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Abstract: The Padmakar-Ivan (PI) index is a distance-based topological index and a molecular
structure descriptor, which is the sum of the number of vertices over all edges uv of a graph such that
these vertices are not equidistant from u and v. In this paper, we explore the results of PI-indices from
trees to recursively clustered trees, the k-trees. Exact sharp upper bounds of PI indices on k-trees are
obtained by the recursive relationships, and the corresponding extremal graphs are given. In addition,
we determine the PI-values on some classes of k-trees and compare them, and our results extend and
enrich some known conclusions.
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1. Introduction

Let G be a simple connected non-oriented graph with vertex set V(G) and edge set E(G).
The distance d(x, y) between the vertices x,y € V(G) is the minimum length of the paths between
x and y in G. The oldest and most thoroughly examined molecular descriptor is Wiener index
or path number [1], which was first considered in trees by Wiener in 1947 as follows: W(G) =
Y{xy}cv(c) d(x,y). Compared to Wiener index, Szeged index was proposed by Gutman [2] in 1994
that, given xy € E(G), let ny,(x) be the number of vertices w € V(G) such that d(x,w) < d(y,w),
52(G) = Lxyer(c) Mxy(X)nxy(y). Based on the considerable success of Wiener index and Sz index,
Khadikar proposed a new distance-based index [3] to be used in the field of nano-technology, that is
edge Padmakar-Ivan (PL) index, PL(G) = YL,y (g)[ne(x) + ne(y)], where n,(x) denotes the number
of edges which are closer to the vertex x than to the vertex y, and n.(y) denotes the number of edges
which are closer to the vertex y than to the vertex x, respectively.

It is easy to see that the above concept does not count edges equidistant from both ends of the
edge e = xy. Based on this idea, Khalifeh et al. [4] introduced a new PI index of vertex version that
PI(G) = PL,(G) = Lyek(c)lnxy(x) + nxy(y)]. Note that, in order to obtain a good recursive formulas,
we do not consider the vertices x, y for 1y, (x) and nyy (y). Thus, 1y, (x) + 1y (y) < n —2.

Nowadays, Padmakar-Ivan indices are widely used in Quantitative Structure-Activity
Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) [5,6], and there are
many interesting results [5,7-26] between graph theory and chemistry. For instances, KlavZar [27]
provided Pl-partitions and arbitrary Cartesian product. Pattabiraman and Paulraja [28] presented the
formulas for vertex PI indices of the strong product of a graph and the complete multipartite graph.
Ili¢ and Milosavljevic [29] established basic properties of weighted vertex PI index and some lower
and upper bounds on special graphs. Wang and Wei [30] studied vertex PI index on an extention of
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trees (cacti). In [31], Das and Gutman obtained a lower bound on the vertex PI index of a connected
graph in terms of numbers of vertices, edges, pendent vertices, and clique number. Hoji et al. [32]
provided exact formulas for the vertex PI indices of Kronecker product of a connected graph G and
a complete graph. Since the tree is a basic class of graphs in mathematics and chemistry, and these
results indicate that either the stars or the paths attain the maximal or minimal bounds for particular
chemical indices, then a natural question is how about the situations for vertex Padmakar-Ivan index?

Because PI index is a distance-based index and not very easy to calculate, we first consider the
bipartite graph G with n vertices. Note that the tree is a subclass of bipartite graphs which have no
odd cycles. By the definition of PI(G) and the assumption that we do not consider the vertices x, y for
nyy(x) and nyy(y), one can obtain that every edge of G has the PI-value as n — 2. Thus, the following
observation is obtained.

Obervation 1. For a bipartite graph G with n vertices and m edges, PI(G) = (n — 2)m. In particular, if G is
a tree, then PI(G) = (n —1)(n —2).

Next, we will consider the graphs with odd cycles. In particular, the general tree, k-tree, contains
a lot of odd cycles. Then, we are going to consider the PI indices of k-trees and figure out whether
or not a k-star or a k-path attains the maximal or minimal bound for PI-indices of k-trees. Our main
results are as follows: Theorems 1 and 2 give the exact PI-values of k-stars, k-paths and k-spirals (see
Definitions 1-5 below).

Theorem 1. For any k-star S and k-path P with n = kp + s vertices, where p > 0 is an integer and
s € [2,k+ 1], we have

()PI(SE) = k(n —K)(n —k — 1),
(i) PI(PK) = k(k+1)(p71)(2kp+6572k74) n (sfl)s(gkfs+2).

Theorem 2. For any k-spiral T,’q‘*c with n > k vertices, where ¢ € [1,k — 1], we have

(n—k)(n—k—1)(4k—n+2) .
PI(TES) = : : ¥ onelok—d
/ 3c(n—2k+c—1)(n—2k+c)+(k—c)(230 +3nc—4kc+3kn—4k=—6k+3n—2) lf n>2k—c+1.

Theorem 3 proves that k-stars achieve the maximal values of PI-values for k-trees, and Theorem 4
shows that k-paths do not arrive the minimal values and certain PI-values of k-spirals are less than
that of k-paths.

Theorem 3. For any k-tree TX with n > k > 1, we have PI(TF) < PI(SK).
Theorem 4. For any k-spiral T,’j*c withn > k > 1, we have

(i) PI(Py) > PI(Ty) if c€[1,57),

(i) PI(PE) < PI(TE:) if ¢ € (2 k1],

2. Preliminary

In this section, we first give some notations and lemmas that are crucial in the following sections.
Asusual, G = (V, E) is a connected finite simple undirected graph with vertex set V = V(G) and edge
set E = E(G). Let |G| or |V| be the cardinality of V. Forany S C V(G) and F C E(G), we use G[S] to
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denote the subgraph of G induced by S, G — S to denote the subgraph induced by V(G) —Sand G — F
to denote the subgraph of G obtained by deleting F. w(G — S) is the number of components of G — S
and Sisacutsetif w(G—S) > 2. Forany u,v € V(G), Py is a path connecting u and v, d(u, v) is the
distance between u and v, N(v) = Ng(v) = {w € V(G),vw € E(G)} is the neighborhood of v and
N[v] = N(v) U {v}. For any integers a, b with a < b, the interval [4, b] is the set of all integers between
a and b including a4,b. In addition, let [a,b) = [a,b] — {b} and (a,b] = [a,b] — {a}. In particular,
[a,b] = ¢ fora > b. f'(x) is a derivative of any differentiable function f(x), where x is the variable.
| x| is the largest integer that is less than or equal to x; [x] is the smallest integer that is greater than or
equal to x. It is clear that 4 is from 0 to the diameter of graphs. Other undefined notations are referred
to [33].

It is commonly known that a chordal graph G with at least three vertices is a triangulated graph
and contains a simplicial vertex, whose neighborhood induces a clique. During recent decades,
there are many interesting studies related to chordal graphs. In 1969, Beineke and Pippert [7] gave
the definition of k-trees, which is a significant subclass of chordal graphs. Now, we just give some
definitions about k-trees below.

Definition 1. For positive integers n, k with n > k, the k-tree, denoted by T¥, is defined recursively as follows:
The smallest k-tree is the k-clique Ky. If G is a k-tree with n > k vertices and a new vertex v of degree k is added
and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with n + 1 vertices.

Definition 2. For positive integers n,k with n > k, the k-path, denoted by PX, is defined as follows:
starting with a k-cligue G[{vy,v2...v¢}]. For i € [k+ 1,n], the vertex v; is adjacent to vertices

{’01'_1, Oji_2... Z)i,k} only.

Definition 3. For positive integers n, k with n > k, the k-star, denoted by S¥, is defined as follows: Starting
with a k-cliqgue G[{v1, v, ... v }] and an independent set S with |S| = n — k. Fori € [k +1,n], the vertex v;
is adjacent to vertices {v1, vy ... vy} only.

Definition 4. For positive integers n,k,c withn > kand c € [1,k — 1], let v1, vy, ..., 04— be the simplicial
ordering of PX=C. The k-spiral, denoted by TK%, is defined as PX_C + K., which is, V(Tk%) = {v1,vs,..., v}
and E(TK%) = E(PE=S) UE(K.) U {010, 20y, ..., 0n_c0p}, for 1 € [n—c +1,n].

Definition 5. Let v € V(TX) be a vertex of degree k whose neighbors form a k-clique of TY, then v is
called a k-simplicial vertex. Let S1(TF) be the set of all k-simplicial vertices of T, for n > k + 2, and set
S51(Kx) = ¢,51(Kir1) = {v}, where v is any vertex of K 1. Let Go = G,G; = G;_1 — v;, where v; is
a k-simplicial vertex of G;_1, then {v1,v,...v,} is called a simplicial elimination ordering of the n-vertex
graph G.

In order to consider the PI-value of any k-tree G, let G’ = G U {u} be a k-tree obtained by adding a
new vertex u to G. For any vy, v, € V(G), let d(vy, v3) be the distance between v; and v, in G, d' (v, v7)
be the distance between v; and v; in G’. Now, we define a function that measures the difference of
PI-values of any edge relating a vertex from G to G’ as follows: f : {w € V(G'),xy € E(G)} to {1,0}
as follows:

0, if w=wuandd (x,w)=4d(y w),
flw,xy) =¢ 0, if weV(G)andd(x,w)—d(x,w)=d(y,w)—d(yw),
, if otherwise.

—_

Using the construction of k-trees, we can derive the following lemmas. Note that PI(xy) =
My (x) 4+ nyy(y) and PI(xy) < n —2.

Lemma 1. Let xy be any edge of a k-tree G with at least n > k + 1 vertices, then PI(xy) < n —k — 1.
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Proof. Since every vertex of any k-tree G with at least k + 1 vertices must be in some (k + 1)-cliques,
whichis, [N(x) "N(y)| > k—1forany xy € E(G), wehave PI(xy) <n—(k—1)—-2=n—k—-1. O

Lemma 2. Let xy be any edge of a k-tree G with n vertices and G' = G U {u} be a k-tree obtained by adding u
to G. Ifw € V(G) , then f(w,xy) = 0.

Proof. By adding u to G, since G’ is a k-tree, we can get that the distance of any pair of vertices of G
will increase at most 1, then f(w, xy) < 1. If w € V(G), then there exists a shortest path Py, or Py
such that u ¢ V(Pyy) or V(Pyy), thatis, f(w,xy) =0. O

Lemma 3. For any k-path G with n vertices, where n > k + 2, let $1(G) = {v1,v,} and {vq,v,,..., 04}
be the simplicial elimination ordering of G, then d(v;,v;) = [L2], fori < jand i,j € [1,n]. Furthermore,
ifn=kp+swithp >1,s € [2,k+ 1], then

d(Z) Ok ) = p+l # S {’01102/-'-10571},
p+s p —1 lf v E {vki+s/ Okits+1r- - "vk(i+1)+s—]}/i c [O/P _ 1}

Proof. If j —i < k, then v;, v; must be in the same (k + 1)-clique of G, and we have d(v;,v;) = 1;

ifj—i>k+1, then Pv.v, = V01 kUit 2k - - - i+(L o)k zﬂ K0 is one of the shortest paths between

v; and v;. Thus, d(v;, v}) = []k | and Lemma 3 is proved. [
Lemma 4. For any k-spiral Tk* with n vertices and v;,v; € V( Tlf*c) fori <j,

1, if j—i<k—cijel,n—c,
d(vi,vj)) =4 1, if iorj€n—c+1,n]
2, if j—i>k—c+1l,ijel,n—c]

Proof. If j —i < k — cwithi,j € [1,n — ¢, by Definition 4, we can get that v;, vj must be in the same
(k+1)-clique of G and d(v;,v;) = 1;If i or j € [n — ¢ + 1, n], without loss of generality, say v; such that
i € [n—c+1,n], then N[v;] = V(T)%), thatis, d(v;,vj) = L;1f j—i > k—c+1withi,j € [Ln—d],
then v; ¢ N(v;) and Py,o; = v;vs0; is one of the shortest paths between v; and v;, that is, d(v;, vj) = 2.
Thus, Lemma 4 is proved. O

3. Main Proofs

In this section, we give the proofs of main results by inductions. For a k-tree TX, if n = kor k + 1,
then TX is a k or (k+1)-clique, that is, PI(TK) = 0. Thus, all of the theorems are true and we will only
consider the case when n > k + 2 below.

Proof of Theorem 1. For (i), let V(SK) = {uy,up, ..., un}, G[{uy, ..., ux}] be a k-clique and N(uy,) =
{uy,up, ..., u} for Iy > k+ 1. Just by Definition 3, we can get that for i,j € [1,k], N[u;] =
Nluj] = V(S}), then PI(uju;) = My (1) + My, (1) = 0; for i € [1, k] and Iy € [k+1,n],
IN[u;] — N{uy, )| = n—k—1, then PI(u;u;) = n — k — 1. Thus, we can get PI(Sk) = Y jeq i PL(uiug) +
Lielploek+1,n) PL1(uingy) = k(n —k)(n —k —1).

For (ii), we will proceed it by induction on |P,’§| =n>k+2Ifn=k+21let{vy,vy,..., 04,2} be
the simplicial elimination ordering of P ,»- By Lemma 3, we can get that PI(v10;) = 1, PI(vjvy) = 0
and PI(v;vg ) = 1fori,i' € [2,k+1]. Thus, PI(Pf,,) = Y503 PI(v10;) + L0 PI(viveso) = 2k.
Assume that Theorem 1 is true for a k-path with at most kp 4+ s — 1 vertices, where p > 1,2 <s < k+ 1.
Let PX be a k-path such that |[PX| = kp +5, V(PX) = {0vy,0,,. o+ Ukpys) and {01,02,...,Uppys} be
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the simplicial elimination ordering of Pf. Set Pk, = Pf — {vj, 4}, then {01,0y, ..., 0kpi5 1} is the
simplicial elimination ordering of PX | and for any edge vjv; € E (P5), d(v;, v;j) or d'(v;,v;) is the
distance of v; and v; in Pk | or Pk, respectively.
Let a [k(k+1)(p71)(2kp+6572k74)
(s—2)(s—13)(3k—s+3)]

+ (sfl)s(gkferZ)] o [k(k+1)(pfl)(36kp+6572k710) +

= pk? + pk — k?> — 3k + 2ks — s> + 3s — 2. If we can show that by adding

Vkps tO Pk |, PI(Pk) = PI(PX_,) + a, then Theorem 1 is true.
Set w = Ty, A1 = {0105, 010541, ..., 010k1}, A2 = {020s,..., 02040}, .., Asi1 =
{vsflvs/--~;vsflvk+sfl} and By = {v1v2,0103,...,010s_1}, B2 = {v203,...,0205_1},...,Bs_2 =

{vs20s-1}, Bs_1 = ¢. By Definition 2 and Lemma 3, we have d'(v1, 0xp45) = p +1,d (05, 0pp1s) = p
and d’(v1, Ukars) =p+1d(o, vkp+s) = p+1, thatis, d' (v, Ukp+s) # d'(vs, Ukp+s) and d/(vlrvkars) =
d'(v2, vkpys)- Thus, f(w,v1vs) = 1 and f(w,v1v;) = 0. Similarly, for any edge vy, vy, € US—T A; with
hy < hy, we have d'(vy,, vkpis) 7 d' (U, Vkpes), thatis, f(w, vy, 04,) = 1; For vy, vy, € Uf;llBi with
hy < hy, we have d'(vy,, vkpis) = d'(Vp,, Vpys), that is, f(w, vy, vy,) = 0. Thus, we can get that

: -1
1, lf Xy € UZillAi,
0, if xye€ U ;B

f(vkp—‘rsr xy) = {

Fort € [0,p — 2], set Aysys = {Ukt+svk(t+1)+s}f Aktts+1 = {Ukt+s+1vk(t+1)+5/Ukt+s+1Uk(t+1)+s+1}/

oo A1) s—1 = Ok 45— 10K(t41) 457 Ok(E41)+5—10k(t41)+s+17 - - - - Ok(t41) +5—1Vk(t42) +s—1 ), and

Bitrs = {OkttsVktrst1s - - OktrsVk(e41)+s—1 1 Brtrst1 = {Oktsst1Oktrs42s - Oktbs 104 1) 45117+ s

Bi(t+1)4s—2 = {Vk(t+1)45—2Vk(t+1)+s—1} Br(t41)4s—1 = ¢. For t = 0 and by Lemma 3, we have

d/(Us/vkars) = P dl(”k+szvkp+s) = p—1and d/(vs/vkp+s) = prd/(vs+1rvkp+s> = p, that is,

d' (s, Vkpss) 7 ' (Vkts Vkpss) and d'(vs, vgpss) = d'(Vsy1,Vkpes)- Thus, f(w,vsv4,) = 1 and

f(w,vsv541) = 0. similarly, for any edge vy, vy, € Ufit;}r):s_lAi v(vitl‘; hy < hp, we have
k(t+1)+s—1

d,(vhlrvkp+s) # d’(vhz,vkp+s), that is, f(w, vhlvhz) = 1, for U, O, € Ul:ktJrS B; with h; < hy,
we have d'(vy,,, Ugpis) = d'(Ohy, Vkpys), thatis, f(w, vy, vp,) = 0. Thus, we can get that

k(t+1)+s—1
i=kt+s Ai,
k(t+1)+sle'
i=kt+s -

1, if xyeu
0, if xyeU

f(Ukp+51x]/) = {

Next, we consider the edges in the (k + 1)-clique PX[N [Ukps]]. For any edge v, vy, with
hi,hy € [k(p —1) +s,kp 45 — 1], we have d' (v}, Vgpis) = d' (0h,, Vgpys) = 1, thatis, f(w, vy, v5,) = 0.
For any edge vj,vx,4s with h € [k(p — 1) +s,kp], by Lemma 3, we can obtain that d'(vy,v),) =
P;d/(01,0kp+s) = p+1 d/(vh—k/vh) = 1id/(vh—k/vkp+s) = 2 and when h # k(p - 1) +s,
4" (Ok(p—1)45:0n) = Ld' (Ok(p—1)4s Vkpts) = 1, thatis, d'(v1,v5) # d'(01,0kp4s), d'(On—k,0n) #
d'(on—, Okprs) and d' (Og(p—1)45,0n) = @' (Vg(p—1)4s: Vkp+s). Similarly, we get that for j € [1,p —1],
j €[1,pland [ #h,

@ (01, 00) # & (01, 06p5) i 1€ [Ls—1]Uh— jhk(p— ) +5 1,
d/(Ul,Uh) = d’(vl,vkp+s) if e [k(p —j/) +s,h —j/k—|—k — 1] U [h +Lkp+s— 1].

Thus, if v = Vk(p_1)+s, then &' (o), Vy(y_1)4s) # @'(01, Vkpys) with T € [1,5 — 1] U {UI [k(p —
1) +s—jk(p—jk+s—1} = [1,(p— Dk +s—1] and d' (v}, 0x(p—1)+s) = @' (01, Vxps) With I €
[(p — Dk +s+1,kp +s], that is, PI(0x(p—1)450kp+s) = (p — 1)k +s — 1; similarly, we can obtain
that Pl(vk(p—l)+s+1vkp+s) = (p-Dk-1)+s-1 PI(”k(p—l)—&-s-i-kaers) =(p-Dk=-2)+s—
L. PI(0gpvrpys) = (p—1)s+s — 1.

For any edge v},0xs with it € [kp +1,kp + s — 1], by Lemma 3, we can obtain that d’'(vj,_, vj,) =
1, d/(vhfkr Ukp+s) = 2 and d/(vk(p—l)-i-S/vh) =1 d/(vk(p—1)+srvkp+s) = 1, that is, d/(vhfk/ o) #
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d' (0 k, Vkprs) and d'(Og(p—1)1s,0n) = @' (Vg(p—1)4s Vkpts)- Similarly, we get that for j/ € [1,p]
and ! # h,

d'(vy,0n) # d' (v, vkpys) i 1€ [h—j"kk(p—j") +s—1],
d' (v, o) = d' (v, 0ppgs) if LE[K(p—j")+s,h—j"k+k—-1Uh+1,kp+s—1].

Thus, if v, = v, 41, then d’(v), vkp11) # d' (V) Vkpys) for 1 € LJ].”,,:1 kp+1—j"kk(p—j")+s—1]
and d’ (v}, Vgps1) = d' (01, Vgps) With I € {U]P,,:1 k(p—j")+s,k(p+1—j")]}U[h+1,kp+s—1], that
is, PI(0xp110kp+s) = (s — 1)p; similarly, we have PI(vx, (10kp1s) = (5 —2)p; - -5 PI(Vkpys—20kpts) =

2p; Pl(vkp+s—1vkp+s) =P
Setw € V(PX ), if xy € E(P¥) with x or y # Ukp+s, Dy Lemma 2, we have f(w, xy) = 0. Thus,

PI(P}) — PI(Pt ) = zxyeug,mfl( oy (@ xY) + PIOk(p-1)450kp1)

+P1(vk(pfl)+s+lvkp+s)+"'+Pl(vkp+s—1vkp+s)

= [(k+2—=s)+(k+3—s)+ - +k+(1+24+---+k)(p—1)
+k(p—1)+s=1+[k—1D(p—-1)+s—1]+[(k—=2)(p—1) +s
1+ +[s(p—-1D+s—-1+[(s—1)p+(s—2)p+---+2p+p]
pk? + pk — k? — 3k + 2ks — s> + 35 — 2
Q.

Thus, PI(P}) = k(k+1)(pfl)(2kp+6572kf4) n (s—l)s(gk—s—&-Z)’ for |[PX| = kp + s and Theorem 1
is proved. O

Proof of Theorem 2. We will proceed with it by induction on n > k 4 2. If n = k + 2, by Definition 4,
we have T,’;*C is also a k-path, that is, PI (T,’f*c) = 2k. If n > k+ 3, assume that Theorem 2 is true
for the k-spiral with at most n — 1 vertices, we will consider T,’;*C with n vertices. Let T,’Z‘*C be a
k-spiral with V (TK*) = V<Tr]fi1,c) U{v}and E(T}:) = E(Tll{il,c> U{vv,_1,00,_p,...,00, i} such that
V1,02, ...,Vy_c—1 is the simplicial ordering of Pf;:‘c"_l, where T,’;’illc = P;I;:(C:—l + K. with V(T;I:il,c) =
{v1,v2,...,v,-1} and E(TL":LC) = E(Prlfjg_l) UE(K.) U{v1v, 000y, ..., 04_c_qv} forl € [n—c,n—1].
For any edge v;v; € E(Tﬁ), d(v;,v;) or d'(v;, v;) is the distance of v; and v; in TL":LC or TX*,
Fork+2<n<2k—clety = (RO D@=+2) (k- k-2)(@kontd) _ (e 1y(3g -
n + 2). If we can show that by adding v to T,’fjlrc, PI(TE%) = PI(TL":LC) + v, then Theorem 2 is true.
Setw = vandlet! € [n—c,n—1], by Lemma 4, we have d'(v;,v) = 1 and d’'(v;,v) = 2
fori € [1,n—k—1], thatis, f(w,vv;) = 1; d (v;,v) = d'(v;,v) = 1fori € [n—k,n—1], that is,

f(w,vv;) = 0. Set C; = {0102, 0103, ..., 01041}, Co = {0203,0204,...,020_f_1},...,Cpf—2 =

respectively.

{onk2vnx-1} Cok1 = ¢, Dy = {0190k, V100 k11 - -+, V10k—c11}, D2 =
{UZUnfkr 02U —f+1s- - 'rUZkachZ}r- -Dpg1 = {vnfkflvnfkr Un—k—10n—k+1s- - 'rvnfkflvnfcfl}'
By Lemma 4, we have d'(vy,v) = d'(vy,v) = 2 and d'(v,_¢,v) = 1, thatis, f(w,v1v) = 0 and

f(w,v10,_x) = 1. Similarly, for vj, vy, € U'1C; with hy < hy, we have d' (v, v) = d'(v,,0) = 2,

thatis, f(w, vy, vy,) = 0; for vy, vy, € U;’;lklei with 11y < hp, we have d’ (v, v) = 2and d'(vy,,,v) =1,
that is, f(wlvmvhz) = 1 SetC,y = {vnfkvnfkwtlrvnfkvnkarZr-~-rvnfkvnfcfl}rcnfkqtl =
{vn—k+lvn—k+2/ Un—k+10n—k+37-+ s vn—k—i—lvn—c—l}/ e G = {vn7c72vn—c—l}- By Lemma 4, we
have d'(v,_,v) = d'(v,_x_1,v) = 1, thatis, f(w,v,_v,_r_1) = 0. Similarly, for v v, € U?;;:,?Ci
with hy < hp, we have d'(vy,,v) = d'(vy,,v) = 1, thatis, f(w, vy, v3,) = 0.

Set Ey = {vv;,i € [n—kn—c—1]}, by Lemma 4, we have d'(v;,0v) = 2,d'(v;,v,_) = 1
fori € [I,n—k—1] and d'(vj,v) = d'(vj,v,—) = 1fori € [n—k+1,n]. Thus, PI(v, 4v) =
n —k — 1. Similarly, PI(v,,_k.1v) = PI(v,_42v) = --- = PI(v4_.11v) = n — k — 1. In addition, by
Lemma 4, we have d'(v;,v) = 2,d"(v;,vk_c1p) = 1fori € [2,n —k—1],d (v1,v) = d' (v1,05_c12) =2
and d'(vj,v) = d(vj,V4_c42) = 1forj € [n—k,n]. Thus, PI(vy_c4pv) = n —k — 2. Similarly, we
have PI(vg_.30) = n—k —3,PI(vf_cy4v) = n—k —4,...,PI(v,_.10) = 1. Set E; = {vy,, ] €
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[n —c,n — 1]}, since N[v;] — N[v] = n —k —1, we have PI(vy)) = n—k—1. Set E3 = {v;v;,i €
[1,n—c—1],1 € [n—c,n—1]}, by Lemma 4, we have d’(v;,v) = 2fori € [1,n —k—1],d'(v;,v) =1
forie n—kn—c—1],d(v,v) =1forl € [n—c¢,n—1]. Thus, f(w,v;v;) = 1fori € [1,n —k —1]
and f(w,v;v;) =0fori € [n—k,n—c—1].

Setw € V(T&*) — {v}, if xy € E(TF%) with x or y # v, by Lemma 2, we have f(w, xy) = 0. Thus,

PI(TJ;*) - PI(T;];L) nyeu?;ffzc,‘ f(w,xy) + nyef‘;lk”D,» f(w,xy) + nyeEluEz PI(xy)+

ny€E3f(w/xy)

= 0+[2k—n—c+2)+2k—n—c+3)+---+ (k—c)]
+1+24+---+(n—k=2)+(n—k—-1)(2k —n—c+2)]
+c(n—k—1)4+c(n—k—1)
(n—k—1)3k—n+2)
g

and Theorem 2 is proved.

For n > 2k—c+1, let o
3c(n72k+cf2)(n7172k+c)+(kfc)(2c2+33(n71)c74kc+3k(n71)74k276k+3n72) — K2 —dke+ 2+ 2nc —3c+ k. If
we can show that by adding v to Tnkil,c’ PI(TK%) = PI(TL”;LC) + 0, then Theorem 2 is proved.

Setw = v, by Lemma 4, wehaved'(v;,v) = 1forl € [n—c,n—1|,d'(v;,v) =2fori € [1,n—k—1
and d'(vj,v) = 1forj € [n—kn—c—1]. Thus, f(w,vv;) = 1and f(w,vv;) = 0. Set C; =
{v102,0103,. .., 01011}, C2 = {0203,0204, ..., 020k—c12}, -+ Cpotkre—1 = {Vn—2ktc—1Vn—2k+es
Upn—2k+c—1n—2k+c+1s+++s Z);1—2k+c—lvn—k—1}/ Cn—2k+c = {vn—2k+cvn—2k+s+lr Un—2k+cOn—2k+s5+27 s
On—2k+cVn—k—1}1 Cnokper1 = {Un—2ktet10n—2k+e12s Un—2ktct10n—2k+ct3s -+ - r Vn—2kct10n—k—1}r-- -+,
Cit-1= ¢ Duskrc = {Vn—2k4+cUn—k}s Dn-2ksct1 = {0n—2ktct10n—ks Un—2ktc41%n—k+1}s -+ Dnk—1
= {vnfkflvnfkr On—k—10n—k+1s-- -/ Unfkflvnfcfl}-

By Lemma 4, we can get that d’(vy,v) = d'(vy,v) =2 and d'(v,,_i,v) = 1, thatis, f(w,v102) =0
and f(w,v1v,_y) = 1. Similarly, for vy, v),, € U'F1C; with hy < hy, we have d' (v, v) = d'(vp,,,v) =
2, that is, f(w,vp,vp,) = 0; for vy vy, € U?:_,flek+cDi with h; < hy, we have d’(vhl,v) = 2 and
d’(vhz, Z)) =1, that iS,f(ZU, vh1vh2) =1.SetC,_; = {vn_kvn_k+1,vn_kvn_k+2, .. -/vn—kvn—c—l}r Ch_k+1
= {Un k100 k42 On—k+19n—k+3r++ 1 On—k410n—c—1}s- -+, Cn—c+2 = {VUn—c—20y—c—1}. By Lemma 4, we
can get that d'(v,_y,v) = d'(v,_41,v) = 1, thatis, f(w, v,_(v,_41) = 0. Similarly, for v v;, €
U= 2C; with iy < hy, we have d(vy,,0) = d'(vy,, v) = 1, that s, f(w, vy, vp,) = 0.

Set Ey = {vv,i € [n—kmn—c—1]}, by Lemma 4, we have d'(v,v, 1) =
2,d (vy_c1,0pk-1) = 1,d(v,0) = d(vy,_c1,v) = 1fori € n—kn—c—2U[n—cn—1]
and d'(v,v;) = d(v,_c1,v;) = 2forj € [I,n —k —2]. Thus, PI(vv, 1) = 1. Similarly, we have
PI(vv,_c—p) = 2,PI(vvy,_c—3) = 3,...,PI(vv, ) = k—c. Set E; = {vv;,l € [n—c,n— 1]}, since
N[v)] — N[v] = n—k—1, we have PI(vy)) = n—k—1. Set E3 = {vjv,i € [LLn—c—1],1 €
[n —c,n — 1]}, by Lemma 4, we have d'(v,v;) = 2,d'(v,v5) = 1fori € [1,n —k—1] and
d'(v,v;) = d'(v,v;) = 1fori € [n—kn—c—1]. Thus, f(w,v;v;) = 1fori € [1,n —k — 1] and
f(w,vv)) =0fori € [n—kn—c—1].

Setw € V(T&*) — {v}, if xy € E(TF%) with x or y # v, by Lemma 2, we have f(w, xy) = 0. Thus,

3c(n—2k+c—1)(n—2k+c)+ (k—c) (2c*+3nc—4kc+3kn—4k* —6k+3n—2)
3

PI(TE) — PI(TH,)

nyeU?;lC*ZCi f(w/ x]/) + nye?;f:;k+cDi f(wr x]/) + nyEEluEz Pl(xy)

+ny€E3 f(w' X}/)

= 0+[14+243+---+(k—-0)]+[1+24+3+---+ (k—20)]
+ec(n—k—1)+c(n—k—1)

= k?—4kc+c%+2nc—3c+k

= 0',

and Theorem 2 is proved. O
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Proof of Theorem 3. For n > k + 2, we will proceed it by introduction on |TX| = n. If n = k +2,
Tk is also a k-path, that is, PI(TX) = 2k. If n > k + 3, assume that Theorem 3 is true for the k-tree
with at most n — 1 vertices, let v € S;(TF) and T5—1 = TK — v, by the induction hypothesis, we
have PI(TX |) < PI(Sk_|) = k(n —k —1)(n — k — 2). By adding back v, let N(v) = {x1,x2,..., %}
and w = v. Since T,If[v, x1,%2,..., Xk is a (k + 1)-clique, we have f(w, xl-x]-) = 0fori,j € [1,k]. By
Lemmas 1 and 2, we can obtain that PI(vx;) <n —k —1withi € [1,k] and f(w, xy) < 1 for any edge
xy € E(TX) — E(TK[v,x1,x2, ..., x¢]). Next, set w € V(TK) — {v}, by Lemma 2, if xy € E(TK) with x or
y # v, we have f(w, xy) = 0. Since |E(TK) — E(TX[v, x1,x2,...,x])| = k(n —k — 1), we have

PI(T}) = PI(Ty_;)+ Loy eE(Th— {oric[1K]}) fw, xy) + Ty PI(ox;)
PI(SK ) +k(n—k—1)+k(n—k—1)
k(n—k—1)(n—k—=2)+k(n—k—1)+k(n —k—1)
k(n—k)((n—k—-1)

PI(SK).

A

Thus, this finishes the proof of Theorem 3. [

Proof of Theorem 4. For k = 1 and by Fact 1, we can get that every tree with the same vertices has the
same PI-value; then, Theorem 4 is obvious; fork > 2,if k+2 <n <2k —c,letn =kp+swithp =1
and s = n — k, by Theorem 1, we have PI(PX) — PI(TF%) = (57”5(;’{75”) — ("7]()(”7’{731)(4#"“) =
("7](71)(”7]{;[31(7("%”2] — ("71{)("4{;1)(4](7”2) = 0, and Theorem 4 is true. If n > 2k —c+1, p = "2
and by Theorems 1 and 2, define the new functions as follows: forz > 2k —c+1,1 <c¢ <k —1and
2<s<k+1,

_ (k+1)(z—s—k)(3z+3s—2k—4) | s(s—1)(3k—s+2)
g(z) - 6 + 3 ’
h(z,e) = c(z—2k+c—1)(z—2k+c)+ (k—c)(2c®+3zc—4kc+3kz—4k>—6k+3z—2)
7 - 3 7
I(z¢) = g(z)—hzc)

(%+%—c)zz+(—cz+2c+4kc—¥—52—"—%)2
b ks ks S K8 k8 G2y 3k — & —dke 42— X,

+
M)
[e)}
N

I
~—~
=
+
—_
\
N
)
SN—
N
\
a
)
+
N
S
+
I
£
S
-
NS
g
WIN

Then, it is enough to determine whether or not I(z, ¢) > 0 is true. By some calculations, we can
obtain the following claim:

Claim 1. z; = 2k — c + 1, zp = 2k — ¢ + 2 are the two roots of 1(z,¢) = 0 with ¢ # "*Tl

Proof. Forany c € [1,k—1],letzy = 2k—c+1,2p = 2k —c+2, and we have [(2k —c+1,c) =
0,I1(2k—c+2,c) =0.Ifc # k%l, then Claim is true. O

For fixed ¢ € [1, HTl), that is, % + % — ¢ > 0, then the function of I(z, ¢) about z is open up. Since z
is an integer and by Fact 2, we have I(z,c) > 0 for z > 2k — ¢ + 1 and Theorem 4 is true; if ¢ = HTl
and k > 1, we have [,(z) = % <0, thatis, I(z, k%l) is decreasing about z. By the proof of Fact 2, we
have I(2k —c+1,c) = 0. For z > 2k — c + 1, we can get that [(z, k%l) <I(2k—c+1, k%l) = (0 and
Theorem 4 is true; for fixed ¢ € (HTl, k — 1], that is, % + % — ¢ < 0, then the function of I(z, ¢) about z is
open down. Since z is an integer and by Claim, we can obtain that /(z,¢) < 0forz > 2k —c+1and
this finishes the proof of Theorem 4. [J

4. Conclusions

We can see that the k-stars attain the maximal values of PI-values for k-trees. One of the guesses
is that the k-paths attain the minimal values. Actually, it is not the case and some PI-values of k-spirals
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is even smaller than that of k-paths. Meanwhile, not all PI-values of k-spirals are less than the values
of all other k-trees. This fact indicates an interesting problem—which type of k-trees will achieve the
minimum PI-value?
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