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Abstract: In this paper, the multiblock mortar mixed approximation of second order parabolic partial
differential equations is considered. In this method, the simulation domain is decomposed into the
non-overlapping subdomains (blocks), and a physically-meaningful boundary condition is set on
the mortar interface between the blocks. The governing equations hold locally on each subdomain
region. The local problems on blocks are coupled by introducing a special approximation space on
the interfaces of neighboring subdomains. Each block is locally covered by an independent grid
and the standard mixed finite element method is applied to solve the local problem. The unique
solvability of the discrete problem is shown, and optimal order convergence rates are established
for the approximate velocity and pressure on the subdomain. Furthermore, an error estimate for the
interface pressure in mortar space is presented. The numerical experiments are presented to validate
the efficiency of the method.

Keywords: parabolic problem; domain decomposition; semidiscrete; multiblock; mortar mixed
method; elliptic projection; error estimates; interface error

1. Introduction

The numerical approximation of partial differential equations has received considerable attention
due to its applications in diverse fields of science and technology. In modern scientific computation,
efficiency and accuracy are the main objectives of numerical methods. Generally, numerical methods
reduce the solution of partial differential equations into the solution of an algebraic system of equations.
In practical applications, using direct methods, it is very complicated to attain both efficiency and
accuracy at the same time. For example, fluid flow in an underground reservoir involves a highly
heterogeneous medium. Furthermore, the physical properties of the media change rapidly on a large
domain; for example, in fluid flow in porous media, the permeability of fluid fluctuates rapidly. In such
cases, either accuracy is sacrificed or a very fine mesh is used to resolve heterogeneity in permeability.
The latter gives rise to a huge system of coupled equations, which in many cases becomes very
challenging to solve computationally. These difficulties motivated discovering alternate techniques
that keep the computational burden manageable along with the maximum possible accuracy.

Several domain decomposition methods have been developed to overcome these difficulties.
The purpose of all domain decomposition methods is to provide efficient approximation by alleviating
the computation burden. This is achieved by splitting the physical problem into smaller subproblems
by dividing the domain into a series of subdomains. This technique allows considering different
physical models in different regions. It is also capable of employing the most suitable approximation
method in different blocks of the computational domain. We consider the second order linear parabolic
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partial differential equation modeling single-phase Darcy flow in a porous medium written as a system
of first order equations:

u = −a(x)∇p, in Ω× J, (1)

∂p
∂t

+∇·u = f (x) in Ω× J, (2)

p = g on ∂Ω× J, (3)

p = p0, in Ω× {0}, (4)

where Ω ⊂ Rd, d = 2 or 3, and J = [0, T]. Equation (1) is the Darcy law, and (2) is the mass conservation.
The unknown u represents Darcy velocity, and p is the pressure. Assume that a has the continuous
bounded derivative up to order two and there exist constants α and β such that:

0 < α ≤ a ≤ β < ∞. (5)

Moreover, assume that there exist constants B1 and B2 such that:

| f |, ∂ f
∂x

,
∂ f
∂y
≤ B1,

|g|, ∂g
∂x

,
∂g
∂y
≤ B2.

Mixed finite element methods have emerged with considerable popularity in several areas of
science and engineering. The mixed methods enjoy local mass conservation and provide accurate
approximation of two variables of physical interest simultaneously, for example velocity and pressure
in fluid flow. They are also capable of approximating both variables with the same accuracy. The mixed
finite element methods have been extensively used to solve the elliptic [1–14] and parabolic [15–19]
partial differential equations. The mixed finite element methods are also used to approximate the
partial differential equations governing fluid flow [20–28].

The mortar finite element method was first introduced in [29] for the elliptic partial differential
equation. It is a nonconforming domain decomposition method in which the weak continuity condition
is imposed across the subdomain interfaces. The mixed finite element method on locally-nested refined
grids was developed in [30,31]. In this technique, the continuity of flux across the subdomain block
interface is enforced by using the concept of slave or worker nodes. Since in this approach, the grids
must be nested, it cannot be extended to the non-matching ones.

The mixed version of the mortar method is proposed and analyzed in [20]. The idea was to divide
the original domain into smaller blocks and impose the governing partial differential equation on each
block. An unknown pressure is introduced on the interfaces between the subdomains known as the
Lagrange multiplier. This new variable provides the Dirichlet boundary condition for the local problem
on each subdomain block. This procedure splits the large problem into a series of small subproblems.
As a result, the local small-sized problems can be solved more comfortably as compared to a single
large problem on the entire domain. This method gives better approximation on non-matching grids.
Since different grids are used on the adjacent subdomains, the normal trace of the velocity space cannot
be used as a Lagrange multiplier space; therefore, a different space, namely the mortar finite element
space, is defined on the inter-block boundaries. The method gives the optimal order convergence if
the mortar space approximation is one order higher than the normal trace of the subdomain velocity
space. The multiblock approach provides the independent partition of each subdomain block so that
an appropriate approximation method can be applied to solve the local problem. This approach offers
great flexibility to formulate the different physical and mathematical models on different subdomain
blocks. Moreover, the non-overlapping domain decomposition algorithms can be applied to implement
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the scheme in parallel. The multiblock technique has been further explored to solve several problems,
for example [32–34].

To the best of the authors’ knowledge, there is no article in the literature that presents a complete
analysis of the multiblock mortar mixed approach for the time-dependent problem under consideration.
The present study is an extension of the results established in [20] to the parabolic equations.
The continuous time discretization is considered, and the difficulties arising in the multiblock mortar
mixed formulation of time-dependent problems are addressed. First, the existence and uniqueness
of the discrete solution is accomplished by using the established theory for ordinary differential
equations. Second, the convergence analysis of parabolic problems requires the construction of elliptic
projection [35], which maps the continuous solution into the discrete space. The a priori error estimate
is derived via mixed elliptic projection for the approximate velocity and pressure on the subdomain.
The error estimate for the unknown mortar pressure through the interface bilinear form as described
in [20] is not applicable in our case. Therefore, an alternate way is used, and an error bound for the
Lagrange multiplier serving as the Dirichlet boundary condition on mortar the interface is proven.
The error estimate for the mortar interface variable predicts the accuracy of data flow across the
subdomain interface.

Consider the domain D ⊂ R2, and let us denote by ∂D the boundary of D. Let n denote the unit
outward normal to ∂D. Throughout the article, we shall use (·, ·)D to denote the L2(D) or L2(D)2 the
inner product on D. Furthermore the inner product on ∂D is denoted by 〈·, ·〉∂D . The L2(D) or L2(D)2

norm will be denoted by ‖·‖. For any non-negative integer ` and 1 ≤ q ≤ ∞, let W`,q(D) = {ψ ∈
Lq(D) | Dα(ψ) ∈ Lq(D)} denote the standard Sobolev space. The norm and semi-norm on W`,q(D)
are denoted by ‖·‖`,q,D and |·|`,q,D , respectively. In particular, for q = 2, W`,2(D) = H`(D) denotes

the space of ` times differentiable L2(D) functions. The norm on H`(D) is denoted by ‖·‖`,D . In the
notation below, we shall omit the subscript D when D = Ω. Throughout the article, the boldface
letters are used to denote the vectors. Furthermore, for the weak formulation of mixed finite element
methods, the usual function space is defined as:

H(div;D) = {ψ ∈ L2(D)2 | ∇·ψ ∈ L2(D)}.

Finally, for a given norm space χ = χ(D) equipped with the norm ‖·‖χ, the function
space W`,q(J; χ(D)) denotes the space of functions ψ : [0, T] −→ χ(D) equipped with the norm,
for 1 ≤ q < ∞:

‖ψ‖W`,q(J;χ(D)) =

{ `

∑
i=0

∫
J

∥∥∥∥ ∂i

∂ti ψ(·, t)
∥∥∥∥`

χ(D)
dt
}1/`

,

and if q = ∞, the integral is replaced by an essential supremum.
The remainder of the article is outlined as follows. In the next section, we discuss the domain

decomposition and the method formulation and present the unique solvability of the discrete problem.
The mixed method elliptic projection and related error estimates are given in Section 3. In Section 4, we
provide optimal order convergence results. Section 5 deals with the error estimates for unknown mortar.
The numerical experiments are provided in Section 6. Finally, the paper is concluded in Section 7.

2. Domain Decomposition and Method Formulation

Let us consider the non-overlapping decomposition of the domain Ω into the series of subdomains
{Ωi}nb

i=1 such that:
Ω̄ = ∪nb

i=1Ωi and Ωi ∩Ωj 6= ∅.

Let us define the interfaces:

Γij := ∂Ωi ∩ ∂Ωj, Γ := ∪1≤i<j≤nbΓij, Γi := ∂Ωi ∩ Γ = ∂Ωi \ ∂Ω.
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Here, Γij denotes the interface between two subdomains, Γ represents the interior skeleton of
decomposition, and Γi is the interface related to a single subdomain in the decomposition.

We now define the function spaces to formulate the weak and discrete problems. Let us define the
local weak spaces as Si = H(div; Ωi), Ui = L2(Ωi), Σij = H1/2(Γij). Then, their global counterparts
are given by:

S = ⊕nb
i=1Si, U = ⊕nb

i=1Ui = L2(Ω), Σ = ⊕1≤i<j≤nbΣij.

In order to define the discrete finite element spaces, we first partition each subdomain into the local
conforming and quasi-uniform mesh denoted by Th,i, that is Ω̄ = ∪E∈Th,i E, where E denotes an element
in the mesh with maximum diameter hi. For the purpose of analysis, we define h = max1≤i≤nb hi.
We allow the possibility that the local grids Ti and Tj on adjacent subdomains Ωi and Ωj do not
necessarily align on the interface. Let us denote by Th the union of partitions Th,i on subdomains Ωi,
1 ≤ i ≤ nb, that is Th := ∪nb

i=1Th,i. Let us consider the mixed finite element spaces Sh,i ⊂ Si, Uh,i ⊂
Ui of order k + 1. These mixed finite element spaces can be either Raviart–Thomas (RTk) [12], or
Brezzi–Douglas–Fortin–Marini (BDFMk) [2], or Brezzi–Douglas–Fortin (BDFk) [1]. Moreover, we
assume that the order of approximation is the same on each subdomain. It is well known that the
property ∇·Sh,i = Uh,i holds in standard mixed finite element spaces. Then, the corresponding global
mixed spaces on Th are defined by:

Sh = ⊕nb
i=1Sh,i, Uh = ⊕nb

i=1Uh,i.

Note that the normal components of vectors in the space Sh are continuous between the elements
of local grid on each subdomain block Ωi, but not across the interface Γ.

We consider the quasi-uniform mesh on mortar interface Γij, denoted by Th,ij. This mortar
interface mesh will be used to define a finite element space that provides the approximation for the
Dirichlet boundary condition assigned to the mortar interface. Let us denote by Σh,ij ⊂ L2(Γij), the
mortar space consisting either of continuous or discontinuous piecewise polynomials of degree k + 1
on the interface mesh, where k is associated with the degree of polynomial in Sh.n. Note that for d = 2
and the lowest order Raviart–Thomas space (RT0), the mortar space Σh,ij contains piecewise linear
polynomials. In the case of d = 3 and RT0, the mortar space consists of a bilinear polynomial on the
interface. Then, the global mortar space on Γ is given by:

Σh = ⊕1≤i<j≤nbΣh,ij.

In the following, we treat any function µ ∈ Σ as extended by zero on ∂Ω. Also in the case of
discontinuous space, Th,ij need not to be conforming.

A unique solution for the discrete problem exists, if the following technical condition holds.

Assumption 1. Let Qi
h : L2(Γi) −→ Sh,i · ni|Γi be the L2- orthogonal projection on each subdomain Ωi,

1 ≤ i ≤ nb, satisfying:

〈ψ−Qi
hψ, v · ni〉Γi = 0, v ∈ Sh,i, ψ ∈ L2(Γi), (6)

then assume that there exists a constant C, independent of h, such that for all µ ∈ Σh:

‖µ‖Γij ≤ C(‖Qi
hµ‖Γij + ‖Q

j
hµ‖Γij), 1 ≤ i < j ≤ n. (7)

The condition (7) enforces a limit on the mortar degrees of freedom, and it can easily be satisfied
in practice [36,37].

In the analysis below, several projection operators will be needed. We now introduce these
projection operators and state their approximation properties. Recall that in the mixed finite element
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spaces, there exists the projection operator Πi : (H1/2+ε(Ωi))
d ∩ Si −→ Sh,i satisfying for any

ψ ∈ (H1/2+ε(Ωi))
d ∩ Si and ε > 0:

(∇·(Πiψ−ψ), w)Ωi = 0, w ∈ Uh, (8)

〈(ψ−Πiψ) · ni, v · ni〉∂Ωi
= 0, v ∈ Sh,i. (9)

The projection operators Πi and Qi
h defined above have the following approximation properties:

‖ψ−Πiψ‖Ωi
≤ C ‖ψ‖r,Ωi

hr, 1 ≤ r ≤ k + 1, (10)

‖∇·(ψ−Πiψ‖Ωi
≤ C ‖∇·ψ‖r,Ωi

hr, 0 ≤ r ≤ l + 1, (11)

‖(ψ−Πiψ) · ni‖−s,Γij
≤ C ‖ψ‖r,Γij

hr+s, 0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1, (12)∥∥∥ψ−Qi
hψ
∥∥∥
−s,Γij

≤ C ‖ψ‖r,Γij
hr+s, 0 ≤ r ≤ k + 1, 0 ≤ s ≤ k + 1. (13)

Furthermore, if ψ ∈ (Hε(Ωi))
d, 0 < ε < 1, [38,39]:

‖Πiψ‖Ωi
≤ C ‖ψ‖ε,Ωi

, (14)

‖Πiψ−ψ‖Ωi
≤ Chε ‖ψ‖ε,Ωi

, (15)

‖Πiψ‖Ωi
≤ C(‖ψ‖ε,Ωi

+ ‖∇·ψ‖Ωi
). (16)

Here, ‖ · ‖r is the Hr-norm and ‖ · ‖−s is the norm of H−s, the dual of Hs.
In addition, there exists the L2-orthogonal projection operator Ph : U −→ Uh such that for any

w ∈ U, Phw ∈ Uh is defined by:

(w− Phw, ξ) = 0, ξ ∈ Uh, (17)

and satisfies:

(∇·v, w− Phw) = 0, v ∈ Sh, w ∈ U, (18)

‖w− Phw‖ ≤ C ‖w‖r hr, 0 ≤ r ≤ l + 1, (19)

where l is the degree of the polynomial in Uh. Moreover, the above-defined projection operator Πi
and Ph satisfies:

∇·Πiψ = Ph∇·ψ, (20)

(Πiψ) · ni = Qi
h(ψ · ni), (21)

where Qi
h is defined in (6).

Finally, let Ph be the L2(Γ) projection onto Σh satisfying:

〈ϕ−Ph ϕ, µ〉Γ = 0, ϕ ∈ L2(Γ), µ ∈ Σh, (22)

‖ϕ−Ph ϕ‖−s,Γij
≤ C ‖ϕ‖r,Γij

hr+s, 0 ≤ r ≤ k + 2, 0 ≤ s ≤ k + 2. (23)

Note that the bounds (11)–(13), (19), and (23), are L2-projection approximations [40]. The
bound (10) can be found in [3,13].

In the subsequent analysis, we shall make use of the following inequalities:

‖ψ‖r,Γij
≤ C ‖ψ‖r+1/2,Ωi

, (24)

‖ψ · n‖∂Ωi
≤ Ch−1/2 ‖ψ‖Ωi

. (25)
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Equation (24) is the nonstandard trace theorem (see [38], Theorem 1.5.2.1), and (25) is the local
inverse inequality (see [20], Lemma 4.1).

2.1. Multiblock Variational Formulation

In the above-defined framework, the weak formulation of (1)–(4) is stated as:
Seeking the map {u, p, λ} : J −→ S×U × Σ, such that:

(a−1u, v)Ωi = (p,∇·v)Ωi − 〈λ, v · ni〉Γi − 〈g, v · ni〉∂Ωi\Γ, v ∈ Si, (26)

(
∂p
∂t

, w)Ωi + (∇·u, w)Ωi = ( f , w)Ωi , w ∈ Ui, (27)

nb

∑
i=1
〈u · ni, µ〉Γi = 0, µ ∈ Σ, (28)

p = p0, t = 0, (29)

where ni denotes the outer unit normal to ∂Ωi and λ is the pressure on interfaces Γi. Equation (26) is
obtained using integration by parts, and Equation (28) imposes the weak continuity of normal flux
across the interface. Furthermore, we assume that the local problem over each subdomain Ωi is at least
H3/2+ε regular.

2.2. Multiblock Mixed Approximation

In the mixed finite element approximation of (26)–(29), seeking for {uh, ph, λh} : J −→ Sh ×Uh ×Σh
such that for each Ωi, 1 ≤ i ≤ nb,

(a−1uh, v)Ωi = (ph,∇·v)Ωi − 〈λh, v · ni〉Γi − 〈g, v · ni〉∂Ωi\Γ, v ∈ Sh,i, (30)

(
∂ph
∂t

, w)Ωi + (∇·uh, w)Ωi = ( f , w)Ωi , w ∈ Uh,i, (31)

nb

∑
i=1
〈uh · ni, µ〉Γi = 0, µ ∈ Σh, (32)

with the initial condition ph(0) = Ph p0, the L2(Ω)-projection of initial data function p0 onto Uh. We
applied the standard mixed finite element over each subdomain Ωi. The local mass conservation
over each subdomain grid cell is enforced by Equation (31). Note that the variable λh represents
the approximation to pressure on the mortar interface, and the continuity of normal flux across the
interface is imposed by Equation (32). For the sake of analysis, let us define the weak continuous
velocities [20]:

S0
h =

{
v ∈ Sh :

nb

∑
i=1
〈v |Ωi ·ni, µ〉Γi = 0 ∀ µ ∈ Σh

}
. (33)

The following lemma can be found in [20].

Lemma 1. Under the assumption (7), there exists a projection operator Π0 : (H1/2+ε(Ω)) ∩ S −→ S0
h

such that:
(∇·(Π0ψ−ψ), τ)Ω = 0, τ ∈ Uh, (34)

satisfying:

‖Π0ψ−Πψ‖ ≤ C
nb

∑
i=1
‖ψ‖r+1/2,Ωi

hr+1/2, 0 ≤ r ≤ k + 1, (35)

‖Π0ψ−ψ‖ ≤ C
nb

∑
i=1
‖ψ‖r,Ωi

hr, 1 ≤ r ≤ k + 1. (36)
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By using the weak velocities (33), unknown mortar pressure λh can be eliminated, then our
method (30)–(32) takes the following equivalent form:

(a−1uh, v) =
nb

∑
i=1

{
(ph,∇·v)Ωi − 〈g, v · ni〉∂Ωi\Γ

}
, v ∈ S0

h, (37)

nb

∑
i=1

{
(

∂ph
∂t

, w)Ωi + (∇·uh, w)Ωi

}
= ( f , w), w ∈ Uh. (38)

Next, we show the existence and uniqueness of the solution for the semidiscrete scheme (37)
and (38). By using the basis function in the finite element spaces, the system (37) and (38) can be
written as follows. Let N denote the number of edges and M be the number of elements in finite
element discretization. Let ϕ and ψ denote the basis functions in S0

h and Uh, respectively. Then, the
finite element solutions uh and ph are written as:

uh =
N

∑
i=1

ũh,i(t)ϕi(x), (39)

ph =
M

∑
i=1

p̃h,iψi(x). (40)

Using (39) and (40), our method (37) and (38) can be written in the matrix form:

Aũh − Bp̃h = −G, (41)

Cp̃ht + BT ũh = F, (42)

with p̃h(0) = 0 and p̃ht = ∂ p̃h
∂t . Observe that the matrices A and C are invertible, then (41) gives

the relation:
ũh = A−1Bp̃h − A−1G. (43)

Combining (43) and (42), we arrive at:

Cp̃ht + BT A−1Bp̃h = F + BT A−1G. (44)

Note that (44) is an ordinary partial differential equation and has a unique solution with
smoothness conditions. Therefore, the discrete system (37) and (38) has the unique solution.

3. Elliptic Projection

For the purpose of analysis, we introduce the elliptic projection {Rh,Sh,Lh} of solution {u, p, λ}
into the space Sh ×Uh × Σh by mapping {Rh,Sh,Lh} : J −→ Sh ×Uh × Σh given by:

(a−1Rhu, v)Ωi = (Sh p,∇·v)Ωi − 〈Lhλ, v · ni〉Γi

− 〈g, v · ni〉∂Ωi\Γ, v ∈ Sh,i, (45)

(∇·Rhu, w)Ωi = ( f − ∂p
∂t

, w)Ωi , w ∈ Uh,i, (46)

nb

∑
i=1
〈Rhu · ni, µ〉Γi = 0, µ ∈ Σh. (47)
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Subtracting (45)–(47) from (26)–(28), the elliptic projection satisfies the system:

(a−1(u−Rhu), v)Ωi = (p− Sh p,∇·v)Ωi − 〈λ−Lhλ, v·ni〉Γi , v ∈ Sh,i, (48)

(∇·(u−Rhu), w)Ωi = 0, w ∈ Uh,i, (49)
nb

∑
i=1
〈(u−Rhu) · ni, µ〉Γi = 0, µ ∈ Σh. (50)

By using the weak velocities defined in (33), the system (48)–(50) has the following
equivalent form:

(a−1(u−Rhu), v) =
nb

∑
i=1

{
(p− Sh p,∇·v)Ωi − 〈p, v·ni〉Γi

}
, v ∈ S0

h, (51)

nb

∑
i=1

(∇·(u−Rhu), w)Ωi = 0, w ∈ Uh. (52)

Then, the error estimates stated in Theorem 1 are derived in [20].

Theorem 1. For the velocity Rhu and pressure Sh p of mixed elliptic projection (48)–(50), if Condition (7)
holds, then there exists a positive constant independent of h such that:

‖∇·(u−Rhu)‖ ≤ C
nb

∑
i=1
‖∇·u‖r,Ωi

hr, 1 ≤ r ≤ l + 1, (53)

‖u−Rhu‖ ≤ C
nb

∑
i=1

[‖p‖r+1,Ωi
+ ‖u‖r,Ωi

]hr, 1 ≤ r ≤ k + 1, (54)

‖p− Sh p‖ ≤ C
nb

∑
i=1

[‖p‖r+1,Ωi + ‖u‖r,Ωi + ‖∇·u‖r,Ωi ]h
r, 1 ≤ r ≤ min(k + 1, l + 1). (55)

Sequentially, we shall need the error estimates for ∂
∂t (u −Rhu) and ∂

∂t (p − Sh p). In the next
theorem, we derive these results.

Theorem 2. There exists a positive constant C independent of h such that:

‖ ∂

∂t
(u−Rhu)‖ ≤ C

nb

∑
i=1

[‖∂u
∂t
‖r,Ωi + ‖

∂p
∂t
‖r+1,Ωi ]h

r, (56)

‖ ∂

∂t
(p− Sh p)‖ ≤ C

nb

∑
i=1

[‖∂u
∂t
‖r,Ωi + ‖

∂p
∂t
‖r+1,Ωi ]h

r. (57)

Proof. Using the projection operators Ph,Ph and Π0, the system (51) and (52) can be modified
as follows:

(a−1(Π0u−Rhu), v) = ∑nb
i=1

{
(Ph p− Sh p,∇·v)Ωi − 〈p−Ph p, v · ni〉Γi

}
+ (a−1(Π0u− u), v), v ∈ S0

h,
(58)

nb

∑
i=1

(∇·(Π0u−Rhu), w)Ωi = 0, w ∈ Uh. (59)

Differentiating (58) and (59) with respect to t, we have the relation:

(a−1 ∂
∂t (Π0u−Rhu), v) = ∑nb

i=1

{
( ∂

∂t (Ph p− Sh p),∇·v)Ωi − 〈
∂
∂t (p−Ph p), v · ni〉Γi

}
+(a−1 ∂

∂t (Π0u− u), v), v ∈ S0
h,

(60)
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nb

∑
i=1

(∇· ∂

∂t
(Π0u−Rhu), w)Ωi = 0, w ∈ Uh. (61)

Taking v =
∂

∂t
(Π0u−Rhu), w =

∂

∂t
(Ph p−Sh p) into (60) and (61) and the summing the resultant

equations give:

(a−1 ∂
∂t (Π0u−Rhu), ∂

∂t (Π0u−Rhu)) = (a−1 ∂
∂t (Π0u− u), ∂

∂t (Π0u−Rhu))
+∑nb

i=1〈 ∂
∂t (Ph p− p), ∂

∂t (Π0u−Rhu) · ni〉Γi ,
(62)

which implies:

(a−1 ∂
∂t (Π0u−Rhu), ∂

∂t (Π0u−Rhu)) ≤ C[‖ ∂
∂t (Π0u− u)‖‖ ∂

∂t (Π0u−Rhu)‖
+∑nb

i=1 ‖ ∂
∂t (Ph p− p)‖Γi‖

∂
∂t (Π0u−Rhu) · ni‖Γi ].

(63)

Using (23)–(25), (36), and the fact that
∂

∂t
(Ph p) = Ph(

∂p
∂t

),
∂

∂t
(Π0u) = Π0(

∂u
∂t

), we have:

‖ ∂

∂t
(Π0u−Rhu)‖ ≤ C

nb

∑
i=1

[‖∂u
∂t
‖r,Ωi + ‖

∂p
∂t
‖r+1,Ωi ]h

r (64)

Using the triangle inequality, (36) and (64), we have:

‖ ∂

∂t
(u−Rhu)‖ ≤ C

nb

∑
i=1

[‖∂u
∂t
‖r,Ωi + ‖

∂p
∂t
‖r+1,Ωi ]h

r. (65)

Next, we derive the bound for
∂

∂t
(p− Sh p). For this, we shall use the duality argument. Let ϕ be

a solution of:

−∇·(a∇ϕ) = − ∂

∂t
(Ph p− Sh p), in Ω (66)

ϕ = 0, on ∂Ω, (67)

then by elliptic regularity, we have:

‖ϕ‖2 ≤ C‖ ∂

∂t
(Ph p− Sh p)‖. (68)

Differentiating (51) with respect to t, we have:

(a−1 ∂

∂t
(u−Rhu), v) =

nb

∑
i=1

{
(

∂

∂t
(p− Sh p),∇·v)Ωi − 〈

∂p
∂t
−Ph

∂p
∂t

, v · ni〉Γi

}
. (69)

Let v = Π0a∇ϕ, then:

‖ ∂

∂t
(Ph p− Sh p)‖2 = ∑nb

i=1(
∂

∂t
(Ph p− Sh p),∇·Π0a∇ϕ)Ωi

= ∑nb
i=1

{
(a−1 ∂

∂t
(u−Rhu), Π0a∇ϕ)Ωi

+ 〈∂p
∂t
−Ph

∂p
∂t

, Π0a∇ϕ · ni〉Γi

}
.

(70)
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Using (36), the first term on the right-hand side of (70) is estimated as:

∑nb
i=1(a−1 ∂

∂t
(u−Rhu), Π0a∇ϕ)Ωi = ∑nb

i=1

{
(a−1 ∂

∂t
(u−Rhu), Π0a∇ϕ− a∇ϕ)Ωi

+(a−1 ∂

∂t
(u−Rhu), a∇ϕ)Ωi

}
≤ C ∑nb

i=1[‖
∂

∂t
(u−Rhu‖Ωi‖Π0a∇ϕ− a∇ϕ‖Ωi

+‖ ∂

∂t
(u−Rhu)‖Ωi‖a∇ϕ‖Ωi ]

≤ C ∑nb
i=1[‖

∂

∂t
(u−Rhu)‖Ωi‖ϕ‖2,Ωi ].

(71)

For the second term on the right-hand side of (70), we use projection operator Πi to obtain:

〈∂p
∂t
−Ph

∂p
∂t

, Π0a∇ϕ · ni〉Γi = 〈∂p
∂t
−Ph

∂p
∂t

, (Π0a∇ϕ−Πia∇ϕ) · ni〉Γi

+〈∂p
∂t
−Ph

∂p
∂t

, (Πia∇ϕ− a∇ϕ) · ni〉Γi

+〈∂p
∂t
−Ph

∂p
∂t

, a∇ϕ · ni〉Γi

≤ ∑j ‖
∂p
∂t
−Ph

∂p
∂t
‖Γij [‖(Π0a∇ϕ−Πia∇ϕ).ni‖Γij

+‖(Πia∇ϕ− a∇ϕ) · ni‖Γij ]

+∑j ‖
∂p
∂t
−Ph

∂p
∂t
‖−1/2,Γij

‖a∇ϕ · ni‖1/2,Γij

(72)

Next, by using (10), (23), (24), (25), and (35), terms on the right-hand side of (72) are bounded
as follows:

‖∂p
∂t
−Ph

∂p
∂t
‖Γij ≤ ‖

∂p
∂t
‖r+1,Ωi h

r+1/2, (73)

‖(Π0a∇ϕ−Πia∇ϕ) · ni‖Γij ≤ Ch1/2‖ϕ‖2,Ωi , (74)

‖(Πi∇ϕ− a∇ϕ) · ni‖Γij ≤ Ch1/2‖ϕ‖2,Ωi , (75)

‖∂p
∂t
−Ph

∂p
∂t
‖−1/2,Γij

≤ C‖∂p
∂t
‖r+1,Ωi h

r+1, (76)

‖a∇ϕ · ni‖1/2,Γij
≤ ‖ϕ‖2,Ωi . (77)

Combining (73)–(77) with (72), we arrive at:

〈∂p
∂t
−Ph

∂p
∂t

, Π0a∇ϕ · ni〉Γi ≤ ‖
∂p
∂t
‖r+1,Ωi h

r+1‖ϕ‖2,Ωi . (78)

Substituting (71) and (78) in (70), we obtain:

‖ ∂

∂t
(Ph p− Sh p)‖Ω ≤ C

nb

∑
i=1

[‖∂p
∂t
‖r+1,Ωi h

r+1 + ‖ ∂

∂t
(u−Rhu)‖Ωi ]. (79)

Using the triangle inequality (19), (65), and (79), we have:

‖ ∂

∂t
(p− Sh p)‖ ≤ C

nb

∑
i=1

[‖∂u
∂t
‖r,Ωi + ‖

∂p
∂t
‖r+1,Ωi ]h

r. (80)

which is required.
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4. A Priori Error Estimates for the Semidiscrete Scheme

In this section, we shall derive the error estimate for velocity u and pressure p for our
semidiscrete scheme.

Theorem 3. There exists a positive constant C independent of h such that:

‖u− uh‖L2(J:L2(Ω)) ≤ C[‖u−Rhu‖L2(J:L2(Ω)) + ‖
∂

∂t
(p− Sh p)‖L2(J:L2(Ω))]. (81)

‖p− ph‖L∞(J:L2(Ω)) ≤ C[‖u−Rhu‖L2(J:L2(Ω)) + ‖
∂

∂t
(p− Sh p)‖L2(J:L2(Ω))]. (82)

Proof. Observe that from the triangle inequality, we have:

‖u− uh‖ ≤ ‖u−Rhu‖+ ‖Rhu− uh‖. (83)

‖p− ph‖ ≤ ‖p− Sh p‖+ ‖Sh p− ph‖. (84)

The terms ‖u−Rhu‖ and ‖p− Sh p‖ in Inequalities (83) and (84) are estimated by (54) and (55),
respectively. Therefore, it remains to bound the terms ‖Rhu−uh‖ and ‖Sh p− ph‖. Subtracting (30)–(32)
from (45)–(47), we obtain:

(a−1(Rhu− uh), v)Ωi = (Sh p− ph,∇·v)Ωi − 〈Lhλ− λh, v · ni〉Γi , v ∈ Sh,i, (85)

(
∂Sh p

∂t
− ∂ph

∂t
, w)Ωi + (∇·(Rhu− uh), w)Ωi = −(

∂p
∂t
− ∂Sh p

∂t
, w)Ωi , w ∈ Uh,i, (86)

nb

∑
i=1
〈(Rhu− uh) · ni, µ〉Γi = 0, µ ∈ Σh. (87)

Taking v = Rhu − uh, w = Sh p − ph, µ = Lhλ − λh in (85)–(87) and adding the resultant
equations, we obtain:

(a−1(Rhu− uh), (Rhu− uh))Ωi+ (
∂Sh p

∂t
− ∂ph

∂t
,Sh p− ph)Ωi =

−(∂p
∂t
− ∂Sh p

∂t
,Sh p− ph)Ωi .

(88)

Clearly:

(
∂Sh p

∂t
− ∂ph

∂t
,Sh p− ph)Ωi = (

∂

∂t
(Sh p− ph),Sh p− ph)Ωi

=
1
2

d
dt
‖Sh p− ph‖2

Ωi
.

(89)

Using (5), (89), the Cauchy Schwarz inequality, and ε inequality, we have from (88):

1
c0
‖Rhu− uh‖2

Ωi
+

1
2

d
dt
‖Sh p− ph‖2

Ωi
≤ C[‖ ∂

∂t
(p− Sh p)‖Ωi‖Sh p− ph‖Ωi ]

≤ C[‖ ∂

∂t
(p− Sh p)‖2

Ωi
+ ‖Sh p− ph‖2

Ωi
].

Summing up over subdomains Ωi, integrating with respect to t, and using Gronwall’s inequality,
we obtain:

‖Rhu− uh‖L2(J:L2(Ω)) + ‖Sh p− ph‖L∞(J:L2(Ω))

≤ C[‖u−Rhu‖L2(J:L2(Ω)) + ‖
∂

∂t
(p− Sh p)‖L2(J:L2(Ω))].

(90)

Combining (83) and (84) and (88) and (90), we conclude (81) and (82).



Mathematics 2019, 7, 325 12 of 18

5. An Interface Error Estimate

This section is devoted to deriving an error estimate for the Lagrange multiplier introduced on the
interface. The interface error estimation reflects the accuracy of data transmitted across the subdomain
interfaces. For this, subtract (30) from (26) to get:

〈λ− λh, v · ni〉Γi = (p− ph,∇·v)Ωi − (a−1(u− uh), v)Ωi , v ∈ Sh,i. (91)

For µ ∈ L2(Γ), let us define the norm:

|||µ|||Γ := sup
v∈Sh
v 6=0

∑nb
i=1〈µ, v · ni〉Γi

‖v‖S
. (92)

and:

|||µ|||J×Γ :=

( ∫
J
|||µ(., t)|||2Γ

)1/2

. (93)

The relation (91) implies:

〈λ− λh, v · ni〉Γi ≤ C[‖p− ph‖Ωi‖∇·v‖Ωi + ‖u− uh‖Ωi‖v‖Ωi ],
≤ C[‖p− ph‖Ωi‖v‖H(div;Ωi)

+ ‖u− uh‖Ωi‖v‖Ωi ],
(94)

then by using (92), we see that:

|||λ− λh|||Γ ≤ C
( nb

∑
i=1

(‖p− ph‖Ωi + ‖u− uh‖Ωi )
2
)1/2

≤ C
[
‖p− ph‖+ ‖u− uh‖

]
.

Integrating with respect to time, we obtain:

|||λ− λh|||J×Γ ≤ C
[
‖p− ph‖L2(J;L2(Ω)) + ‖u− uh‖L2(J;L2(Ω))

]
.

We have proven the following theorem.

Theorem 4. There exists a positive constant C independent of h such that:

|||λ− λh|||J×Γ ≤ C
[
‖p− ph‖L2(J;L2(Ω)) + ‖u− uh‖L2(J;L2(Ω))

]
.

Note that ‖p− ph‖L2(J;L2(Ω)) ‖u− uh‖L2(J;L2(Ω)) are estimated in Theorem 3. Thus, Theorem 4
gives an error bound for the interface pressure variable.

6. Numerical Results

This section presents the results of numerical examples to illustrate the theoretical findings. For the
sake of simplicity, we chose the unit square Ω = [0, 1]2 as the spatial domain and the time interval
J = [0, 1]. We constructed two examples to verify the convergence order of the scheme and considered
two cases for each example. In the first case, we considered two subdomains (nb = 2). The second case
consisted of four subdomains (nb = 4). On four subdomains, the interface was along x = 1/2, y = 1/2,
while for the two subdomains, it was at y = 1/2. We used the lowest order Raviart–Thomas (RT0)

space on each subdomain, which approximates the unknowns (uh, ph) in (P0, RT0). The piecewise
continuous linear polynomials were used to approximate the pressure variable on the mortar interface
between the subdomains. The error in mortar interface space was calculated by using the discrete
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L2-norm. The errors were reported at time t = 1 for each case. We also present the discrete errors for
each time step from t = 0 to t = 1.

Example 1. Consider Ω = [0, 1]2, a = 1
4 (x2 + y2 + 1), the source term f , and the velocity u are calculated by

using the exact solution:
p(x, y) = txy(1− x)(1− y). (95)

The results of numerical experiment for fixed h and varying time steps for Example 1 are displayed
in Tables 1 and 2. We choose the fixed h = 1/64 along with δt = 1/10, the time step. We report the
errors on two and four subdomains.

Table 1. Discrete errors with time steps for Example 1, nb = 2, h = 1/64, δt = 0.1.

tn ‖un− un
h‖ ‖pn− pn

h‖ ‖λn− λn
h‖

0.1 1.5833×10−4 7.7669×10−5 2.7748×10−6

0.2 3.1668×10−4 1.5534×10−4 5.6298×10−6

0.3 4.7503×10−4 2.3302×10−4 8.5262×10−6

0.4 6.3338×10−4 3.1070×10−4 1.1446×10−5

0.5 7.9173×10−4 3.8838×10−4 1.4380×10−5

0.6 9.5008×10−4 4.6606×10−4 1.7322×10−5

0.7 1.1084×10−3 5.4374×10−4 2.0268×10−5

0.8 1.2668×10−3 6.2142×10−4 2.3217×10−5

0.9 1.4251×10−3 6.9910×10−4 2.6167×10−5

1.0 1.5835×10−3 7.7678×10−4 2.9119×10−5

Table 2. Discrete errors with time steps for Example 1, nb = 4, h = 1/64, δt = 0.1.

tn ‖un− un
h‖ ‖pn− pn

h‖ ‖λn− λn
h‖

0.1 2.1943×10−4 1.0941×10−4 3.9312×10−6

0.2 4.3889×10−4 2.1884×10−4 7.9759×10−6

0.3 6.5835×10−4 3.2827×10−4 1.2080×10−5

0.4 8.7782×10−4 4.3769×10−4 1.6217×10−5

0.5 1.0973×10−3 5.4712×10−4 2.0374×10−5

0.6 1.3167×10−3 6.5656×10−4 2.4541×10−5

0.7 1.5362×10−3 7.6599×10−4 2.8716×10−5

0.8 1.7557×10−3 8.7542×10−4 3.2893×10−5

0.9 1.9751×10−3 9.8485×10−4 3.7073×10−5

1.0 2.1946×10−3 1.0943×10−3 4.1255×10−5

The discrete norm errors and convergence rates on two subdomains for Example 1 are given in
Table 3. We observe the convergence rate of order O(h) for both subdomain variables, that is pressure
p and velocity u. The convergence order for pressure on the mortar interface was of order O(h2).

Table 3. Discrete errors and convergence rates for Example 1 at time T = 1 with δt = 0.1 and nb = 2.

h ‖u− uh‖ CR ‖p− ph‖ CR ‖λ− λh‖ CR

1/4 2.6484×10−2 1.3578×10−2 6.3437×10−3

1/8 1.2845×10−2 1.0439 6.3866×10−3 1.0882 1.7877×10−3 1.8272
1/16 6.3564×10−3 1.0149 3.1288×10−3 1.0294 4.6132×10−4 1.9543
1/32 3.1693×10−3 1.0040 1.5558×10−3 1.0080 1.1625×10−4 1.9885
1/64 1.5835×10−3 1.0010 7.7678×10−4 1.0021 2.9119×10−5 1.9972

1/128 7.9160×10−4 1.0003 3.8825×10−4 1.0005 7.2832×10−6 1.9993
1/256 3.9578×10−4 1.0001 1.9411×10−4 1.0001 1.8210×10−6 1.9998
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The errors and convergence rates on four subdomains (nb = 4) are provided in Table 4.
The optimal order convergence rates of order O(h) were obtained for the subdomains pressure
and velocity. The convergence order for the pressure λ on interface is of order O(h2).

Table 4. Discrete errors and convergence rates for Example 1 at time T = 1 with δt = 0.1 and nb = 4.

h ‖u− uh‖ CR ‖p− ph‖ CR ‖λ− λh‖ CR

1/4 3.6671×10−2 1.9202×10−2 9.3169×10−3

1/8 1.7799×10−2 1.0428 9.0122×10−3 1.0913 2.5699×10−3 1.8581
1/16 8.8092×10−3 1.0147 4.4097×10−3 1.0312 6.5739×10−4 1.9669
1/32 4.3924×10−3 1.0040 2.1919×10−3 1.0085 1.6500×10−4 1.9943
1/64 2.1946×10−3 1.0011 1.0943×10−3 1.0022 4.1255×10−5 1.9998

1/128 1.0971×10−3 1.0003 5.4693×10−4 1.0006 1.0309×10−5 2.0007
1/256 5.4853×10−4 1.0001 2.7344×10−4 1.0001 2.5765×10−6 2.0004

The exact and computed solution for Example 1 are shown in Figure 1.

(a) Exact pressure p (b) Computed pressure ph

Figure 1. Exact and computed pressure for Example 1.

Example 2. Consider Ω = [0, 1]2, a = ex+y, the source term f , and the velocity u are calculated by using the
exact solution:

p(x, y) = tsin(πx)sin(πy). (96)

The discrete norm errors with respect to the variable temporal steps and fixed h for
two subdomains are presented in Tables 5 and 6. The tables shows that the errors increased with
time steps.

Table 5. Discrete errors with time steps for Example 2, nb = 2, h = 1/64, δt = 0.1.

tn ‖un− un
h‖ ‖pn− pn

h‖ ‖λn− λn
h‖

0.1 1.5684×10−2 1.1572×10−3 1.8226×10−5

0.2 3.1369×10−2 2.3143×10−3 3.6545×10−5

0.3 4.7053×10−2 3.4715×10−3 5.4869×10−5

0.4 6.2738×10−2 4.6287×10−3 7.3194×10−5

0.5 7.8422×10−2 5.7859×10−3 9.1519×10−5

0.6 9.4107×10−2 6.9430×10−3 1.0984×10−4

0.7 1.0979×10−1 8.1002×10−3 1.2817×10−4

0.8 1.2548×10−1 9.2574×10−3 1.4649×10−4

0.9 1.4116×10−1 1.0415×10−2 1.6482×10−4

1.0 1.5684×10−1 1.1572×10−2 1.8314×10−4
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Table 6. Discrete errors with time steps for Example 2, nb = 4, h = 1/64, δt = 0.1.

tn ‖un− un
h‖ ‖pn− pn

h‖ ‖λn− λn
h‖

0.1 2.1580×10−2 1.6280×10−3 2.5642×10−5

0.2 4.3160×10−2 3.2560×10−3 5.1413×10−5

0.3 6.4741×10−2 4.8840×10−3 7.7192×10−5

0.4 8.6321×10−2 6.5120×10−3 1.0297×10−4

0.5 1.0790×10−1 8.1400×10−3 1.2875×10−4

0.6 1.2948×10−1 9.7680×10−3 1.5453×10−4

0.7 1.5106×10−1 1.1396×10−2 1.8031×10−4

0.8 1.7264×10−1 1.3024×10−2 2.0609×10−4

0.9 1.9422×10−1 1.4652×10−2 2.3187×10−4

1.0 2.1580×10−1 1.6280×10−2 2.5765×10−4

Next, the discrete errors for subdomain pressure p, the subdomain velocity u, and the mortar
interface pressure λ are presented in Tables 7 and 8.

Table 7. Discrete errors and convergence rates for Example 2 at time T = 1 with δt = 0.1 and nb = 2.

h ‖u− uh‖ CR ‖p− ph‖ CR ‖λ− λh‖ CR

1/4 2.6702× 100 1.9026×10−1 4.0137×10−2

1/8 1.2791× 100 1.0618 9.3369× 10−2 1.0270 1.1145×10−2 1.8485
1/16 6.3045× 10−1 1.0207 4.6387×10−2 1.0092 2.8930×10−3 1.9458
1/32 3.1400×10−1 1.0056 2.3154×10−2 1.0025 7.3067×10−4 1.9853
1/64 1.5684×10−1 1.0015 1.1572×10−2 1.0006 1.8314×10−4 1.9963

1/128 7.8403×10−2 1.0003 5.7852×10−3 1.0002 4.5816×10−5 1.9990
1/256 3.9199×10−2 1.0001 2.8925×10−3 1.0000 1.1456×10−5 1.9990

The discrete errors and convergence rates for Example 2 on four subdomains are represented
in Table 8.

Table 8. Discrete errors and convergence rates for Example 2 at time T = 1 with δt = 0.1 and nb = 4.

h ‖u− uh‖ CR ‖p− ph‖ CR ‖λ− λh‖ CR

1/4 3.6498×100 2.6843×10−1 4.8133×10−2

1/8 1.7572×100 1.0545 1.3147×10−1 1.0298 1.4917×10−2 1.6901
1/16 8.6713×10−1 1.0190 6.5276×10−2 1.0101 3.9978×10−3 1.8997
1/32 4.3200×10−1 1.0052 3.2576×10−2 1.0027 1.0223×10−3 1.9674
1/64 2.1580×10−1 1.0013 1.6280×10−2 1.0007 2.5765×10−4 1.9883

1/128 1.0788×10−1 1.0003 8.1390×10−3 1.0002 6.4627×10−5 1.9952
1/256 5.3935×10−2 1.0001 4.0694×10−3 1.0000 1.6180×10−5 1.9979

The results of our numerical experiments matched the theory established. The exact and computed
solution for Example 2 are presented in Figure 2.

It is observed from the above tables that the discrete norm errors increased with the time
steps. Note that the accuracy of discrete norm error on two subdomain was better than that on
four subdomains. The reason for the better accuracy on the two subdomains is stated below in the
discussion of the convergence rate.

Comparing the results on two and four subdomains, we note the slightly better accuracy on the
two subdomains than the four subdomains. The reason for the better accuracy on the two subdomains
may be that in the case of two subdomains, we had a single interface; therefore, transmission of data
across the interface was more accurate as compared to that of four subdomains. However, on two
subdomains, we had large local problem, which is expensive to solve numerically. Therefore, by
scarifying accuracy slightly, we have an efficient solution for the local subdomain problems.
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(a) Exact pressure p (b) Computed pressure ph

Figure 2. Exact and computed pressure for Example 2.

7. Conclusions

In this article, the multiblock mortar mixed technique proposed and analyzed in [20] was extended
to the second order linear parabolic problems. This approach is a combination of non-overlapping
domain decomposition and the mortar finite element method. This method allowed different grids on
different regions of the domain. The continuity of the flux across the subdomain interior boundary
was imposed via the mortar finite element on the interface grid.

We considered the semi-discrete formulation of second order parabolic partial differential
equation. The existence and uniqueness of solution for the discrete system encountered by the scheme
were established. The optimal order convergence was shown for both the velocity and pressure
approximations. The theoretical findings were confirmed by performing the numerical experiments
for benchmark problems.

Author Contributions: The conceptualization and methodology were proposed by M.A. Software usage, problem
analysis and investigation, writing of the original draft preparation, and funding acquisition by the Higher
Education Commission were done by M.A. and M.S. Writing, review, and supervision were done by M.M.

Acknowledgments: This research is supported by the Higher Education Commission of Pakistan.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Brezzi, F.; Douglas, J.; Marini, L.D. Two families of mixed finite elements for second order elliptic problems.
Numer. Math. 1985, 47, 217–235. [CrossRef]

2. Brezzi, F.; Fortin, M.; Marini, L.D. Efficient rectangular mixed finite elements in two and three space variables.
ESAIM Math. Model. Numer. Anal. 1987, 21, 581–604. [CrossRef]

3. Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer Series in Computational Mathematics;
Springer: New York, NY, USA, 1991; Volume 15.

4. Carstensen, C.; Kim, D.; Park, E.J. A priori and a posteriori pseudostress-velocity mixed finite element error
analysis for the Stokes problem. SIAM J. Numer. Anal. 2011, 49, 2501–2523. [CrossRef]

5. Douglas, J.; Roberts, J.E. Global estimates for mixed methods for second order elliptic equations. Math. Comput.
1985, 44, 39–52. [CrossRef]

6. Duran, R. Superconvergence for rectangular mixed finite elements. Numer. Math. 1990, 58, 287–298. [CrossRef]
7. Kim, D.; Park, E.J., A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic

equations. SIAM J. Numer. Anal. 2010, 48, 1186–1207. [CrossRef]
8. Milner, F.A. Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 1985,

44, 303–320. [CrossRef]
9. Milner, F.A.; Park, E.J. A mixed finite element method for a strongly nonlinear second-order elliptic problem.

Math. Comput. 1995, 64, 973–988. [CrossRef]

http://dx.doi.org/10.1007/BF01389710
http://dx.doi.org/10.1051/m2an/1987210405811
http://dx.doi.org/10.1137/100816237
http://dx.doi.org/10.1090/S0025-5718-1985-0771029-9
http://dx.doi.org/10.1007/BF01385626
http://dx.doi.org/10.1137/090747002
http://dx.doi.org/10.1090/S0025-5718-1985-0777266-1
http://dx.doi.org/10.1090/S0025-5718-1995-1303087-3


Mathematics 2019, 7, 325 17 of 18

10. Nédélec, J.C. Mixed finite elements in R3. Numer. Math. 1980, 35, 315–341. [CrossRef]
11. Park, E.J. Mixed finite element methods for nonlinear second-order elliptic problems. SIAM J. Numer. Anal.

1995, 32, 865–885. [CrossRef]
12. Raviart, P.A; Thomas, J. M. A mixed finite element mrthod for 2nd order elliptic problems. In Mathematical

Aspects of Finite Element Methods; Lecture Notes in Mathematics; Springer: New York, NY, USA, 1977;
Volume 606, pp. 292–315.

13. Roberts, J.E.; Thomas, J.M.; Ciarlet, P.G.; Lions, J.L. Mixed and hybrid methods, In Handbook of Numerical
Analysis; North-Holland: Amsterdam, The Netherlands, 1991; Volume II, pp. 523–639.

14. Arshad, M.; Park, E.J.; Shin, D.W. Analysis of multiscale mortar mixed approximation of nonlinear elliptic
equations. Comput. Math. Appl. 2018, 75, 401–418. [CrossRef]

15. Arbogast, T.; Estep, D.; Sheehan, B.; Tavener, S. A posteriori error estimates for mixed finite element and
finite volume methods for parabolic problems coupled through a boundary. SIAM-ASA J. Uncertain. 2015,
3, 169–198. [CrossRef]

16. Chen, Y.; Chen, L.; Zhang, X. Two-Grid method for nonlinear parabolic equations by expanded mixed finite
element methods. Numer. Methods Part. Differ. Equ. 2013, 29, 1238–1256. [CrossRef]

17. Garcia, S.M. Improved error estimates for mixed finite-element approximations for nonlinear parabolic
equations: The continuous-time case. Numer. Methods Part. Differ. Equ. 1994, 10, 129–147. [CrossRef]

18. Kim, M.Y.; Milner, F.A.; Park, E.J. Some observations on mixed methods for fully nonlinear parabolic problems
in divergence form. Appl. Math. Lett. 1996, 9, 75–81. [CrossRef]

19. Park, E.J. Mixed finite element methods for generalized Forchheimer flow in porous media. Numer. Methods
Part. Differ. Equ. 2005, 21, 213–228. [CrossRef]

20. Arbogast, T.; Cowsar, L.C.; Wheeler, M.F.; Yotov, I. Mixed finite element methods on non-matching
multiblock grids. SIAM J. Numer. Anal. 2000, 37, 1295–1315. [CrossRef]

21. Arbogast, T.; Pencheva, G.; Wheeler, M.F.; Yotov, I. A multiscale mortar mixed finite element method.
Multiscale Model. Simul. 2007, 6, 319–346. [CrossRef]

22. Arbogast, T.; Xiao, H. Two-level mortar domain decomposition preconditioners for heterogeneous elliptic
problems. Comput. Methods Appl. Mech. Eng. 2015, 292, 221–242. [CrossRef]

23. Ganis, B.; Vassilev, D.; Wang, C.; Yotov, I. A multiscale flux basis for mortar mixed discretizations of
Stokes-Darcy flows. Comput. Methods Appl. Mech. Eng. 2017, 313, 259–278. [CrossRef]

24. Ganis, B.; Yotov, I. Implementation of a mortar mixed finite element method using a multiscale flux basis.
Comput. Methods Appl. Mech. Eng. 2009, 198, 3989–3998. [CrossRef]

25. Kim, M.Y.; Park, E.J.; Thomas, S.G.; Wheeler, M.F. A multiscale mortar mixed finite element method for
slightly compressible flows in porous media. J. Korean Math. Soc. 2007, 44, 1103–1119. [CrossRef]

26. Peszynska, M.; Wheeler, M.F.; Yotov, I. Mortar upscaling for multiphase flow in porous media. Comput. Geosci.
2002, 6, 73–100. [CrossRef]

27. Song, P.; Wang, C.; Yotov, I. Domain decomposition for stokes-darcy flows with curved interfaces. Procedia
Comput. Sci. 2013, 18, 1077–1086. [CrossRef]

28. Yotov, I. A multilevel Newton-Krylov interface solver for multiphysics couplings of flow in porous media.
Numer. Linear Algebra Appl. 2001, 8, 551–570. [CrossRef]

29. Bernardi, C.; Maday, Y.; Patera, A.T. A new nonconforming approach to domain decomposition: the mortar
element method. In Nonliner Partial Differential Equations and Their Applications; Brezis H., Lions, J.L., Eds.;
Longman Scientific and Technical: London, UK, 1994.

30. Ewing, R.E.; Lazarov, R.D.; Russell, T.F.; Vassilevski, P.S. Local refinement via domain decomposition
techniques for mixed finite element methods with rectangular Raviart-Thomas elements. In Doamin
Decomposition Methods for PDEs; Chan, T.F., Glowinski, R., Periaux, J., Widlund, O.B., Eds.; SIAM: Philadelphia,
PA, USA, 1990; pp. 98–114.

31. Ewing, R.E.; Wang, J. Analysis of mixed finite element methods on locally refined grids. Numer. Math. 1992,
63, 183–194. [CrossRef]

32. Gaiffe, S.; Glowinski, R.; Masson, R. Domain decomposition and splitting methods for mortar mixed finite
element approximations to parabolic equations. Numer. Math. 2002, 93, 53–75. [CrossRef]

33. Sun, T.; Mehmani, Y.; Bhagmane, J.; Balhoff, M.T. Pore to continuum upscaling of permeability in
heterogeneous porous media using mortars. Int. J. Oil Gas Coal Technol. 2012, 5, 249–266. [CrossRef]

http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1137/0732040
http://dx.doi.org/10.1016/j.camwa.2017.09.031
http://dx.doi.org/10.1137/140964059
http://dx.doi.org/10.1002/num.21753
http://dx.doi.org/10.1002/num.1690100202
http://dx.doi.org/10.1016/0893-9659(95)00106-9
http://dx.doi.org/10.1002/num.20035
http://dx.doi.org/10.1137/S0036142996308447
http://dx.doi.org/10.1137/060662587
http://dx.doi.org/10.1016/j.cma.2014.10.049
http://dx.doi.org/10.1016/j.cma.2016.09.037
http://dx.doi.org/10.1016/j.cma.2009.09.009
http://dx.doi.org/10.4134/JKMS.2007.44.5.1103
http://dx.doi.org/10.1023/A:1016529113809
http://dx.doi.org/10.1016/j.procs.2013.05.273
http://dx.doi.org/10.1002/nla.263
http://dx.doi.org/10.1007/BF01385855
http://dx.doi.org/10.1007/BF02679437
http://dx.doi.org/10.1504/IJOGCT.2012.046323


Mathematics 2019, 7, 325 18 of 18

34. Wheeler, M.F.; Yotov, I. A posteriori error estimates for the mortar mixed finite element method. SIAM J.
Numer. Anal. 2005, 43, 1021–1042. [CrossRef]

35. Wheeler, M.F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential
equations. SIAM J. Numer. Anal. 1973, 10, 723–759. [CrossRef]

36. Pencheva, G.; Yotov, I. Balancing domain decomposition for mortar mixed finite element methods.
Numer. Linear Algebra Appl. 2003, 10, 159–180. [CrossRef]

37. Yotov, I.P. Mixed Finite Element Methods for Flow in Porous Media. Ph.D. Thesis, Rice University, Houston,
TX, USA, 1996.

38. Grisvard, P. Elliptic Problems in Nonsmooth Domains; Pitman Advanced Pub. Program: Boston, MA, USA, 1985.
39. Mathew, T.P. Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element

Discretisations of Elliptic Problems. Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York, NY,
USA, 1989.

40. Ciarlet, P.G. The Finite Element Method for Elliptic Problems; Classics in Applied Mathematics Volume 40; SIAM:
Philadelphia, PA, USA, 2002.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S0036142903431687
http://dx.doi.org/10.1137/0710062
http://dx.doi.org/10.1002/nla.316
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Domain Decomposition and Method Formulation
	Multiblock Variational Formulation
	Multiblock Mixed Approximation

	Elliptic Projection
	A Priori Error Estimates for the Semidiscrete Scheme
	An Interface Error Estimate
	Numerical Results
	Conclusions
	References

