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Abstract: The differential evolutionary (DE) algorithm is a global optimization algorithm. To explore
the convergence implied in the Hilbert space with the parameter β of the DE algorithm and the
quantum properties of the optimal point in the space, we establish a control convergent iterative
form of a higher-order differential equation under the conditions of P−ε and analyze the control
convergent properties of its iterative sequence; analyze the three topological structures implied in
Hilbert space of the single-point topological structure, branch topological structure, and discrete
topological structure; and establish and analyze the association between the Heisenberg uncertainty
quantum characteristics depending on quantum physics and its topological structure implied in the
β-Hilbert space of the DE algorithm as follows: The speed resolution ∆2

v of the iterative sequence
convergent speed and the position resolution ∆xε

β
of the global optimal point with the swinging range

are a pair of conjugate variables of the quantum states in β-Hilbert space about eigenvalues λi ∈ R,
corresponding to the uncertainty characteristics on quantum states, and they cannot simultaneously
achieve bidirectional efficiency between convergent speed and the best point precision with any
procedural improvements. Where λi ∈ R is a constant in the β-Hilbert space. Finally, the conclusion
is verified by the quantum numerical simulation of high-dimensional data. We get the following
important quantitative conclusions by numerical simulation: except for several dead points and
invalid points, under the condition of spatial dimension, the number of the population, mutated
operator, crossover operator, and selected operator are generally decreasing or increasing with a
variance deviation rate +0.50 and the error of less than ±0.5; correspondingly, speed changing rate
of the individual iterative points and position changing rate of global optimal point β exhibit a
inverse correlation in β-Hilbert space in the statistical perspectives, which illustrates the association
between the Heisenberg uncertainty quantum characteristics and its topological structure implied in
the β-Hilbert space of the DE algorithm.

Keywords: DE algorithm; β-Hilbert space; topology structure; quantum uncertainty property;
numerical simulation

MSC: 81S10; 65L07; 46B28; 90C59; 54A05

1. Introduction

The differential evolutionary (DE) algorithm [1–3] is a global optimization algorithm with iterative
search used to generate mutative individuals by differential operation, proposed by Storn and Price in
1995 to solve Chebyshev inequalities, which adopts floating-point vector coding to search in continuous

Mathematics 2019, 7, 330; doi:10.3390/math7040330 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8062-0530
https://orcid.org/0000-0003-2021-2097
http://dx.doi.org/10.3390/math7040330
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/4/330?type=check_update&version=2


Mathematics 2019, 7, 330 2 of 19

space [4–6], is simple to operate and easy to achieve and offers better convergence, stronger robustness
and other global optimization advantages [7–11]. In general, the minimization optimization problem
of the DE algorithm is expressed as follows:

min f (Xt
i + P−ε), Xt

i = {xt
ij|i = 1, 2, · · · , NP; j = 1, 2, · · · , D} (1)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (2)

where the dimension (D) is the dimension of the decisional variable, number of population (NP) is the
population size, f (Xi + pε) is the fitness function, and P−ε is the individual perturbation variable with
the relative error ε in the population, which is generally an infinitesimal and indicates the adjustable
range of the optimal value when affected by some conditions. Conveniently, we assume that the
perturbation variable P−ε of all individuals is the same when the external environment features
perturbation. A larger perturbation variable P−ε indicates that the DE algorithm has a higher discrete
degree for population individuals when generally approaching the optimal value.

A smaller perturbation variable P−ε indicates that the individual is less discrete when generally
approaching the optimal value. Here, we assume that the infinitesimal has a fixed value, Xi(i =

1, 2, · · · , NP), is a D-dimensional vector, xij(i = 1, 2, · · · , NP; j = 1, 2, · · · , D) is the jth components of
the ith individual, and aij, bij are the upper bound and the lower bounds of the optimization range,
respectively.

We are interested in the convergence of the DE algorithm in the optimization process and
the spatial topological structure of the population in a closed ecological population [12,13], that is,
the association between the population iterative sequence and population spatial topological structure.
In this paper, the population is a closed ecological population, which generates an association of
one-to-one correspondence between it and the population; thus, the population can be analyzed by
the equivalent to the mathematical closed set. The assumptions are valid in theory. For the study of
the dynamics of the DE algorithm, previous work [4] has analyzed the dynamics and behavior of the
algorithm and provides a new direction for the dynamics of the algorithm. Numerical simulation
of the route optimization and convergent problem of the DE algorithm has been performed [5],
including studies of the convergence based on dynamics studies. Other researchers [6] have drawn
comparisons regarding the convergence of various algorithm benchmark problems, and we can look at
the corresponding relationship between convergence and the parameters. A parametric scheme for the
algorithm dynamics research is provided for the DE algorithm to search and optimize the properties
in the β-Hilbert space, and the study of the dynamic conditions of the DE algorithm is also performed.

In general, the spatial topology of a closed population is often associated with a composite
operator topology on a defined function space [12,13]. One earlier study result is the isolated point
theorem of the composite operator on H2 given by Berkson [14], and MacCluer [15] and Shapiro J
H [16] promote this conclusion. For the bounded analytic function space H∞ on a unit circle or unit ball,
previous work [16–18] studied the topology structure of C(H∞) and proved that the isolated composite
operator of the operator topology on H∞ is also isolated under the condition of essential norm topology.
We now address the spatial topology implied in the limit point β of the convergent iterative sequence
concerning the DE algorithm in the composite complete Hilbert space. Furthermore, the quantum
characteristics of the Heisenberg uncertainty principle implied in Hilbert space or Fock [14,19–27] of the
DE algorithm are one of the central issues studied in this paper. First, we solve the following problems:

1. The continuity of the closed population in the condition of P−ε and the control convergent
properties of its iterative sequence;

2. The topological structure implied in the Hilbert space of the DE algorithm;
3. The Heisenberg uncertainty quantum characteristics implied in the β-Hilbert space of the

DE algorithm;
4. High-dimensional numerical simulation of the quantum characteristics of the DE algorithm to

determine the association between this algorithm and its topological structure.
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2. Preparatory Knowledge

2.1. Basic Steps of the DE Algorithm

The basic operating principle of the DE algorithm is described as follows [1,4,7].

2.1.1. Initial Population

Let the population of the DE algorithm be X(t); then, the population individuals can be
expressed as

Xt
i = (xt

i1, xt
i2, · · · , xt

iD), i = 1, 2, · · · , NP (3)

where t is the evolutionary generation and NP is the population size.
Initial population: Determine the dimension D of the optimization problem. The maximum

evolutionary generation is T, and the population size is NP. Let the initial value of the optimal
vector be

X0
i = (x0

i1, x0
i2, · · · , x0

iD) (4)

x0
ij = aij + rand(0, 1) · (bij − aij), i = 1, 2, · · · , NP; j = 1, 2, · · · , D (5)

where, the range of individual variables is aij, bijLeqR, because of the randomness of iterative
individuals in optimization process and real number coding for individuals.

2.1.2. Mutation Operation

The individual mutated component of the DE algorithm is the differential vector of the parental
individuals, and the number of differential mutated individuals per time is derived from the
two individual components (xt

i1
, xt

i2
) in the tth generation parental population individuals, where

i1, i2 ∈ NP. Then, the differential vector is defined as Di1,2 = (xt
i1
− xt

i2
). For any vector individual Xt

i ,
the mutation operation is defined as

Vt+1
i = Xt

i3 + F · (Xt
i1 − Xt

i2) (6)

where NP ≥ 4 is the population size, F is the contraction factor, and i1, i2, i3 ∈ {1, 2, · · · , NP} and
i1, i2, i3 are mutually different so that we can obtain a mutated individual by differential operation by
randomly selecting non-zero different vectors in the population, and the mutated individuals realize
the possibility of adjusting the diversity of the population.

2.1.3. Crossover Operation

First, the test individual Ut+1
i is generated by crossing the target vector individual Xt

i and
the mutated individual Vt+1

i in the population. To maintain population diversity, we can conduct
crossover and selection operations for the mutated individual Vt+1

i and the target vector individual Xt
i

by introducing the crossover probability CR and the random function rand(0, 1) to ensure that at least
one of the test individuals Ut+1

i is contributed by the mutated individuals Vt+1
i . For other loci points,

we can determine the contribution of certain sites of the test individual Ut+1
i that are determined by the

mutation vector individuals Vt+1
i and target vector individual components (xt

i ) that are determined
by the crossover probability. The experimental equation of the crossover operation is as follows:

(ut+1
ij ) =


(vt+1

ij ), i f randj[0, 1] ≤ CR or j = jrand,
(xt

ij), otherwise.
i = 1, 2, · · · , NP; j = 1, 2, · · · , D

(7)
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where randj[0, 1], CR ∈ (0, 1) is the crossover probability above the formula (7). The larger the value
of CR is, the greater the probability of generating new vector individuals by locating the crossover
operation of different loci points for vector individuals in the population. When CR = 0, Ut+1

i = Xt
i ,

it indicates that no crossover occurred, which is beneficial to maintain the diversity of the population
and the ability of global searching. When CR = 1, Ut+1

i = Vt+1
i , it indicates that crossover operations

must occur at certain loci points, which helps maintain global searching and speed up convergence.
CR = 1 or 1 represent the two extreme cases of crossover operation. j = jrand is a randomly selected
loci point used to ensure that the test individuals Ut

i obtain at least one genetic locus of occurring
mutation from the mutated individuals Vt

i and to ensure that the mutated individuals Vt+1
i , the target

vector individuals Xt
i , and the test individuals Ut+1

i are different from each other, which indicates that
this operation is an effective action in populations.

2.1.4. Selection Operation

The selection operation of the DE algorithm is a selected mechanism based on the greedy
algorithm that the test individual Ut+1

i is generated by the mutation and selection operations, and the
target vector individual Xt

i conducts competition and selection. If the fitness value of Ut+1
i is better

than the fitness value of Xt
i , then Ut+1

i is inherited to the next generation as the best individual in
the first iteration; otherwise, Xt

i remains in the next generation. The selection effect of the selection
operator in the population is described by the following equation:

Xt+1
i =

{
Ut+1

i , i f f (Ut+1
i ) ≤ f (Xt

i )

Xt
i , otherwise

, i = 1, 2, · · · , NP (8)

2.1.5. Compact Operator and Fock Space

Let H and L be the separable Hilbert space and B(H, L) be the whole bounded linear operators
from H to L; if the mapping T(S) of the unit ball S of X in T satisfies relative compactness in Y,
then ∀T ∈ B(X, Y) is compact. In addition, the essential norm ‖T‖e of operator T ∈ B(X, Y) is the
operator norm distance of all compact operators from T to B(H, L). We also have ‖T‖e ≤ T and

‖T‖e = sup
fε

n∈U
(lim sup

k→∞
‖T f n

ε ‖l) (9)

where U is all unit element sequences f n
ε that are weakly convergent to 0.

Define the Gaussian measure dG on Cn as d(G) = 1
πn e−|z|

2
dV(z), z ∈ Cn where dV is the spatial

measure on Cn; then, Fock space F2 = F2(Cn) is the Hilbert space L2(G) ∩ H(Cn). Its inner product
and norm are designated 〈 f , g〉 =

∫
Cn f (z)g(z)dG(z) and ‖ f ‖2 =

∫
Cn | f (z)|2dG(z), respectively, where

f , g ∈ F2.

3. Continuity Structure of Closed Populations and Convergence of Iterative Sequences under Pε

For any population existing in real space, the population individuals show discrete characteristics
from the biological viewpoint but show continuous characteristics from a physical viewpoint in space.
For the DE algorithm, the adaptive optimal individual in any population must be the limit value of
the iterative sequence formed by all individuals in the population. Thus, an existing population
perturbation P−ε is theoretically reasonable, which is described in the form of limitation as the
following equation:

min f (Xt
i + P−ε), Xt

i = {xt
ij|i = 1, 2, · · · , NP; j = 1, 2, · · · , D} (10)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (11)



Mathematics 2019, 7, 330 5 of 19

This formulation is equivalent to

lim
t→+∞

f ((Xt
i )ε) = lim

t→+∞
fε(Xt

i ) = fε(Xi) ∈ ( f (Xi)− δε, f (Xi) + δε) (12)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (13)

where f (Xi) is the optimal value of the DE algorithm as t→ +∞ because the stability of the optimal
value in space, fε(Xi), must be between ( fε(Xi)− δε, fε(Xi) + δε), where δε is the maximum range
of the optimal value as being up and down. In the same population, there is only one optimal
value, which inherits all the adaptive characteristics of population individuals in the space, and the
fitness function fε(Xt

i ) corresponding to those individuals measures its adaptability in the population.
We say that the former is an eigenvalue and that the latter is an eigenfunction. Then, we establish
the continuity characteristic relationship and the uniform convergence of the iterative form of the
population eigenvalue and eigenfunction.

3.1. Continuity Structure of the Closed Population Feature Quantity in Perturbation Pε

Definition 1. Assume that a population of size NP is the continuous real value of the complete real space R+,
the population eigenvalue is λk = Xi, the population eigenfunction is f ((Xt

i )ε), and |ε| < 1
r , r ∈ R+, which is

a convergent form that can converge in the perturbation variable Pε with iteration numbers increasing. If

lim
t→+∞

f ((Xt
i )ε) = lim

t→+∞
fε(Xt

i ) = fε(Xi) ∈ ( f (Xi)− δε, f (Xi) + δε) (14)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (15)

then we find that f ((Xt
i )ε) is continuous at the eigenvalue λk = Xi.

Property 1. If f ((Xt
i )ε) is continuous at the eigenvalue λk = Xi, then fε(Xi) ∈ ( f (Xi)− δε, f (Xi) + δε),

that is, f ((Xt
i )ε) is locally bounded.

3.2. Uniform Convergence of the Differential Equation in Perturbation Pε

In general, population individuals show discrete characteristics in space and continuous
characteristics in time concerning the optimal process. Under the condition of the perturbation variable
P−ε, the convergent limit value is a bounded range, which is not a definite real value. To ensure that
individuals can converge to a precise real value in the late iteration, the convergence of the differential
equation must be uniformly converged under the condition of being the perturbation variable P−ε for
all population individuals. First, we construct a continuous iterative form of error variable ε under the
condition of perturbation Pε:

ε f (n+1)′′
ε p1(x) f (n+1)′

ε − qε(x, f (n)ε ) = 0
(0 < x < 1, qε(x, fε) = p2(x) fε)

f (n+1)
ε (0) = A, f (n+1)

ε (1 + ε) = B, (A, B ∈ R+, n = 1, 2, · · · )
f (0)ε ∈ V = {v ∈ C2[0, 1]/v(0) = A, v(1 + ε) = B}

(16)

Second, we construct an approximate format (17) of Il′ InAM [28] of the perturbation error
variable ε: 

r f (n+1)l
ε + a(x) f (n+1)l

ε = qε(n+1)(x, f (n)ε )

f (n+1)l
ε1 = A, f

′′
ε(n+1)l = B

r = a(x)h
2 cth a(x)h

2ε

(17)

where a(x) is a real-valued function.
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Lemma 1. [29]. For differential equations, we have the following:{
ε f
′′
ε + α(x, fε, ε) f

′
ε − β(x, fε, ε) = γ(x, fε, ε)

fε(a) = A(ε), fε(b) = B(ε), (a < x < b, a, b ∈ R+)
(18)

Let fε(x) be its solution; then, the following conditions are satisfied:
(i) α(x, fε, ε) is only a symbolic expression;
(ii) If |α(x, fε| + β(x, fε ≥ a ≥ 0, then ‖ fε‖∞ ≤ max(|A(ε)| + |B(ε)|) + 1

a [(b − a) × (b − a +

1)]‖γ(x, fε, ε)‖∞.

Lemma 2. [28]. Assume that there exists a constant C > 0 that satisfies ‖a(x)‖∞ ≤ C, ‖qε(n+1)(x, f (n)ε )‖∞ ≤
C, max{|A|, |B|} ≤ C; then, there exists a constant M > 0 related to only C that satisfies ‖ f (n)ε − f (n)hε ‖∞ ≤
Mh, where h is the divided grid spacing, f (n)ε is the solution of (16), and f (n)lε is the solution of (17).

Theorem 1. (Theorem of Uniform Convergence). For (16), if the Lipschitz condition and Lemmas 1 and
2 are satisfied, then

‖ f (n+1)l
ε − fε‖∞ ≤ ρn+1‖ f (0)lε − fε‖∞ +

M
1− ρ

l (19)

‖ f (n+1)l
ε − fε‖∞ ≤

1
1− ρ

‖ f (n)lε − f (n+1)l
ε ‖∞ +

M
1− ρ

l (20)

where ρ = 3L
a < 1,L is the Lipschitz constant.

Proof. Let f̄ (n+1)
ε be an iterative solution obtained by formulating f (n)lε as in (16). From Lemmas 1

and 2, we obtain

‖ f (n+1)l
ε − fε‖∞ ≤ ‖ f (n+1)l

ε − f̄ (n+1)
ε ‖∞ + ‖ f̄ (n+1)

ε − fε‖∞

≤ Ml + ρ‖ f (n)lε − fε‖ε

≤ ∑n
k=0 Mlρk + ρn+1‖ f (0)ε − fε‖∞

≤ Ml
1−ρ + ρn+1‖ f (0)ε − fε‖∞

(21)

and

lim
ρ→0

Ml
1− ρ

+ ρn+1‖ f (0)ε − fε‖∞ = Ml (22)

‖ f (n+1)l
ε − fε‖∞ ≤ Ml (23)

Thus, (19) is true. In addition,

‖ f (n)lε − fε‖∞ ≤ ‖ f (n)lε − f (n+1)l
ε ‖∞ + ‖ f (n+1)l

ε − fε‖∞

≤ ‖ f (n)lε − f (n+1)l
ε ‖∞ + Ml + ρ‖ f (n)lε − fε‖∞

(24)

In addition to the above,

lim
ρ→0

1
1− ρ

‖ f (n)lε − f (n+1)l
ε ‖∞ +

M
1− ρ

l = Ml (25)

‖ f (n)lε − fε‖∞ ≤ Ml (26)
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4. Topological Structure Implied in Hilbert Space of the DE Algorithm

4.1. Single-Point Topological Structure of Closed Populations in Hilbert Space

In the former part, we establish the nonlinear differential equation and its continuous iterative
format according to the evolution process of the population, and we analyze the uniform convergence
of the solution that illustrates the dynamical principle of population optimization in some way. In a
closed ecological population of NP, which is necessarily bounded, we should further verify a situation
logically if there exists an optimal solution under the condition of the perturbation variable P−ε after
the population individuals are infinitely iterating. This is the single-point theorem that we introduce
below. Since the closed population is a complete closed set under topological mapping, to analyze the
topological properties conveniently, we introduce the inner product in the closed population so that
the closed population is a Hilbert space. First, we introduce several lemmas.

Lemma 3. [30]. The bounded set is a column compact set, and the arbitrary bounded closed set is a self-column
compact set in Rn.

Lemma 4. [30]. The arbitrary subset is a column compact set, and the arbitrary closed subspace is a self-column
compact set in the column compact space.

Lemma 5. [30]. The column compact space must be a complete space.

Lemma 6. (Brower Fixed-Point Theorem) [31]. Let B be a closed unit ball, T : B → B be a continuous
mapping, and T(C) be column compact. Then, T must exist at a fixed point x ∈ B.

Theorem 2. (Single-Point Theorem). Let C be the closed population in R; the mapping T : C → C is
continuous. Then, there exists a single point in the closed population on C by the mapping T.

Proof. To prove the theorem, we prove only that T(C) is column-compact, as described in
Lemma 6.

Step 1 Because T : C → C is continuous and C is a compact set, we infer that T is uniformly
continuous, that is, ∀ε > 0, ∃δ > 0; then, ‖Tx− Tx

′‖ < ε, ∀x, x
′ ∈ C, ‖x− x

′‖ < δ. If not, the above
indicates that ∃ε0 > 0, ∀n ∈ N, ∃xn, x

′
n ∈ C so that ‖xn − x

′
n‖ < 1

n , but ‖Txn − Tx
′
n‖ ≥ ε0. Because of

C being a compact set, there exists a subsequence nk so that xnk → x0 ∈ C. Since ‖xnk − x
′
nk
‖ < 1

nk
→ 0,

then xn′k
→ x0 ∈ C. Since T is continuous, Txnk → Tx0, Tx

′
nk
→ Tx0, (k → ∞), which implies that

‖Txnk − Tx
′
nk
‖ → 0, (k→ ∞), which contradicts ‖Txn − Tx

′
n‖ ≥ ε0.

Step 2 To prove that T(C) is column-compact, we prove only that there is a limited ε net on
T(C) ∀ε > 0. First, from the step 1 proof, we have ∀ε > 0, ∃δ > 0 so that ‖Tx − Tx

′‖ < ε, ∀x, x
′ ∈

C, ‖x− x
′‖ < δ. Second, due to C being a compact set, there is a limited ε net: x1, · · · , xn for δ > 0.

Third, we show that {Tx1, · · · , Txn} is the limited ε net on T(C). Actually, ∀y ∈ TC, ∃x ∈ C so that
y = TC. Let ‖xi − x‖ ≤ δ(1 ≤ i ≤ n) to obtain ‖Txi − Tx‖ < ε. In other words, the closed population
has a single point on C by mapping T.

It is known that the complete space implied in the closed population includes only one single
point that is considered the closed population optimal characteristic value according to the single-point
theorem; then, the convergent iterative sequence generated by the algorithm itself can converge to a
single point in the closed population. The theorem illustrates the inevitability of an existing optimal
characteristic value in the complete closed population theoretically.

4.2. Branch Topological Structure of Closed Populations in Hilbert Space

There has been no definite research field focused on the route optimization branch theory of the
closed population up until now. The single-point theorem indicates that there may be countless pieces
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of optimization routes, and it is not known how to associate the optimization routes with each other.
However, it is certain that the different optimization routes are branched in Hilbert space implied
in the closed population to generate the branch topology structure in Hilbert space, so that we can
obtain the geometric structure of the closed population. First, we provide a fundamental theorem of
Fock space F2

m [31,32] derived from Hilbert space; then, we can obtain the branch topological structure
theorem of the Hilbert space implied in the closed population.

Theorem 3. Let ϕ : C → C be an analytic mapping; for an arbitrary non-negative integer m, there exists
the following:

(a) Cϕ is a bounded operator on F2
m if and only if ϕ(z) = Az + B. Here, A ∈ Mn, ‖A‖ ≤ 1, B ∈ Cn,

and when ζ ∈ Cn and |Aζ| = |ζ|, Aζ · B̄ = 0.
(b) Cϕ is a compact operator on F2

m if and only if ϕ(z) = Az + B. Here, A ∈Mn, ‖A‖ < 1, B ∈ Cn.

We assume that for each positive integer k, we have Mk as the k× k complex matrix of the whole,
which is equivalent to A ∈Mk by a linear transformation A : Ck → Ck.

Lemma 7. [31,32]. Assume that ϕ(z) = Az + B and ψ(z) = A1z + B1 cause the composite operators Cϕ and
Cψ to be bounded on F2

m if there exists ζ ∈ Cn that satisfies |Aζ| = |ζ|, but |Aζ| 6= |A1ζ|. Then, there exists a
positive constant Ce ∈ R that satisfies ‖Cϕ − Cψ‖ ≥ Ce.

Lemma 8. [31,32]. Assume that A ∈ Mn, B ∈ Cn causes CAz+B to be bounded; then, CAz and CAz+B exist
in the same path-connected branch of Ce(F2

m).

Theorem 4. (Theorem of a Branch Topological Structure). Let C be the closed population in R;
the mapping T : C → C is continuous, and ϕ(z) = Az + B and ψ(z) = A1z + B1 cause the composite
operators Cϕ and Cψ to be bounded on F2

m. Then, the necessary and sufficient condition of Cϕ and Cψ belonging to
the same path-connected branch in Hilbert space is that for all ζ ∈ Cn satisfied by |Aζ| = |ζ| or |Aζ| 6= |A1ζ|,
there generally exists |Aζ| = |A1ζ|.

Proof. If we have Cϕ and Cψ in the same path-connected branch of Ce(F2
m), then there exists a limited

quantity of composite operators Cϕi
k+1
i=1 that satisfy Cϕk+1 = Cϕ, Cϕ1 = Cψ, and ‖Cϕ − Cψ‖e <

Ce
2 , Ce ∈

R, ∀i = 1, 2, · · · , k. Let ϕi(z) = Aiz + Bi, i = 1, 2, · · · , k + 1, Ak+1 = A, Bk+1 = A; then, for all
ζ ∈ Cn satisfied by |Aζ| = |ζ| and |Aζ| 6= |A1ζ|, there generally exists |Ai+1ζ| = |Aiζ|. Thus,
the necessary of the theorem is satisfied. Otherwise, we need only consider the case of ‖A‖ = ‖A1‖ = 1.
For all ζ ∈ Cn satisfied by |Aζ| = |ζ| and |Aζ| 6= |A1ζ|, let there generally exist |Aζ| = |A1ζ|.
According to Lemma 8, we can prove the conclusion as follows: if the norm ‖D‖ < 1, 1 ≤ k ≤ n− 1

of the matrix D ∈ Mn−k and P =

(
EK O
O O

)
, P1 =

(
EK O
O D

)
, then CPz and CP1z exist in

the same path-connected branch of Ce(F2
m). From singular value decomposition (SVD) of matrix

D, we need to prove only that CQz and CQ1z exist in the same path-connected branch of Ce(F2
m),

where Q =

(
EK O
O O

)
, Q1 =

(
EK O
O Λ

)
, where Λ is a diagonal matrix and the ith diagonal

element is the ith singular value σk+i, 0 ≤ σk+i < 1, 1 ≤ i ≤ n − k of D. For z ∈ Cn where z =

(z
′
k, z

′
n−k), z

′
k = (z1, · · · , z1), z

′
n−k = (zk+1, · · · , zn). Let ϕt(z) = tQ1z + (1− t)Qz, y ∈ [0, 1]; then,

ϕt(z) = (z
′
k, tΛz

′
n−k). To prove that the route t 7→ Cϕt is continuous under the essential norm,

note that (Cϕt − Cϕs) fε(z) = fε(z
′
k, tΛz

′
n−k) − fε(z

′
k, sΛz

′
n−k) = Σlal(tblc − sblc)σ

lk+1
k+1 · · · σ

ln
n zl1

1 · · · z
ln
n ,

where fε(z) = Σlalz
l1
1 · · · z

ln
n , blc = kk+1 + · · ·+ ln, then |tblc− sblc| ≤ blc|t− s|, ∀t, s ∈ [0, 1]. Because of

∀a ∈ [0, 1), the function xax is bounded in (0, ∞). Thus, there exists a positive constant M that satisfies
blcσlk+1

k+1 · · · σ
ln
n ≤ lk+1σ

lk+1
k+1 + · · · + lnσln

n ≤ M. Consequently, ‖(Cϕt − Cϕs) fε‖2
m ≤, M2|t − s|2‖ fε‖2

m.
Combined with (9), we obtain ‖Cϕt − Cϕs‖e ≤ M|t− s|, and the theorem is proven.
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4.3. Discrete Topological Structure of Closed Populations in Hilbert Space

Theorem 5. Cϕ is discrete in Hilbert space implied in Ce(F2
m) if and only if ϕ(z) = Uz, ϕ(z) = Uz, where U

is the U-matrix.

Proof. The adequacy of this theorem is obtained from Theorem 4; therefore, we prove only the
necessity component of the theorem. If A ∈ Mn is a non-U-matrix and ‖A‖ ≤ 1, from Lemma 8,
we obtain that ∃B ∈ Cn ⇒ CAz+B is bounded in F2

m. Actually, we can consider the case of ‖A‖ = 1.
Let the singular value decomposition (SVD) of A be UΛV; then, Λ is a non-U-matrix. Furthermore,
∃B′ = 0 ∈ Cn ⇒ CΛz+B′ is bounded in F2

m. Thus, Cϕ is discrete in the Hilbert space as implied in
Ce(F2

m).

Theorem 6. (Theorem of Discrete Topological Structure). Let C be the closed population in R,
the mapping fε : C → C be continuous, and β be a single point as described in Theorem 2, which is the
optimal feature value of the convergent iterative sequence on the closed population C. Then, the single point
must be a discrete point. Now, we can transform the original closed population C into a Hilbert space with the
discrete parameter β by topological mapping; specifically, it is the β-Hilbert space.

5. Quantum Characteristics of the Heisenberg Uncertainty Principle in β-Hilbert Space

The Heisenberg uncertainty principle is a fundamental principle of quantum mechanics that
fundamentally illustrates that the position and momentum of a particle cannot be measured
simultaneously in a quantum system; its basic form is ∆x∆p ≥ h

2 , where h is the reduced Planck
constant. When the DE algorithm pushes a closed population individual optimal process in
β-Hilbert space, it measures the population individual in β-Hilbert space by the mutation, crossover,
and selection of basic operational operators, which can screen the optimal characteristic value x∗.
If we regard the entire β-Hilbert space as a complete space with the best signal source β, where each
individual exhibits the characteristics of a better signal, then the signal source screened by the DE
algorithm is the best of all of better signals, that is, it is the best signal source. Then, the quantity of
information carried by each individual is related to the frequency of the best source and the information
quantities of the best source retained by individuals that are convergent in probability F in the optimal
time. With the optimization time gradually lengthening, the quantity of high-quality information
carried by each individual in the convergent iterative sequence is continuously accumulated and
gradually approaches that of the best signal source. There are two situations. One is that when
slower the convergent speed of the iterative convergent sequence is slower, the speed of the
high-quality information quantities carried by individuals accelerates is also slower, but the positional
accuracy ε between the best source and population individuals is generally shrinking. Another
situation is that when the convergent speed of the iterative convergent sequence is faster, and the
high-quality information quantities carried by individuals in the population is reduced due to the
spatial probability distributing unevenly, such that the positional accuracy ε between the best source
and population individuals generally increases. Now, we provide a concrete representation of the
quantum characteristics of the Heisenberg uncertainty principle of the DE algorithm in β-Hilbert space.

Definition 2. [33]. For a 2n × 2n matrix in symplectic groups, Q =

(
A B
C D

)
, the linear canonical

transformation of f (q′) ∈ L2(Rn) is defined as f̂ (q) = [C(M) f ](q) =
∫
Rn C(M)(q, q′) f (q′)dq′,

where C(M)(q, q′) = e(−
inπ

4 )

(
√

2π)n
√

det(B)
· ei( q>DB−1q

2 −q>(B>)−1q′+ q′>B−1 Aq′
2 ). Its inverse transform is f (q′) =

[C(M−1) f̂ ](q′) =
∫
Rn C(M−1)

∗(Q, Q′) f̂ (q)dq.
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Definition 3. (One-Dimensional Uncertainty Principle) [34]. If f is a continuous function in Hilbert
space, then its speed resolution ∆2

v and position resolution ∆2
x in Hilbert space are defined as

∆2
v =

∫
Rn
(v− v0)

2| f (v)|2dv, ∆2
x =

∫
Rn
(x− x0)

2| f̂ (x)|2dx

where v0 =
∫
Rn

v| f (v)|2dv, x0 =
∫
Rn

x| f̂ (x)|2dx; then, the Heisenberg uncertainty principle of the

one-dimensional β-Hilbert space is ∆2
v · ∆2

x ≥ b2

4 .

Definition 4. Let fε be a continuous-differential function defined in β-Hilbert space; then, its speed resolution
∆2

v and position resolution ∆2
xε

β
space are defined as

∆2
v =

∫
Rn
(v− v0)

>(v− v0)| fε(v)|2dv, ∆2
xε

β
=
∫
Rn
(x− x0)

>| f̂ε(x)|2dx (27)

where v> = (v1, v2, · · · , vn)>, v>0 = (
∫
Rn

v1| f (v)|2dv, · · · ,
∫
Rn

vn| f (v)|2dv)>,
x> = (x1, x2, · · · , xn)>, x>0 = (

∫
Rn

x1| f (x)|2dx, · · · ,
∫
Rn

xn| f (x)|2dx)>.

Theorem 7. Let fε be a continuous-differential function defined in β-Hilbert space and fε(v1, · · · , vn) ∈
L2(Rn), M ∈ Sp(2n,R). When det(B) 6= 0, then we have the following equation:

∆2
v · ∆2

xε
β

=

∫
Rn (v−v0)

>(v−v0)| fε(v)|2dv∫
Rn | fε(v)|2dv ·

∫
Rn (x−x0)

> | f̂ε(x)|2dx∫
Rn | f̂ε(x)|2dx

≥ (
√

λ1
2 + · · ·+

√
λn
2 )

(28)

where v>0 = (
∫
Rn

v1| f (v)|2dv, · · · ,
∫
Rn

vn| f (v)|2dv)>, x>0 = (
∫
Rn

x1| f (x)|2dx, · · · ,
∫
Rn

xn| f (x)|2dx)>,
and λi is an eigenvalue of B>B.

Proof. Under the conditions of det(B) 6= 0, assume that v0 = 0, x0 = 0. Then, we can obtain by using
a linear canonical transform [35] that

∆2
xε

β
=
∫
Rn

x>x| f̂ε(u)|2dx

=
∫
Rn

x>x|
∫
Rn

fε(u) e−
inπ

4

(
√

2π)n
√

det(B)
e−ix>(B>)−1u+i u>B−1 Au

2 du|2dx
(29)

Let t = B−1x; then, we can obtain from an integral transform that

∆2
xε

β
=
∫
Rn

t>B>Bt 1
(2π)n |

∫
Rn

fε(u)e−it>u+i u>B−1 Au
2 du|2dt (30)

Now, we set ˜fε(u) = fε(u)ei u>B−1 Au
2 ; then, there exists

∆2
xε

β
=
∫
Rn

t>B>Bt 1
(2π)n |

∫
Rn

˜fε(u)e−it>udu|2dt (31)

and
∆2

v =
∫
Rn

u>u| fε(u)|2du =
∫
Rn

u>u ˜fε(u)|2du (32)

Because det(B) 6= 0 and because B>B is a symmetric positive definite matrix, using matrix
spectral decomposition, we find that the existing orthogonal matrix P satisfies

B>B = P>ΛP (33)
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where Λ is a diagonal matrix and where elements distributed on the diagonal are the eigenvalues of
B>B; then, there exists

∆2
xε

β
=
∫
Rn

t>P>ΛPt 1
(2π)n |

∫
Rn

˜fε(u)e−it>udu|2dt (34)

Let ω = Pt, conduct an integral transformation for (34), and let u = P>y; then, there exists

∆2
xε

β
=
∫
Rn

ω>Λω 1
(2π)n |

∫
Rn

˜fε(u)e−iω>Pudu|2dt

=
∫
Rn

ω>Λω 1
(2π)n |

∫
Rn

˜fε(P>y)e−iω>ydy|2dt
(35)

and
∆2

v =
∫
Rn

u>u|˜fε(u)|2du =
∫
Rn

y>y| ˜fε(P>y)|2dy (36)

Let ˜fε(P>y) = h(y); then, there exists

∆2
xε

β
=
∫
Rn

ω>Λω 1
(2π)n |

∫
Rn

h(y)e−iω>ydy|2dt, ∆2
v =

∫
Rn

y>y|h(y)|2dy (37)

Furthermore, there exists

∆2
v · ∆2

xε
β

=
∫
Rn

y>y|h(y)|2dy ·
∫
Rn

ω>Λω 1
(2π)n |

∫
Rn

h(y)e−iω>ydy|2dt

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy

×
∫
Rn
(λ1ω2

1 + · · ·+ λnω2
n)

1
(2π)n |

∫
Rn

h(y)e−iω>ydy|2|dω

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy×

∫
Rn
(λ1|ω1∫

Rn
h(y)e2πiω>ydy|2 + · · ·+ λn|ωn

∫
Rn

h(y)e2πiω>ydy|2)dω

(38)

where λi is the ith eigenvalue of B>B. Let hi = ∂h(y)
∂yi

; then, from the Fourier transformation
property [35], there exists

∆2
v · ∆2

xε
β

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy

×
∫
Rn
(λ1|

∫
Rn

h1(y)e2πiω>ydy|2 + · · ·+ λn|
∫
Rn

hn(y)e2πiω>ydy|2)dω
(39)

From the Cauchy inequality, we know that

∆2
v · ∆2

xε
β

≥ ((
∫
Rn

y2
1|h(y)|2dy ·

∫
Rn

λ1|
∫
Rn

h1(y)e2πiω>ydy|2dy)
1
2

+ · · ·+ (
∫
Rn

y2
n|h(y)|2dy ·

∫
Rn

λ1|
∫
Rn

hn(y)e2πiω>ydy|2dy)
1
2 )2

(40)

Then, using the Cauchy inequality of integral form, we know that

∆2
v · ∆2

xε
β

≥ (
∫
Rn
(|y1h(y)

√
λ1h∗1(y)|+ · · ·+ |ynh(y)

√
λnh∗n(y)|)dy)2

= (
√

λ1
∫
Rn
(|y1h(y)h∗1(y)|dy + · · ·+

√
λn
∫
Rn
|ynh(y)h∗n(y)|dy)2

(41)

From the one-dimensional uncertainty principle, we obtain∫
Rn
|y1h(y)

√
λ1h∗1(y)|dy ≥ 1

2 (42)

To summarize, we obtain

∆2
v · ∆2

xε
β
≥ (

√
λ1
2 + · · ·+

√
λn
2 )2 (43)
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6. Numerical Simulation

The above theorem fundamentally illustrates the geometric association between the convergent
speed of the iterative sequence concerning the DE algorithm and the global optimal point precision.
Specifically, ∆v and ∆xε

β
are a pair of conjugate variables with quantum states, where the convergent

speed of the iterative sequence caused by any improvement of the algorithm and the numerical
accuracy of the global optimal point cannot be satisfied simultaneously. The above is a notably
important conclusion for the DE algorithm. We use the SFEM (segmentation finite element
method) to conduct a simple segmentation operation for β-Hilbert space and form a Riemannian
manifold (Regarding Riemannian manifolds [36,37] in the β-Hilbert space, here, we mainly apply
the space cluster caused by the wide-area property of Riemannian manifolds in Hilbert space. Then,
we can improve the efficiency of algorithm optimization due to using the space cluster. In addition,
because the Riemannian manifolds are more beneficial to the spatial segmentation operation by
preventing the generation of singular points in space so that some points are omitted in the optimal
process, we also consider the space quantum properties of Riemannian manifolds in the β-Hilbert
space. Applying the Riemannian manifolds is a purely scientific method of mathematical physics
in Hilbert space and is not intended to involve theoretical analysis of Riemannian manifolds) in the
β-Hilbert region. The three topological structures implied in the β-Hilbert space of the DE algorithm
are conducted by the operation of high-dimensional numerical simulation of quantum states to obtain
the data of Tables 1–5 (In the Tables 1–5, ∗ · · · ∗ is the strength of the variable; a larger number
implies a greater strength of the variable. Speed resolution is labeled as SR, position resolution as
PR, relevancy of the finite unit element [38,39] as finite relevancy (FR), space dimension as (Dim),
number population as (NP), mutational operation as (F), crossed operation as (CR), and elected
operation as (X). The single-point topological structure, branch topological structure and discrete
topological structure are labeled as (SPTS), (BTS), and (DTS), respectively), (variance deviation rate
(VDR) = (sample variance (SV)-population variance (PV))/PV; relevancy coefficient of the finite unit
element as FR’ = SR’s VDR + PR’s VDR. If FR′ ∈ (0, 1), then FR is true value 1; If FR′ = 0, then FR
is partial truth value 1−−; If FR′ = 1, then FR is absolute truth value 1 ++; EB is the error bounds
about iterative points in population), such that one can determine the association between quantum
characteristics of the Heisenberg uncertainty principle implied in β-Hilbert space of the DE algorithm
and its topological structure.

Table 1. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about Dim.

(Dim)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

102 9.500 0.400 1 6.660 0.558 1 8.214 0.325 1
103 9.230 0.422 1 7.242 0.500 1 8.225 0.214 1
104 8.471 0.500 1 8.011 0.500 1 9.535 0.110 1
105 7.620 0.558 1 9.763 0.500 1 9.774 0.012 1
106 6.101 0.660 1 9.763 0.500 1 9.896 0.011 1
107 5.310 0.793 1 9.880 0.500 1 9.977 0.010 1

SV 2.89009 0.02248 / 2.05701 0.00056 / 0.68463 0.01727 /
PV 2.40841 0.01874 / 1.71418 0.00047 / 0.57052 0.01439 /
DVR +0.20 +0.32 1 +0.34 +0.19 1 +0.11 +0.16 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /
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Table 2. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about NP.

(NP)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

10× 10 8.687 0.793 1 5.243 0.021 1 8.688 0.029 1
10× 20 8.756 0.660 1 7.242 0.021 1 8.744 0.025 1
10× 30 8.863 0.558 1 9.011 0.020 1 8.880 0.013 1
10× 40 8.880 0.500 1 9.763 0.015 1 8.863 0.009 1
10× 50 9.000 0.500 1 9.841 0.010 1 9.010 0.005 1
10× 60 9.010 0.500 1 9.865 0.010 1 9.101 0.004 1

SV 0.18447 0.01426 / 3.54164 0.00003 / 0.02428 0.00011 /
PV 0.15373 0.01188 / 2.95137 0.00002 / 0.02023 0.00009 /
DVR +0.20 +0.20 1 +0.19 +0.50 1 +0.20 +0.22 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Table 3. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about F.

(F)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0.2 6.786 0.660± 0.0001 1 2.652 2.558 1 11.749 0.005 1
0.3 6.020 0.877± 0.0001 1 2.641 2.560 1 11.744 0.009 1
0.4 6.020 0.966± 0.0001 1 2.633 2.559 1 11.126 0.010 1
0.5 5.852 1.101± 0.0001 1 2.620 2.660 1 9.535 0.010 1
0.6 5.633 1.210± 0.0001 1 2.619 2.676 1 9.535 0.015 1
0.7 5.330 1.220± 0.0001 1 2.618 2.881 1 9.535 0.055 1

SV 0.24052 0.04688 / 0.0002 0.0158 / 0.02428 0.00035 /
PV 0.20043 0.03907 / 0.00016 0.01316 / 0.02023 0.00029 /
DVR +0.20 +0.19 1 +0.25 +0.20 1 +0.20 +0.20 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Table 4. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about CR.

(CR)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0 ∗ 0.430 0.991 1 ++ 7.002 0.990 1 ++ / 0.000 1−−
0 ∗∗ 0.520 0.853 1 ++ 7.242 0.960 1 ++ / 0.000 1−−
0 ∗∗∗ 0.522 0.793 1 ++ 7.620 0.960 1 ++ / 0.000 1−−

SV 0.00276 0.01031 / 0.09707 0.0003 / / 0 /
PV 0.00184 0.00687 / 0.06471 0.0002 / / 0 /
DVR +0.50 +0.50 1 ++ +0.50 +0.50 1 ++ / 0 1−−
EB ±0.5 ±0.5 / ±0.5 ±0.5 / / ±0.5 /

1 ∗ 1.233 0.099 1 9.855 0.010± 0.0001 1 11.144 0.397 1
1 ∗∗ 1.122 0.124 1 9.676 0.500± 0.0001 1 11.126 0.542 1
1 ∗∗∗ 1.010 0.500 1 9.110 0.500± 0.0001 1 10.250 0.633 1

SV 0.01243 0.05047 / 0.15124 0.08003 / 0.26116 0.01417 /
PV 0.00829 0.03364 / 0.10082 0.05336 / 0.1741 0.00944 /
DVR +0.49 +0.49 1 +0.50 +0.03 1 +0.50 +0.20 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /
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Table 5. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about X.

(X)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0 ∗ 0.523 0.796 1 ++ 7.002 0.081 1 ++ / 0.000 1−−
0 ∗∗ 0.550 0.788 1 ++ 7.242 0.055 1 ++ / 0.000 1−−
0 ∗∗∗ 0.599 0.721 1 ++ 7.620 0.001 1 ++ / 0.000 1−−

SV 0.00035 0.0017 / 0.09707 0.00167 / / 0 /
PV 0.00023 0.00113 / 0.06471 0.00111 / / 0 /
VDR +0.52 +0.50 1 ++ +0.50 +0.50 1 ++ / 0 1−−
EB ±0.5 ±0.5 / ±0.5 ±0.5 / / ±0.5 /

1 ∗ 0.997 0.499 1 9.855 0.723 1 ++ 11.144 0.551 1 ++
1 ∗∗ 0.947 0.500 1 9.676 0.956 1 ++ 11.126 0.640 1 ++
1 ∗∗∗ 0.930 0.110 1 9.110 0.990 1 ++ 10.250 0.688 1 ++

SV 0.00121 0.05057 / 0.15124 0.02112 / 0.26116 0.00483 /
PV 0.00081 0.03371 / 0.10082 0.01408 / 0.1741 0.00322 /
VDR +0.49 +0.50 1 +0.50 +0.50 1 ++ +0.50 +0.50 1 ++
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Because of the uncertainty of random algorithm, except for several dead points and invalid points,
we conduct a quantitative analysis of Tables 1–5 to ensure the regularity of data analysis.

For Dim, we set the dimensions to increase with common ratio of 10. Firstly, we analyze the
relationship between SR and PR about the SPTS: when the dimension increases, the SR decreases
gradually with a variance deviation rate +0.20, then the SR of iterative individuals decreases gradually;
and the PR increases gradually with a variance deviation rate +0.32, then the PR of iterative individual
increases gradually. The above case shows that FR is true value 1, then SR and PR are completely
inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the dimension
increases, the SR increases gradually with a variance deviation rate +0.34, then the SR of iterative
individuals increases gradually; and the PR decreases gradually with a variance deviation rate +0.19,
then the PR of iterative individuals decreases gradually. The above case shows that FR is true value 1,
then SR and PR are completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the dimension
increases, the SR increases gradually with a variance deviation rate +0.11, then the SR of iterative
individuals increases gradually; and the PR decreases gradually with a variance deviation rate +0.16,
then the PR of iterative individuals decreases gradually. The above case shows that FR is true value 1,
then SR and PR are completely inverse correlation.

Similarly, we quantitatively analyze the NP. We set the NP to increase with tolerance of 100.
Firstly, we analyze the relationship between SR and PR about the SPTS: when the NP increases, the SR
increases gradually with a variance deviation rate +0.20, then the SR of iterative individuals increases
gradually; and the PR decreases gradually with a variance deviation rate +0.20, then the PR of iterative
individuals decreases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the NP increases,
the SR increases gradually with a variance deviation rate +0.19, then the SR of iterative individuals
increases gradually; and the PR decreases gradually with a variance deviation rate +0.50, then the PR
of iterative individuals decreases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the NP increases,
the SR increases gradually with a variance deviation rate +0.20, then the SR of iterative individuals
increases gradually; and the PR decreases gradually with a variance deviation rate +0.22, then the PR
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of iterative individuals decreases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Similarly, we quantitatively analyze the F. We set the F to increase with tolerance of 0.1. Firstly,
we analyze the relationship between SR and PR about the SPTS: when the F increases, the SR decreases
gradually with a variance deviation rate +0.20, then the SR of iterative individuals decreases gradually;
and the PR increases gradually with a variance deviation rate +0.19, then the PR of iterative individual
increases gradually. The above case shows that FR is true value 1, then SR and PR are completely
inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the F increases, the SR
decreases gradually with a variance deviation rate +0.25, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.20, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the F increases,
the SR decreases gradually with a variance deviation rate +0.20, then the SR of iterative individuals
decreases gradually; and the PR increases gradually with a variance deviation rate +0.20, then the PR
of iterative individual increases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Similarly, we quantitatively analyze the CR. We divide the CR into two cases that the one is
absolute crossover and the other is non-crossover, which are represented by ’1’ and ’0’ respectively.
Firstly, we analyze the relationship between SR and PR about the SPTS: under the condition of the
latter,when the intensity of CR increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of CR increases gradually, the SR
decreases gradually with a variance deviation rate +0.49, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.49, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: under the condition of the
latter,when the intensity of CR increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of CR increases gradually, the SR
decreases gradually with a variance deviation rate +0.50, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.03, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: under the condition of the
latter, when the intensity of CR increases gradually, the variance deviation rate of SR does not exist,
and the variance deviation rate of PR is 0, which shows that there are been no change in the individual
diversity of the original population, and SR and PR are no change. The above case shows that FR is
partial truth value 1−−, then SR and PR are relatively inverse correlation. Under the condition of
the former, when the intensity of CR increases gradually, the SR decreases gradually with a variance
deviation rate +0.50, then the SR of iterative individuals decreases gradually; and the PR increases
gradually with a variance deviation rate +0.20, then the PR of iterative individual increases gradually.
The above case shows that FR is true value 1, then SR and PR are completely inverse correlation.
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Similarly, we quantitatively analyze the X. We divide the CR into two cases that the one is
absolute choice and the other is non-choice, which are represented by ’1’ and ’0’ respectively. Firstly,
we analyze the relationship between SR and PR about the SPTS: under the condition of the latter,
when the intensity of X increases gradually, the SR increases gradually with a variance deviation rate
+0.52, then the SR of iterative individuals increases gradually; and the PR decreases gradually with a
variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above case
shows that FR is absolute true value 1 ++ , then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of X increases gradually, the SR
decreases gradually with a variance deviation rate +0.49, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.50, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: under the condition of the
latter, when the intensity of X increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of X increases gradually, the SR
decreases gradually with a variance deviation rate +0.50, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.50, then the PR of iterative
individual increases gradually. The above case shows that FR is absolute true value 1 ++, then SR
and PR are absolutely and completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: under the condition
of the latter, when the intensity of X increases gradually, the variance deviation rate of SR does not
exist, and the variance deviation rate of PR is 0, which shows that there are been no change in the
individual diversity of the original population, and SR and PR are no change. The above case shows
that FR is partial truth value 1− −, then SR and PR are relatively inverse correlation. Under the
condition of the former, when the intensity of X increases gradually, the SR decreases gradually with
a variance deviation rate +0.50, then the SR of iterative individuals decreases gradually; and the PR
increases gradually with a variance deviation rate +0.50, then the PR of iterative individual increases
gradually. The above case shows that FR is absolute true value 1 ++, then SR and PR are absolutely
and completely inverse correlation.

We conduct a qualitative analysis of Tables 1–5 as well. Except for several dead points and invalid
points, under the condition of spatial dimension, the number of the population, mutated operator,
crossover operator, and selected operator are generally decreasing or increasing; correspondingly,
the speed changing rate of individual iterative points and the position changing rate of global optimal
point β exhibit a inverse correlation in β-Hilbert space, which illustrates the association between the
Heisenberg uncertainty quantum characteristics and its topological structure implied in the β-Hilbert
space of the DE algorithm. Specifically, the association of the convergent iterative sequence and the
global optimal point precision is a pair of conjugate variables on the quantum states in β-Hilbert
space with the uncertainty characteristics on quantum states. It is fundamentally explained that any
improvement in the algorithm cannot pursue the bidirectional efficiency between the convergent speed
and the optimal point precision.

7. Conclusions

This paper mainly discusses the continuity structure of closed populations and the control
convergent properties of the iterative sequences of the DE algorithm under the condition of
P−ε, establishes and analyzes the single-point topological structure, branch topological structure,
and discrete topological structure implied in β-Hilbert space of the DE algorithm, verifies the
association between the Heisenberg uncertainty quantum characteristics and its topological structure
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implied in the β-Hilbert space of the DE algorithm, and obtains the specific directions of the
quantum uncertainty characters of the DE algorithm in β-Hilbert space by quantum simulation
of high-dimensional data. The findings are that the speed resolution ∆2

v of the iterative sequence
convergent speed and the position resolution ∆xε

β
of the global optimal point with the swinging range

are a pair of conjugate variables of the quantum states in β-Hilbert space, corresponding to uncertainty
characteristics of quantum states; they cannot simultaneously achieve bidirectional efficiency between
the convergent speed and the best point precision with any procedural improvements. Because they
are geometric features of Riemannian manifolds in the view of operator optimization in Hilbert space
theoretically, however, which is only a theoretical guess, the quantum characters of the pair of conjugate
variables in the Riemannian space require further exploration.

We all know that the most important theoretical research of meta-heuristic algorithm is how to
balance the convergence speed and accuracy of the iterative points better to ensure that the iterative
process is more efficient, when the iterative points approaches the global optimal point. We get the
quantum uncertainty properties of the DEalgorithm in the beta-Hilbertspace by theoretical analysis.
In the future, we will discuss the quantum estimation form and its asymptotic estimation form between
convergent speed and convergent accuracy of iterative points by numerical simulation, which will lay a
solid mathematical foundation for the convergent mechanism of meta-heuristic algorithm. Our second
work in the future is to study the computational structure and physical structure of differential
evolution algorithm, including computational complexity, spatial complexity, time tensor expansion,
convergent analysis, quantum transformation state structure, Heisenberg uncertainty quantum state,
dynamic torque analysis and so on, which will become the physical basis of the convergent theory of
meta-heuristic algorithm.
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