t ∈J ,

$(t)
∣∣
t=0 = −$(t)

∣∣
t=T

, $′(t)
∣∣
t=0 = −$′(t)

∣∣
t=T

, $′′(t)
∣∣
t=0 = $′′′(t)

∣∣
t=0 = 0,

σ(t)
∣∣
t=0 = −σ(t)

∣∣
t=T

, σ′(t)
∣∣
t=0 = −σ′(t)

∣∣
t=T

, σ′′(t)
∣∣
t=0 = σ′′′(t)

∣∣
t=0 = 0.

(61)

Then, in view of Lemma 1, the solution of (61) is:
$(t) =

∫ T

0
Gp(t, s)α(s, σ(s), cDp$(s))ds, t ∈J ,

σ(t) =
∫ T

0
Gq(t, s)χ(s, $(s), cDqσ(s))ds, t ∈J .

Consider: ∣∣u(t)− $(t)
∣∣ ≤∣∣u(t)− m(t)

∣∣+ ∣∣m(t)− $(t)
∣∣

≤Spεp +

∣∣∣∣ 1
Γ(p)

∫ t

0
(t− s)p−1ds− 1

2Γ(p)

∫ T

0
(T− s)p−1ds

+
(T− 2t)
4Γ(p− 1)

∫ T

0
(T− s)p−2ds

∣∣∣∣∣∣v(s)− v$(s)
∣∣. (62)

where v, v$ ∈ E , are given:
v(t) = α(t, y(t), v(t)),

v$(t) = α(t, σ(t), v$(t)).

By using H3: ∣∣v(t)− v$(t)
∣∣ = ∣∣α(t, y(t), v(t))− α(t, σ(t), v$(t))

∣∣
≤ Kα

∣∣y(t)− σ(t)
∣∣+Lα

∣∣v(t)− v$(t)
∣∣.

We obtain the following: ∣∣v(t)− v$(t)
∣∣ ≤ Kα

1−Lα

∣∣y(t)− σ(t)
∣∣. (63)
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Using (31) and (63) in (62), we get:

‖u− $‖E ≤ Spεp +

(
3TpKα

2(1−Lα)Γ(p+ 1)
+

TpKα

4(1−Lα)Γ(p)

)
‖y− σ‖E . (64)

After using (33) in (64), we have:

‖u− $‖E ≤ Spεp +Zα‖y− σ‖E (65)

and similarly, we use (34), we get:

‖y− σ‖E ≤ Sqεq +Zχ‖u− $‖E , (66)

where z, zσ ∈ E ; we have:
z(t) = χ(t, y(t), z(t)),

zσ(t) = χ(t, $(t), zσ(t)).

From (65) and (66), we write:

‖u− $‖E −Zα‖y− σ‖E ≤ Spεp

‖y− σ‖E −Zχ‖u− $‖E ≤ Sqεq

 1 −Zα

−Zχ 1


 ‖u− $‖E

‖y− σ‖E

 ≤
 Spεp

Sqεq

 .

Solving the above inequality, we have: ‖u− $‖E

‖y− σ‖E

 ≤


1
∆

Zα
∆

Zχ

∆
1
∆


 Spεp

Sqεq

 ,

where:
∆ = 1−ZαZχ > 0.

Further simplification gives:

‖u− $‖E ≤
Spεp

∆
+

ZαSqεq
∆

‖y− σ‖E ≤
Sqεq

∆
+

ZχSpεp
∆

from which we have:

‖u− $‖E + ‖y− σ‖E ≤
Spεp

∆
+

Sqεq
∆

+
ZαSqεq

∆
+

ZχSpεp
∆

. (67)

Let max
{

εp, εq
}
= ε, then from (67), we have:

‖(u, y)− ($, σ)‖E×E ≤ Cp,qε, (68)
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where:

Cp,q =

[
Sp

∆
+

Sq

∆
+

ZαSq

∆
+

ZχSp

∆

]
.

Remark 4. By setting Θ(ε) = Cp,qε, Θ(0) = 0 in (68), then by Definition 9, the proposed system (4) is
generalized Ulam–Hyers stable.

Hypothesis 4 (H4). Suppose Ωp, Ωq ∈ (J , R+) are increasing functions. Then, there are ΛΩp , ΛΩq > 0,
such that for each t ∈J , the given integral inequalities:

IpΩp(t) ≤ ΛΩpΩp(t); consequently Ip−1Ωp(t) ≤ ΛΩpΩp(t)

and:
IqΩq(t) ≤ ΛΩqΩq(t); consequently Iq−1Ωq(t) ≤ ΛΩqΩq(t)

hold.

Remark 5. Under the hypotheses H4 and (60) and by utilizing Definitions 10 and 11, then by the same process
as in Lemma 7 and Theorem 8, System (4) will be Ulam–Hyers–Rassias and generalized Ulam–Hyers–Rassias
stable.

4.3. Example

Example 3. 

cD
7
2 u(t) =

∣∣y(t)∣∣
30(t+ 2)(1 +

∣∣y(t)∣∣) + cos
∣∣cD 7

2 u(t)
∣∣

30 + t2 , t ∈ [0, 1],

cD
7
2 y(t)−

2 +
∣∣u(t)∣∣+ ∣∣cD 7

2 y(t)
∣∣

70et+2
(
1 +

∣∣u(t)∣∣+ ∣∣cD 7
2 y(t)

∣∣) = 0, t ∈ [0, 1],

u(0) = −u(1), u′(0) = −u′(1), u′′(0) = u′′′(0) = 0,

y(0) = −y(1), y′(0) = −y′(1), y′′(0) = y′′′(0) = 0.

(69)

From System (69), we can see p = q = 7
2 and T = 1. Furthermore, we can easily find Kα = Lα = 1

30 and
Kχ = Lχ = 1

70e2 . Therefore:
Zα +Zχ ≈ 0.007436314061 < 1.

Hence, the system (69) has a unique solution. Moreover,

∆ = 1−ZαZχ ≈ 0.9999972152 > 0.

Condition (60) is also satisfied. Thus, System (69) is Ulam–Hyers, generalized Ulam–Hyers,
Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stable.

5. Conclusions

We have successfully derived some essential conditions for the existence, uniqueness, and different
kinds of Ulam–Hyers stability for the solutions of the considered problems (3) and (4). The required
outcomes have been obtained by utilizing standard fixed point theorems mentioned in the Abstract.
Additionally, we have set up some suitable conditions for different kinds of Ulam–Hyers stability of
the solutions of the aforesaid problems. For the justification, we have presented an example for each
problem that supported the main results.
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35. Brillouët-Belluot, N.; Brzdȩk, J.; Ciepliński, K. On some recent developments in Ulam’s type stability.

Abstr. Appl. Anal. 2012, 2018, 716936. [CrossRef]
36. Li, M.; Wang, J.; O’Regan, D. Existence and Ulam’s stability for conformable fractional differential equations

with constant coefficients. Bull. Malays. Math. Sci. Soc. 2017, 2017, 1–22. [CrossRef]
37. Ahmad, N.; Ali, Z.; Shah, K.; Zada, A.; Rahman, G. Analysis of implicit type nonlinear dynamical problem

of impulsive fractional differential equations. Complexity 2018, 2018, 1–15. [CrossRef]
38. Ali, Z.; Zada, A.; Shah, K. Existence and stability analysis of three point boundary value problem. Int. J. Appl.

Comput. Math. 2017, 3, 651–664. [CrossRef]
39. Benchohra, M.; Bouriah, S. Existence and stability results for nonlinear boundary value problem for implicit

differential equations of fractional order. Moroccan J. Pure Appl. Anal. 2015, 1, 22–37. [CrossRef]
40. Benchohra, M.; Bouriah, S.; Henderson, J. Existence and stability results for nonlinear implicit neutral

fractional differential equations with finite delay and impulses. Commun. Appl. Nonlinear Anal. 2015, 22,
46–67.

41. Li, Y.; Chen, Y.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct
method and generalized Mittag-Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [CrossRef]

42. Benchohra, M.; Lazreg, J.E. On stability for nonlinear implicit fractional differential equations. Le Matematiche
2015, 70, 49–61.

43. Ali, Z.; Zada, A.; Shah, K. Ulam stability results for the solutions of nonlinear implicit fractional order
differential equations. Hacettepe J. Math. Stat. 2018, 1–18. [CrossRef]

44. Ali, A.; Samet, B.; Shah, K.; Khan, R.A. Existence and stability of solution to a toppled systems of differential
equations of non–integer order. Bound. Value Probl. 2017, 2017, 1–16. [CrossRef]

45. Ali, Z.; Zada, A.; Shah, K. Ulam stability to a toppled systems of nonlinear implicit fractional order boundary
value problem. Bound. Value Probl. 2018, 2018, 175. [CrossRef]

46. Khan, A.; Shah, K.; Li, Y.; Khan, T.S. Ulam type stability for a coupled systems of boundary value problems
of nonlinear fractional differential equations. J. Funct. Spaces, 2017, 2017, 1–8. [CrossRef]

47. Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral
BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [CrossRef]

48. Shah, K.; Tunç, C. Existence theory and stability analysis to a system of boundary value problem. J. Taibah
Univ. Sci. 2017, 11, 1330–1342. [CrossRef]

http://dx.doi.org/10.1006/jmaa.2000.7395
http://dx.doi.org/10.1016/j.cam.2008.03.040
http://dx.doi.org/10.3390/math3020398
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.1016/j.aml.2005.11.004
http://dx.doi.org/10.1155/2016/8164978
http://dx.doi.org/10.1023/A:1006499223572
http://dx.doi.org/10.1155/2012/716936
http://dx.doi.org/10.1007/s40840-017-0576-7
http://dx.doi.org/10.1155/2018/6423974
http://dx.doi.org/10.1007/s40819-017-0375-8
http://dx.doi.org/10.7603/s40956-015-0002-9
http://dx.doi.org/10.1016/j.camwa.2009.08.019
http://dx.doi.org/10.15672/HJMS.2018.575
http://dx.doi.org/10.1186/s13661-017-0749-1
http://dx.doi.org/10.1186/s13661-018-1096-6
http://dx.doi.org/10.1155/2017/3046013
http://dx.doi.org/10.1186/s13662-018-1603-1
http://dx.doi.org/10.1016/j.jtusci.2017.06.002


Mathematics 2019, 7, 341 26 of 26

49. Ali, Z.; Zada, A.; Shah, K. On Ulam’s stability for a coupled systems of nonlinear implicit fractional
differential equations. Bull. Malays. Math. Sci. Soc. 2018, 1–19. [CrossRef]

50. Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26,
103–107.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40840-018-0625-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Existence, Uniqueness, and Stability Results for (3)
	Existence and Uniqueness Results
	Ulam Stability Results
	Example

	Existence, Uniqueness, and Stability Results for (4)
	Existence and Uniqueness Results
	Ulam Stability Results
	Example

	Conclusions
	References

