Article

The Bounds of Vertex Padmakar-Ivan Index on k-Trees

Shaohui Wang ${ }^{1(1)}$, Zehui Shao ${ }^{2, * *}$ (Dia-Bao Liu ${ }^{3}$ (D) and Bing Wei ${ }^{4}$
1 Department of Mathematics and Physics, Texas A\&M International University, Laredo, TX 78041, USA; shaohuiwang@yahoo.com
2 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
3 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China; liujiabaoad@163.com
4 Department of Mathematics, The University of Mississippi, University, MS 38677, USA; bwei@olemiss.edu
* Correspondence: zshao@gzhu.edu.cn

Received: 26 January 2019 ; Accepted: 11 March 2019; Published: 1 April 2019

Abstract

The Padmakar-Ivan (PI) index is a distance-based topological index and a molecular structure descriptor, which is the sum of the number of vertices over all edges $u v$ of a graph such that these vertices are not equidistant from u and v. In this paper, we explore the results of $P I$-indices from trees to recursively clustered trees, the k-trees. Exact sharp upper bounds of PI indices on k-trees are obtained by the recursive relationships, and the corresponding extremal graphs are given. In addition, we determine the $P I$-values on some classes of k-trees and compare them, and our results extend and enrich some known conclusions.

Keywords: extremal values; PI index; k-trees; distance

1. Introduction

Let G be a simple connected non-oriented graph with vertex set $V(G)$ and edge set $E(G)$. The distance $d(x, y)$ between the vertices $x, y \in V(G)$ is the minimum length of the paths between x and y in G. The oldest and most thoroughly examined molecular descriptor is Wiener index or path number [1], which was first considered in trees by Wiener in 1947 as follows: $W(G)=$ $\sum_{\{x, y\} \subset V(G)} d(x, y)$. Compared to Wiener index, Szeged index was proposed by Gutman [2] in 1994 that, given $x y \in E(G)$, let $n_{x y}(x)$ be the number of vertices $w \in V(G)$ such that $d(x, w)<d(y, w)$, $S z(G)=\sum_{x y \in E(G)} n_{x y}(x) n_{x y}(y)$. Based on the considerable success of Wiener index and Sz index, Khadikar proposed a new distance-based index [3] to be used in the field of nano-technology, that is edge Padmakar-Ivan $\left(\mathrm{PI}_{e}\right)$ index, $P I_{e}(G)=\sum_{x y \in E(G)}\left[n_{e}(x)+n_{e}(y)\right]$, where $n_{e}(x)$ denotes the number of edges which are closer to the vertex x than to the vertex y, and $n_{e}(y)$ denotes the number of edges which are closer to the vertex y than to the vertex x, respectively.

It is easy to see that the above concept does not count edges equidistant from both ends of the edge $e=x y$. Based on this idea, Khalifeh et al. [4] introduced a new PI index of vertex version that $\operatorname{PI}(G)=P I_{v}(G)=\sum_{x y \in E(G)}\left[n_{x y}(x)+n_{x y}(y)\right]$. Note that, in order to obtain a good recursive formulas, we do not consider the vertices x, y for $n_{x y}(x)$ and $n_{x y}(y)$. Thus, $n_{x y}(x)+n_{x y}(y) \leq n-2$.

Nowadays, Padmakar-Ivan indices are widely used in Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) [5,6], and there are many interesting results [5,7-26] between graph theory and chemistry. For instances, Klavžar [27] provided PI-partitions and arbitrary Cartesian product. Pattabiraman and Paulraja [28] presented the formulas for vertex PI indices of the strong product of a graph and the complete multipartite graph. Ilić and Milosavljević [29] established basic properties of weighted vertex PI index and some lower and upper bounds on special graphs. Wang and Wei [30] studied vertex PI index on an extention of
trees (cacti). In [31], Das and Gutman obtained a lower bound on the vertex PI index of a connected graph in terms of numbers of vertices, edges, pendent vertices, and clique number. Hoji et al. [32] provided exact formulas for the vertex PI indices of Kronecker product of a connected graph G and a complete graph. Since the tree is a basic class of graphs in mathematics and chemistry, and these results indicate that either the stars or the paths attain the maximal or minimal bounds for particular chemical indices, then a natural question is how about the situations for vertex Padmakar-Ivan index?

Because PI index is a distance-based index and not very easy to calculate, we first consider the bipartite graph G with n vertices. Note that the tree is a subclass of bipartite graphs which have no odd cycles. By the definition of $\operatorname{PI}(G)$ and the assumption that we do not consider the vertices x, y for $n_{x y}(x)$ and $n_{x y}(y)$, one can obtain that every edge of G has the $P I$-value as $n-2$. Thus, the following observation is obtained.

Obervation 1. For a bipartite graph G with n vertices and m edges, $\operatorname{PI}(G)=(n-2) m$. In particular, if G is a tree, then $\operatorname{PI}(G)=(n-1)(n-2)$.

Next, we will consider the graphs with odd cycles. In particular, the general tree, k-tree, contains a lot of odd cycles. Then, we are going to consider the PI indices of k-trees and figure out whether or not a k-star or a k-path attains the maximal or minimal bound for $P I$-indices of k-trees. Our main results are as follows: Theorems 1 and 2 give the exact $P I$-values of k-stars, k-paths and k-spirals (see Definitions 1-5 below).

Theorem 1. For any k-star S_{n}^{k} and k-path P_{n}^{k} with $n=k p+s$ vertices, where $p \geq 0$ is an integer and $s \in[2, k+1]$, we have
(i) $\operatorname{PI}\left(S_{n}^{k}\right)=k(n-k)(n-k-1)$,
(ii) $P I\left(P_{n}^{k}\right)=\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3}$.

Theorem 2. For any k-spiral $T_{n, c}^{k *}$ with $n \geq k$ vertices, where $c \in[1, k-1]$, we have

$$
\operatorname{PI}\left(T_{n, c}^{k *}\right)=\left\{\begin{aligned}
\frac{(n-k)(n-k-1)(4 k-n+2)}{3} & \text { if } n \in[k, 2 k-c] \\
\frac{3 c(n-2 k+c-1)(n-2 k+c)+(k-c)\left(2 c^{2}+3 n c-4 k c+3 k n-4 k^{2}-6 k+3 n-2\right)}{3} & \text { if } n \geq 2 k-c+1
\end{aligned}\right.
$$

Theorem 3 proves that k-stars achieve the maximal values of $P I$-values for k-trees, and Theorem 4 shows that k-paths do not arrive the minimal values and certain $P I$-values of k-spirals are less than that of k-paths.

Theorem 3. For any k-tree T_{n}^{k} with $n \geq k \geq 1$, we have $\operatorname{PI}\left(T_{n}^{k}\right) \leq \operatorname{PI}\left(S_{n}^{k}\right)$.
Theorem 4. For any k-spiral $T_{n, c}^{k *}$ with $n \geq k \geq 1$, we have
(i) $\operatorname{PI}\left(P_{n}^{k}\right) \geq \operatorname{PI}\left(T_{n, c}^{k *}\right)$ if $c \in\left[1, \frac{k+1}{2}\right)$,
(ii) $\operatorname{PI}\left(P_{n}^{k}\right) \leq \operatorname{PI}\left(T_{n, c}^{k *}\right)$ if $c \in\left[\frac{k+1}{2}, k-1\right]$.

2. Preliminary

In this section, we first give some notations and lemmas that are crucial in the following sections. As usual, $G=(V, E)$ is a connected finite simple undirected graph with vertex set $V=V(G)$ and edge set $E=E(G)$. Let $|G|$ or $|V|$ be the cardinality of V. For any $S \subseteq V(G)$ and $F \subseteq E(G)$, we use $G[S]$ to
denote the subgraph of G induced by $S, G-S$ to denote the subgraph induced by $V(G)-S$ and $G-F$ to denote the subgraph of G obtained by deleting F. $w(G-S)$ is the number of components of $G-S$ and S is a cut set if $w(G-S) \geq 2$. For any $u, v \in V(G), P_{u v}$ is a path connecting u and $v, d(u, v)$ is the distance between u and $v, N(v)=N_{G}(v)=\{w \in V(G), v w \in E(G)\}$ is the neighborhood of v and $N[v]=N(v) \cup\{v\}$. For any integers a, b with $a \leq b$, the interval $[a, b]$ is the set of all integers between a and b including a, b. In addition, let $[a, b)=[a, b]-\{b\}$ and $(a, b]=[a, b]-\{a\}$. In particular, $[a, b]=\phi$ for $a>b . f^{\prime}(x)$ is a derivative of any differentiable function $f(x)$, where x is the variable. $\lfloor x\rfloor$ is the largest integer that is less than or equal to $x ;\lceil x\rceil$ is the smallest integer that is greater than or equal to x. It is clear that d is from 0 to the diameter of graphs. Other undefined notations are referred to [33].

It is commonly known that a chordal graph G with at least three vertices is a triangulated graph and contains a simplicial vertex, whose neighborhood induces a clique. During recent decades, there are many interesting studies related to chordal graphs. In 1969, Beineke and Pippert [7] gave the definition of k-trees, which is a significant subclass of chordal graphs. Now, we just give some definitions about k-trees below.

Definition 1. For positive integers n, k with $n \geq k$, the k-tree, denoted by T_{n}^{k}, is defined recursively as follows: The smallest k-tree is the k-clique K_{k}. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with $n+1$ vertices.

Definition 2. For positive integers n, k with $n \geq k$, the k-path, denoted by P_{n}^{k}, is defined as follows: starting with a k-clique $G\left[\left\{v_{1}, v_{2} \ldots v_{k}\right\}\right]$. For $i \in[k+1, n]$, the vertex v_{i} is adjacent to vertices $\left\{v_{i-1}, v_{i-2} \ldots v_{i-k}\right\}$ only.

Definition 3. For positive integers n, k with $n \geq k$, the k-star, denoted by S_{n}^{k}, is defined as follows: Starting with a k-clique $G\left[\left\{v_{1}, v_{2} \ldots v_{k}\right\}\right]$ and an independent set S with $|S|=n-k$. For $i \in[k+1, n]$, the vertex v_{i} is adjacent to vertices $\left\{v_{1}, v_{2} \ldots v_{k}\right\}$ only.

Definition 4. For positive integers n, k, c with $n \geq k$ and $c \in[1, k-1]$, let $v_{1}, v_{2}, \ldots, v_{n-c}$ be the simplicial ordering of P_{n-c}^{k-c}. The k-spiral, denoted by $T_{n, c}^{k *}$, is defined as $P_{n-c}^{k-c}+K_{c}$, which is, $V\left(T_{n, c}^{k *}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(T_{n, c}^{k *}\right)=E\left(P_{n-c}^{k-c}\right) \cup E\left(K_{c}\right) \cup\left\{v_{1} v_{l}, v_{2} v_{l}, \ldots, v_{n-c} v_{l}\right\}$, for $l \in[n-c+1, n]$.

Definition 5. Let $v \in V\left(T_{n}^{k}\right)$ be a vertex of degree k whose neighbors form a k-clique of T_{n}^{k}, then v is called a k-simplicial vertex. Let $S_{1}\left(T_{n}^{k}\right)$ be the set of all k-simplicial vertices of T_{n}^{k}, for $n \geq k+2$, and set $S_{1}\left(K_{k}\right)=\phi, S_{1}\left(K_{k+1}\right)=\{v\}$, where v is any vertex of K_{k+1}. Let $G_{0}=G, G_{i}=G_{i-1}-v_{i}$, where v_{i} is a k-simplicial vertex of G_{i-1}, then $\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ is called a simplicial elimination ordering of the n-vertex graph G.

In order to consider the $P I$-value of any k-tree G, let $G^{\prime}=G \cup\{u\}$ be a k-tree obtained by adding a new vertex u to G. For any $v_{1}, v_{2} \in V(G)$, let $d\left(v_{1}, v_{2}\right)$ be the distance between v_{1} and v_{2} in $G, d^{\prime}\left(v_{1}, v_{2}\right)$ be the distance between v_{1} and v_{2} in G^{\prime}. Now, we define a function that measures the difference of $P I$-values of any edge relating a vertex from G to G^{\prime} as follows: $f:\left\{w \in V\left(G^{\prime}\right), x y \in E(G)\right\}$ to $\{1,0\}$ as follows:

$$
f(w, x y)=\left\{\begin{array}{lll}
0, & \text { if } w=u \text { and } d^{\prime}(x, w)=d^{\prime}(y, w) \\
0, & \text { if } & w \in V(G) \text { and } d(x, w)-d^{\prime}(x, w)=d(y, w)-d^{\prime}(y, w) \\
1, & \text { if } \quad \text { otherwise }
\end{array}\right.
$$

Using the construction of k-trees, we can derive the following lemmas. Note that $\operatorname{PI}(x y)=$ $n_{x y}(x)+n_{x y}(y)$ and $P I(x y) \leq n-2$.

Lemma 1. Let $x y$ be any edge of $a k$-tree G with at least $n \geq k+1$ vertices, then $P I(x y) \leq n-k-1$.

Proof. Since every vertex of any k-tree G with at least $k+1$ vertices must be in some $(k+1)$-cliques, which is, $|N(x) \cap N(y)| \geq k-1$ for any $x y \in E(G)$, we have $P I(x y) \leq n-(k-1)-2=n-k-1$.

Lemma 2. Let xy be any edge of a k-tree G with n vertices and $G^{\prime}=G \cup\{u\}$ be a k-tree obtained by adding u to G. If $w \in V(G)$, then $f(w, x y)=0$.

Proof. By adding u to G, since G^{\prime} is a k-tree, we can get that the distance of any pair of vertices of G will increase at most 1 , then $f(w, x y) \leq 1$. If $w \in V(G)$, then there exists a shortest path $P_{x w}$ or $P_{y w}$ such that $u \notin V\left(P_{x w}\right)$ or $V\left(P_{y w}\right)$, that is, $f(w, x y)=0$.

Lemma 3. For any k-path G with n vertices, where $n \geq k+2$, let $S_{1}(G)=\left\{v_{1}, v_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the simplicial elimination ordering of G, then $d\left(v_{i}, v_{j}\right)=\left\lceil\frac{j-i}{k}\right\rceil$, for $i<j$ and $i, j \in[1, n]$. Furthermore, if $n=k p+s$ with $p \geq 1, s \in[2, k+1]$, then

$$
d\left(v, v_{k p+s}\right)= \begin{cases}p+1 & \text { if } v \in\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\} \\ p-i & \text { if } v \in\left\{v_{k i+s}, v_{k i+s+1}, \ldots, v_{k(i+1)+s-1}\right\}, i \in[0, p-1] .\end{cases}
$$

Proof. If $j-i \leq k$, then v_{i}, v_{j} must be in the same $(k+1)$-clique of G, and we have $d\left(v_{i}, v_{j}\right)=1$; if $j-i \geq k+1$, then $P_{v_{i} v_{j}}=v_{i} v_{i+k} v_{i+2 k} \ldots v_{i+\left(\left\lfloor\frac{j-i}{k}\right\rfloor-1\right) k} v_{i+\left\lfloor\frac{j-i}{k}\right\rfloor k} v_{j}$ is one of the shortest paths between v_{i} and v_{j}. Thus, $d\left(v_{i}, v_{j}\right)=\left\lceil\frac{j-i}{k}\right\rceil$ and Lemma 3 is proved.

Lemma 4. For any k-spiral $T_{n, c}^{k *}$ with n vertices and $v_{i}, v_{j} \in V\left(T_{n, c}^{k *}\right)$ for $i<j$,

$$
d\left(v_{i}, v_{j}\right)= \begin{cases}1, & \text { if } j-i \leq k-c, i, j \in[1, n-c] \\ 1, & \text { if } i \text { or } j \in[n-c+1, n] \\ 2, & \text { if } j-i \geq k-c+1, i, j \in[1, n-c]\end{cases}
$$

Proof. If $j-i \leq k-c$ with $i, j \in[1, n-c]$, by Definition 4 , we can get that v_{i}, v_{j} must be in the same $(k+1)$-clique of G and $d\left(v_{i}, v_{j}\right)=1$; If i or $j \in[n-c+1, n]$, without loss of generality, say v_{i} such that $i \in[n-c+1, n]$, then $N\left[v_{i}\right]=V\left(T_{n, c}^{k *}\right)$, that is, $d\left(v_{i}, v_{j}\right)=1$; If $j-i \geq k-c+1$ with $i, j \in[1, n-c]$, then $v_{i} \notin N\left(v_{j}\right)$ and $P_{v_{i} v_{j}}=v_{i} v_{n} v_{j}$ is one of the shortest paths between v_{i} and v_{j}, that is, $d\left(v_{i}, v_{j}\right)=2$. Thus, Lemma 4 is proved.

3. Main Proofs

In this section, we give the proofs of main results by inductions. For a k-tree T_{n}^{k}, if $n=k$ or $k+1$, then T_{n}^{k} is a k or $(\mathrm{k}+1)$-clique, that is, $P I\left(T_{n}^{k}\right)=0$. Thus, all of the theorems are true and we will only consider the case when $n \geq k+2$ below.

Proof of Theorem 1. For (i), let $V\left(S_{n}^{k}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, G\left[\left\{u_{1}, \ldots, u_{k}\right\}\right]$ be a k-clique and $N\left(u_{l_{0}}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for $l_{0} \geq k+1$. Just by Definition 3, we can get that for $i, j \in[1, k], N\left[u_{i}\right]=$ $N\left[u_{j}\right]=V\left(S_{n}^{k}\right)$, then $\operatorname{PI}\left(u_{i} u_{j}\right)=n_{u_{i} u_{j}}\left(u_{i}\right)+n_{u_{i} u_{j}}\left(u_{j}\right)=0$; for $i \in[1, k]$ and $l_{0} \in[k+1, n]$, $\left|N\left[u_{i}\right]-N\left[u_{l_{0}}\right]\right|=n-k-1$, then $\operatorname{PI}\left(u_{i} u_{l}\right)=n-k-1$. Thus, we can get $\operatorname{PI}\left(S_{n}^{k}\right)=\sum_{i, j \in[1, k]} P I\left(u_{i} u_{j}\right)+$ $\sum_{i \in[1, k], l_{0} \in[k+1, n]} \operatorname{PI}\left(u_{i} u_{l_{0}}\right)=k(n-k)(n-k-1)$.

For (ii), we will proceed it by induction on $\left|P_{n}^{k}\right|=n \geq k+2$. If $n=k+2$, let $\left\{v_{1}, v_{2}, \ldots, v_{k+2}\right\}$ be the simplicial elimination ordering of P_{k+2}^{k}. By Lemma 3, we can get that $\operatorname{PI}\left(v_{1} v_{i}\right)=1, \operatorname{PI}\left(v_{i} v_{i^{\prime}}\right)=0$ and $\operatorname{PI}\left(v_{i} v_{k+2}\right)=1$ for $i, i^{\prime} \in[2, k+1]$. Thus, $\operatorname{PI}\left(P_{k+2}^{k}\right)=\sum_{i=2}^{k+1} \operatorname{PI}\left(v_{1} v_{i}\right)+\sum_{i=2}^{k+1} \operatorname{PI}\left(v_{i} v_{k+2}\right)=2 k$. Assume that Theorem 1 is true for a k-path with at most $k p+s-1$ vertices, where $p \geq 1,2 \leq s \leq k+1$. Let P_{n}^{k} be a k-path such that $\left|P_{n}^{k}\right|=k p+s, V\left(P_{n}^{k}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k p+s}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{k p+s}\right\}$ be
the simplicial elimination ordering of P_{n}^{k}. Set $P_{n-1}^{k}=P_{n}^{k}-\left\{v_{k p+s}\right\}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k p+s-1}\right\}$ is the simplicial elimination ordering of P_{n-1}^{k} and for any edge $v_{i} v_{j} \in E\left(P_{n}^{k}\right), d\left(v_{i}, v_{j}\right)$ or $d^{\prime}\left(v_{i}, v_{j}\right)$ is the distance of v_{i} and v_{j} in P_{n-1}^{k} or P_{n}^{k}, respectively.

$$
\text { Let } \alpha=\left[\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3}\right]-\left[\frac{k(k+1)(p-1)(3 k p+6 s-2 k-10)}{6}+\right.
$$ $\left.\frac{(s-2)(s-1)(3 k-s+3)}{3}\right]=p k^{2}+p k-k^{2}-3 k+2 k s-s^{2}+3 s-2$. If we can show that by adding $v_{k p+s}$ to $P_{n-1}^{k}, \operatorname{PI}\left(P_{n}^{k}\right)=\operatorname{PI}\left(P_{n-1}^{k}\right)+\alpha$, then Theorem 1 is true.

Set $w=v_{k p+s}, A_{1}=\left\{v_{1} v_{s}, v_{1} v_{s+1}, \ldots, v_{1} v_{k+1}\right\}, A_{2}=\left\{v_{2} v_{s}, \ldots, v_{2} v_{k+2}\right\}, \ldots, A_{s-1}=$ $\left\{v_{s-1} v_{s}, \ldots, v_{s-1} v_{k+s-1}\right\}$ and $B_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{s-1}\right\}, B_{2}=\left\{v_{2} v_{3}, \ldots, v_{2} v_{s-1}\right\}, \ldots, B_{s-2}=$ $\left\{v_{s-2} v_{s-1}\right\}, B_{s-1}=\phi$. By Definition 2 and Lemma 3, we have $d^{\prime}\left(v_{1}, v_{k p+s}\right)=p+1, d^{\prime}\left(v_{s}, v_{k p+s}\right)=p$ and $d^{\prime}\left(v_{1}, v_{k p+s}\right)=p+1, d^{\prime}\left(v_{2}, v_{k p+s}\right)=p+1$, that is, $d^{\prime}\left(v_{1}, v_{k p+s}\right) \neq d^{\prime}\left(v_{s}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{1}, v_{k p+s}\right)=$ $d^{\prime}\left(v_{2}, v_{k p+s}\right)$. Thus, $f\left(w, v_{1} v_{s}\right)=1$ and $f\left(w, v_{1} v_{2}\right)=0$. Similarly, for any edge $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{s-1} A_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right) \neq d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$; For $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{s-1} B_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. Thus, we can get that

$$
f\left(v_{k p+s}, x y\right)=\left\{\begin{array}{lll}
1, & \text { if } & x y \in \cup_{i=1}^{s-1} A_{i}, \\
0, & \text { if } & x y \in \cup_{i=1}^{s-1} B_{i} .
\end{array}\right.
$$

For $t \in[0, p-2]$, set $A_{k t+s}=\left\{v_{k t+s} v_{k(t+1)+s}\right\}, A_{k t+s+1}=\left\{v_{k t+s+1} v_{k(t+1)+s}, v_{k t+s+1} v_{k(t+1)+s+1}\right\}$, $\ldots, A_{k(t+1)+s-1}=\left\{v_{k(t+1)+s-1} v_{k(t+1)+s}, v_{k(t+1)+s-1} v_{k(t+1)+s+1}, \ldots, v_{k(t+1)+s-1} v_{k(t+2)+s-1}\right\}$, and $B_{k t+s}=\left\{v_{k t+s} v_{k t+s+1}, \ldots, v_{k t+s} v_{k(t+1)+s-1}\right\}, B_{k t+s+1}=\left\{v_{k t+s+1} v_{k t+s+2}, \ldots, v_{k t+s+1} v_{k(t+1)+s-1}\right\}, \ldots$, $B_{k(t+1)+s-2}=\left\{v_{k(t+1)+s-2} v_{k(t+1)+s-1}\right\}, B_{k(t+1)+s-1}=\phi$. For $t=0$ and by Lemma 3 , we have $d^{\prime}\left(v_{s}, v_{k p+s}\right)=p, d^{\prime}\left(v_{k+s}, v_{k p+s}\right)=p-1$ and $d^{\prime}\left(v_{s}, v_{k p+s}\right)=p, d^{\prime}\left(v_{s+1}, v_{k p+s}\right)=p$, that is, $d^{\prime}\left(v_{s}, v_{k p+s}\right) \neq d^{\prime}\left(v_{k+s}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{s}, v_{k p+s}\right)=d^{\prime}\left(v_{s+1}, v_{k p+s}\right)$. Thus, $f\left(w, v_{s} v_{k+s}\right)=1$ and $f\left(w, v_{s} v_{s+1}\right)=0$. similarly, for any edge $v_{h_{1}} v_{h_{2}} \in \cup_{i=k t+s}^{k(t+1)+s-1} A_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right) \neq d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$; for $v_{h_{1}} v_{h_{2}} \in \cup_{i=k t+s}^{k(t+1)+s-1} B_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. Thus, we can get that

$$
f\left(v_{k p+s}, x y\right)=\left\{\begin{array}{lll}
1, & \text { if } & x y \in \cup_{i=k t+s}^{k(t+1)+s-1} A_{i} \\
0, & \text { if } & x y \in \cup_{i=k t+s}^{k(t+1)+s-1} B_{i}
\end{array}\right.
$$

Next, we consider the edges in the $(k+1)$-clique $P_{n}^{k}\left[N\left[v_{k p+s}\right]\right]$. For any edge $v_{h_{1}} v_{h_{2}}$ with $h_{1}, h_{2} \in[k(p-1)+s, k p+s-1]$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. For any edge $v_{h} v_{k p+s}$ with $h \in[k(p-1)+s, k p]$, by Lemma 3, we can obtain that $d^{\prime}\left(v_{1}, v_{h}\right)=$ $p, d^{\prime}\left(v_{1}, v_{k p+s}\right)=p+1, d^{\prime}\left(v_{h-k}, v_{h}\right)=1, d^{\prime}\left(v_{h-k}, v_{k p+s}\right)=2$ and when $h \neq k(p-1)+s$, $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=1, d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)=1$, that is, $d^{\prime}\left(v_{1}, v_{h}\right) \neq d^{\prime}\left(v_{1}, v_{k p+s}\right), d^{\prime}\left(v_{h-k}, v_{h}\right) \neq$ $d^{\prime}\left(v_{h-k}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)$. Similarly, we get that for $j \in[1, p-1]$, $j^{\prime} \in[1, p]$ and $l \neq h$,

$$
\left\{\begin{array}{lll}
d^{\prime}\left(v_{l}, v_{h}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in[1, s-1] \cup[h-j k, k(p-j)+s-1], \\
d^{\prime}\left(v_{l}, v_{h}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[k\left(p-j^{\prime}\right)+s, h-j^{\prime} k+k-1\right] \cup[h+1, k p+s-1]
\end{array}\right.
$$

Thus, if $v_{h}=v_{k(p-1)+s}$, then $d^{\prime}\left(v_{l}, v_{k(p-1)+s}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in[1, s-1] \cup\left\{\cup_{j=1}^{p-1}[k(p-\right.$ $1)+s-j k,(p-j) k+s-1]\}=[1,(p-1) k+s-1]$ and $d^{\prime}\left(v_{l}, v_{k(p-1)+s}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in$ $[(p-1) k+s+1, k p+s]$, that is, $P I\left(v_{k(p-1)+s} v_{k p+s}\right)=(p-1) k+s-1$; similarly, we can obtain that $\operatorname{PI}\left(v_{k(p-1)+s+1} v_{k p+s}\right)=(p-1)(k-1)+s-1 ; P I\left(v_{k(p-1)+s+2} v_{k p+s}\right)=(p-1)(k-2)+s-$ $1 ; \ldots ; \operatorname{PI}\left(v_{k p} v_{k p+s}\right)=(p-1) s+s-1$.

For any edge $v_{h} v_{k p+s}$ with $h \in[k p+1, k p+s-1]$, by Lemma 3 , we can obtain that $d^{\prime}\left(v_{h-k}, v_{h}\right)=$ $1, d^{\prime}\left(v_{h-k}, v_{k p+s}\right)=2$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=1, d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)=1$, that is, $d^{\prime}\left(v_{h-k}, v_{h}\right) \neq$
$d^{\prime}\left(v_{h-k}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)$. Similarly, we get that for $j^{\prime \prime} \in[1, p]$ and $l \neq h$,

$$
\left\{\begin{array}{lll}
d^{\prime}\left(v_{l}, v_{h}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[h-j^{\prime \prime} k, k\left(p-j^{\prime \prime}\right)+s-1\right] \\
d^{\prime}\left(v_{l}, v_{h}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[k\left(p-j^{\prime \prime}\right)+s, h-j^{\prime \prime} k+k-1\right] \cup[h+1, k p+s-1] .
\end{array}\right.
$$

Thus, if $v_{h}=v_{k p+1}$, then $d^{\prime}\left(v_{l}, v_{k p+1}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right)$ for $l \in \cup_{j^{\prime \prime}=1}^{p}\left[k p+1-j^{\prime \prime} k, k\left(p-j^{\prime \prime}\right)+s-1\right]$ and $d^{\prime}\left(v_{l}, v_{k p+1}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in\left\{\cup_{j^{\prime \prime}=1}^{p}\left[k\left(p-j^{\prime \prime}\right)+s, k\left(p+1-j^{\prime \prime}\right)\right]\right\} \cup[h+1, k p+s-1]$, that is, $\operatorname{PI}\left(v_{k p+1} v_{k p+s}\right)=(s-1) p$; similarly, we have $\operatorname{PI}\left(v_{k p+1} v_{k p+s}\right)=(s-2) p ; \ldots ; \operatorname{PI}\left(v_{k p+s-2} v_{k p+s}\right)=$ $2 p ; \operatorname{PI}\left(v_{k p+s-1} v_{k p+s}\right)=p$.

Set $w \in V\left(P_{n-1}^{k}\right)$, if $x y \in E\left(P_{n}^{k}\right)$ with x or $y \neq v_{k p+s}$, by Lemma 2, we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
\operatorname{PI}\left(P_{n}^{k}\right)-P I\left(P_{n-1}^{k}\right)= & \sum_{x y \in \cup_{i=1}^{k(p-1)+s-1}\left(A_{i} \cup B_{i}\right)} f(w, x y)+P I\left(v_{k(p-1)+s} v_{k p+s}\right) \\
& +P I\left(v_{k(p-1)+s+1} v_{k p+s}\right)+\cdots+P I\left(v_{k p+s-1} v_{k p+s}\right) \\
= & {[(k+2-s)+(k+3-s)+\cdots+k]+(1+2+\cdots+k)(p-1) } \\
& +[k(p-1)+s-1]+[(k-1)(p-1)+s-1]+[(k-2)(p-1)+s \\
& -1]+\cdots+[s(p-1)+s-1]+[(s-1) p+(s-2) p+\cdots+2 p+p] \\
= & p k^{2}+p k-k^{2}-3 k+2 k s-s^{2}+3 s-2 \\
= & \alpha .
\end{aligned}
$$

Thus, $\operatorname{PI}\left(P_{n}^{k}\right)=\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3}$, for $\left|P_{n}^{k}\right|=k p+s$ and Theorem 1 is proved.

Proof of Theorem 2. We will proceed with it by induction on $n \geq k+2$. If $n=k+2$, by Definition 4, we have $T_{n, c}^{k *}$ is also a k-path, that is, $\operatorname{PI}\left(T_{n, c}^{k *}\right)=2 k$. If $n \geq k+3$, assume that Theorem 2 is true for the k-spiral with at most $n-1$ vertices, we will consider $T_{n, c}^{k *}$ with n vertices. Let $T_{n, c}^{k *}$ be a k-spiral with $V\left(T_{n, c}^{k *}\right)=V\left(T_{n-1, c}^{k *}\right) \cup\{v\}$ and $E\left(T_{n, c}^{k *}\right)=E\left(T_{n-1, c}^{k *}\right) \cup\left\{v v_{n-1}, v v_{n-2}, \ldots, v v_{n-k}\right\}$ such that $v_{1}, v_{2}, \ldots, v_{n-c-1}$ is the simplicial ordering of P_{n-c-1}^{k-c}, where $T_{n-1, c}^{k *}=P_{n-c-1}^{k-c}+K_{c}$ with $V\left(T_{n-1, c}^{k *}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $E\left(T_{n-1, c}^{k *}\right)=E\left(P_{n-c-1}^{k-c}\right) \cup E\left(K_{c}\right) \cup\left\{v_{1} v_{l}, v_{2} v_{l}, \ldots, v_{n-c-1} v_{l}\right\}$ for $l \in[n-c, n-1]$. For any edge $v_{i} v_{j} \in E\left(T_{n, c}^{k *}\right), d\left(v_{i}, v_{j}\right)$ or $d^{\prime}\left(v_{i}, v_{j}\right)$ is the distance of v_{i} and v_{j} in $T_{n-1, c}^{k *}$ or $T_{n, c}^{k *}$, respectively.

For $k+2 \leq n \leq 2 k-c$, let $\gamma=\frac{(n-k)(n-k-1)(4 k-n+2)}{3}-\frac{(n-k-1)(n-k-2)(4 k-n+3)}{3}=(n-k-1)(3 k-$ $n+2$). If we can show that by adding v to $T_{n-1, c^{\prime}}^{k *} \operatorname{PI}\left(T_{n, c}^{k *}\right)=P I\left(T_{n-1, c}^{k *}\right)+\gamma$, then Theorem 2 is true.

Set $w=v$ and let $l \in[n-c, n-1]$, by Lemma 4, we have $d^{\prime}\left(v_{l}, v\right)=1$ and $d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1]$, that is, $f\left(w, v_{l} v_{i}\right)=1 ; d^{\prime}\left(v_{l}, v\right)=d^{\prime}\left(v_{i}, v\right)=1$ for $i \in[n-k, n-1]$, that is, $f\left(w, v_{l} v_{i}\right)=0$. Set $C_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{n-k-1}\right\}, C_{2}=\left\{v_{2} v_{3}, v_{2} v_{4}, \ldots, v_{2} v_{n-k-1}\right\}, \ldots, C_{n-k-2}=$ $\left\{v_{n-k-2} v_{n-k-1}\right\}, C_{n-k-1}=\phi, D_{1}=\left\{v_{1} v_{n-k}, v_{1} v_{n-k+1}, \ldots, v_{1} v_{k-c+1}\right\}, D_{2}=$ $\left\{v_{2} v_{n-k}, v_{2} v_{n-k+1}, \ldots, v_{2} v_{k-c+2}\right\}, \ldots, D_{n-k-1}=\left\{v_{n-k-1} v_{n-k}, v_{n-k-1} v_{n-k+1}, \ldots, v_{n-k-1} v_{n-c-1}\right\}$. By Lemma 4, we have $d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{2}, v\right)=2$ and $d^{\prime}\left(v_{n-k}, v\right)=1$, that is, $f\left(w, v_{1} v_{2}\right)=0$ and $f\left(w, v_{1} v_{n-k}\right)=1$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=2$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$; for $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} D_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=2$ and $d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$. Set $C_{n-k}=\left\{v_{n-k} v_{n-k+1}, v_{n-k} v_{n-k+2}, \ldots, v_{n-k} v_{n-c-1}\right\}, C_{n-k+1}=$ $\left\{v_{n-k+1} v_{n-k+2}, v_{n-k+1} v_{n-k+3}, \ldots, v_{n-k+1} v_{n-c-1}\right\}, \ldots, C_{n-c-2}=\left\{v_{n-c-2} v_{n-c-1}\right\}$. By Lemma 4, we have $d^{\prime}\left(v_{n-k}, v\right)=d^{\prime}\left(v_{n-k-1}, v\right)=1$, that is, $f\left(w, v_{n-k} v_{n-k-1}\right)=0$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=n-k}^{n-c-2} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$.

Set $E_{1}=\left\{v v_{i}, i \in[n-k, n-c-1]\right\}$, by Lemma 4, we have $d^{\prime}\left(v_{i}, v\right)=2, d^{\prime}\left(v_{i}, v_{n-k}\right)=1$ for $i \in[1, n-k-1]$ and $d^{\prime}\left(v_{j}, v\right)=d^{\prime}\left(v_{j}, v_{n-k}\right)=1$ for $i \in[n-k+1, n]$. Thus, $\operatorname{PI}\left(v_{n-k} v\right)=$ $n-k-1$. Similarly, $P I\left(v_{n-k+1} v\right)=P I\left(v_{n-k+2} v\right)=\cdots=P I\left(v_{k-c+1} v\right)=n-k-1$. In addition, by Lemma 4, we have $d^{\prime}\left(v_{i}, v\right)=2, d^{\prime}\left(v_{i}, v_{k-c+2}\right)=1$ for $i \in[2, n-k-1], d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{1}, v_{k-c+2}\right)=2$ and $d^{\prime}\left(v_{j}, v\right)=d\left(v_{j}, v_{k-c+2}\right)=1$ for $j \in[n-k, n]$. Thus, $P I\left(v_{k-c+2} v\right)=n-k-2$. Similarly, we have $\operatorname{PI}\left(v_{k-c+3} v\right)=n-k-3, \operatorname{PI}\left(v_{k-c+4} v\right)=n-k-4, \ldots, \operatorname{PI}\left(v_{n-c-1} v\right)=1$. Set $E_{2}=\left\{v v_{l}, l \in\right.$
$[n-c, n-1]\}$, since $N\left[v_{l}\right]-N[v]=n-k-1$, we have $P I\left(v v_{l}\right)=n-k-1$. Set $E_{3}=\left\{v_{i} v_{l}, i \in\right.$ $[1, n-c-1], l \in[n-c, n-1]\}$, by Lemma 4 , we have $d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1], d^{\prime}\left(v_{i}, v\right)=1$ for $i \in[n-k, n-c-1], d^{\prime}\left(v_{l}, v\right)=1$ for $l \in[n-c, n-1]$. Thus, $f\left(w, v_{i} v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $f\left(w, v_{i} v_{l}\right)=0$ for $i \in[n-k, n-c-1]$.

Set $w \in V\left(T_{n}^{k *}\right)-\{v\}$, if $x y \in E\left(T_{n, c}^{k *}\right)$ with x or $y \neq v$, by Lemma 2 , we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k *}\right)-\operatorname{PI}\left(T_{n-1}^{k *}\right)= & \sum_{x y \in \cup_{i=1}^{n-c-2} c_{i}} f(w, x y)+\sum_{x y \epsilon_{i=1}^{n-k-1} D_{i}} f(w, x y)+\sum_{x y \in E_{1} \cup E_{2}} P I(x y)+ \\
= & \sum_{x y \in E_{3}} f(w, x y) \\
& 0+[(2 k-n-c+2)+(2 k-n-c+3)+\cdots+(k-c)] \\
& +c(n+\cdots+(n-k-2)+(n-k-1)(2 k-n-c+2)] \\
= & (n-k-1)(3 k-n+n-k-1) \\
= & \gamma,
\end{aligned}
$$

and Theorem 2 is proved.
For $n \geq 2 k-c+1$, let $\sigma=\frac{3 c(n-2 k+c-1)(n-2 k+c)+(k-c)\left(2 c^{2}+3 n c-4 k c+3 k n-4 k^{2}-6 k+3 n-2\right)}{3}-$ $\frac{3 c(n-2 k+c-2)(n-1-2 k+c)+(k-c)\left(2 c^{2}+3(n-1) c-4 k c+3 k(n-1)-4 k^{2}-6 k+3 n-2\right)}{3}=k^{2}-4 k c+c^{2}+2 n c-3 c+k$. If we can show that by adding v to $T_{n-1, c^{\prime}}^{k *} \operatorname{PI}\left(T_{n, c}^{k *}\right)=P I\left(T_{n-1, c}^{k *}\right)+\sigma$, then Theorem 2 is proved.

Set $w=v$, by Lemma 4, we have $d^{\prime}\left(v_{l}, v\right)=1$ for $l \in[n-c, n-1], d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1]$ and $d^{\prime}\left(v_{j}, v\right)=1$ for $j \in[n-k, n-c-1]$. Thus, $f\left(w, v_{l} v_{i}\right)=1$ and $f\left(w, v_{l} v_{j}\right)=0$. Set $C_{1}=$ $\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{k-c+1}\right\}, C_{2}=\left\{v_{2} v_{3}, v_{2} v_{4}, \ldots, v_{2} v_{k-c+2}\right\}, \ldots, C_{n-2 k+c-1}=\left\{v_{n-2 k+c-1} v_{n-2 k+c}\right.$, $\left.v_{n-2 k+c-1} v_{n-2 k+c+1}, \ldots, v_{n-2 k+c-1} v_{n-k-1}\right\}, C_{n-2 k+c}=\left\{v_{n-2 k+c} v_{n-2 k+s+1}, v_{n-2 k+c} v_{n-2 k+s+2}, \ldots\right.$, $\left.v_{n-2 k+c} v_{n-k-1}\right\}, C_{n-2 k+c+1}=\left\{v_{n-2 k+c+1} v_{n-2 k+c+2}, v_{n-2 k+c+1} v_{n-2 k+c+3}, \ldots, v_{n-2 k+c+1} v_{n-k-1}\right\}, \ldots$, $C_{n-k-1}=\phi, D_{n-2 k+c}=\left\{v_{n-2 k+c} v_{n-k}\right\}, D_{n-2 k+c+1}=\left\{v_{n-2 k+c+1} v_{n-k}, v_{n-2 k+c+1} v_{n-k+1}\right\}, \ldots, D_{n-k-1}$ $=\left\{v_{n-k-1} v_{n-k}, v_{n-k-1} v_{n-k+1}, \ldots, v_{n-k-1} v_{n-c-1}\right\}$.

By Lemma 4, we can get that $d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{2}, v\right)=2$ and $d^{\prime}\left(v_{n-k}, v\right)=1$, that is, $f\left(w, v_{1} v_{2}\right)=0$ and $f\left(w, v_{1} v_{n-k}\right)=1$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=$ 2, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$; for $v_{h_{1}} v_{h_{2}} \in \cup_{i=n-2 k+c}^{n-k} D_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=2$ and $d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$. Set $C_{n-k}=\left\{v_{n-k} v_{n-k+1}, v_{n-k} v_{n-k+2}, \ldots, v_{n-k} v_{n-c-1}\right\}, C_{n-k+1}$ $=\left\{v_{n-k+1} v_{n-k+2}, v_{n-k+1} v_{n-k+3}, \ldots, v_{n-k+1} v_{n-c-1}\right\}, \ldots, C_{n-c+2}=\left\{v_{n-c-2} v_{n-c-1}\right\}$. By Lemma 4, we can get that $d^{\prime}\left(v_{n-k}, v\right)=d^{\prime}\left(v_{n-k+1}, v\right)=1$, that is, $f\left(w, v_{n-k} v_{n-k+1}\right)=0$. Similarly, for $v_{h_{1}} v_{h_{2}} \in$ $\cup_{i=n-k}^{n-c-2} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$.

Set $E_{1}=\left\{v v_{i}, i \in[n-k, n-c-1]\right\}$, by Lemma 4, we have $d^{\prime}\left(v, v_{n-k-1}\right)=$ $2, d^{\prime}\left(v_{n-c-1}, v_{n-k-1}\right)=1, d^{\prime}\left(v, v_{i}\right)=d^{\prime}\left(v_{n-c-1}, v_{i}\right)=1$ for $i \in[n-k, n-c-2] \cup[n-c, n-1]$ and $d^{\prime}\left(v, v_{j}\right)=d\left(v_{n-c-1}, v_{j}\right)=2$ for $j \in[1, n-k-2]$. Thus, $P I\left(v v_{n-c-1}\right)=1$. Similarly, we have $\operatorname{PI}\left(v v_{n-c-2}\right)=2, \operatorname{PI}\left(v v_{n-c-3}\right)=3, \ldots, P I\left(v v_{n-k}\right)=k-c$. Set $E_{2}=\left\{v v_{l}, l \in[n-c, n-1]\right\}$, since $N\left[v_{l}\right]-N[v]=n-k-1$, we have $\operatorname{PI}\left(v v_{l}\right)=n-k-1$. Set $E_{3}=\left\{v_{i} v_{l}, i \in[1, n-c-1], l \in\right.$ $[n-c, n-1]\}$, by Lemma 4, we have $d^{\prime}\left(v, v_{i}\right)=2, d^{\prime}\left(v, v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $d^{\prime}\left(v, v_{i}\right)=d^{\prime}\left(v, v_{l}\right)=1$ for $i \in[n-k, n-c-1]$. Thus, $f\left(w, v_{i} v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $f\left(w, v_{i} v_{l}\right)=0$ for $i \in[n-k, n-c-1]$.

Set $w \in V\left(T_{n}^{k *}\right)-\{v\}$, if $x y \in E\left(T_{n, c}^{k *}\right)$ with x or $y \neq v$, by Lemma 2, we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k *}\right)-\operatorname{PI}\left(T_{n-1}^{k *}\right)= & \sum_{x y \in \cup_{i=1}^{n-c-2} c_{i}} f(w, x y)+\sum_{x y \xi_{i=n-2 k+c}^{n-k-1} D_{i}} f(w, x y)+\sum_{x y \in E_{1} \cup E_{2}} P I(x y) \\
& +\sum_{x y \in E_{3}} f(w, x y) \\
= & 0+[1+2+3+\cdots+(k-c)]+[1+2+3+\cdots+(k-c)] \\
& +c(n-k-1)+c(n-k-1) \\
= & k^{2}-4 k c+c^{2}+2 n c-3 c+k \\
= & \sigma,
\end{aligned}
$$

and Theorem 2 is proved.

Proof of Theorem 3. For $n \geq k+2$, we will proceed it by introduction on $\left|T_{n}^{k}\right|=n$. If $n=k+2$, T_{n}^{k} is also a k-path, that is, $P I\left(T_{n}^{k}\right)=2 k$. If $n \geq k+3$, assume that Theorem 3 is true for the k-tree with at most $n-1$ vertices, let $v \in S_{1}\left(T_{n}^{k}\right)$ and $T_{n-1}^{k}=T_{n}^{k}-v$, by the induction hypothesis, we have $\operatorname{PI}\left(T_{n-1}^{k}\right) \leq \operatorname{PI}\left(S_{n-1}^{k}\right)=k(n-k-1)(n-k-2)$. By adding back v, let $N(v)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $w=v$. Since $T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]$ is a $(k+1)$-clique, we have $f\left(w, x_{i} x_{j}\right)=0$ for $i, j \in[1, k]$. By Lemmas 1 and 2, we can obtain that $P I\left(v x_{i}\right) \leq n-k-1$ with $i \in[1, k]$ and $f(w, x y) \leq 1$ for any edge $x y \in E\left(T_{n}^{k}\right)-E\left(T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]\right)$. Next, set $w \in V\left(T_{n}^{k}\right)-\{v\}$, by Lemma 2 , if $x y \in E\left(T_{n}^{k}\right)$ with x or $y \neq v$, we have $f(w, x y)=0$. Since $\left|E\left(T_{n}^{k}\right)-E\left(T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]\right)\right|=k(n-k-1)$, we have

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k}\right) & =\operatorname{PI}\left(T_{n-1}^{k}\right)+\sum_{x y \in E\left(T_{n}^{k}-\left\{v x_{i}, i \in[1, k]\right\}\right)} f(w, x y)+\sum_{i=1}^{k} \operatorname{PI}\left(v x_{i}\right) \\
& \leq \operatorname{PI}\left(S_{n-k}^{k}\right)+k(n-k-1)+k(n-k-1) \\
& =k(n-k-1)(n-k-2)+k(n-k-1)+k(n-k-1) \\
& =k(n-k)(n-k-1) \\
& =\operatorname{PI}\left(S_{n}^{k}\right) .
\end{aligned}
$$

Thus, this finishes the proof of Theorem 3.
Proof of Theorem 4. For $k=1$ and by Fact 1, we can get that every tree with the same vertices has the same PI-value; then, Theorem 4 is obvious; for $k \geq 2$, if $k+2 \leq n \leq 2 k-c$, let $n=k p+s$ with $p=1$ and $s=n-k$, by Theorem 1, we have PI $\left(P_{n}^{k}\right)-P I\left(T_{n, c}^{k *}\right)=\frac{(s-1) s(3 k-s+2)}{3}-\frac{(n-k)(n-k-1)(4 k-n+2)}{3}=$ $\frac{(n-k-1)(n-k)[3 k-(n-k)+2]}{3}-\frac{(n-k)(n-k-1)(4 k-n+2)}{3}=0$, and Theorem 4 is true. If $n \geq 2 k-c+1, p=\frac{n-s}{k}$ and by Theorems 1 and 2, define the new functions as follows: for $z \geq 2 k-c+1,1 \leq c \leq k-1$ and $2 \leq s \leq k+1$,

$$
\begin{aligned}
g(z) & =\frac{(k+1)(z-s-k)(3 z+3 s-2 k-4)}{6}+\frac{s(s-1)(3 k-s+2)}{3}, \\
h(z, c) & =c(z-2 k+c-1)(z-2 k+c)+\frac{(k-c)\left(2 c^{2}+3 z c-4 k c+3 k z-4 k^{2}-6 k+3 z-2\right)}{3}, \\
l(z, c) & =g(z)-h(z, c) \\
& =\left(\frac{k}{2}+\frac{1}{2}-c\right) z^{2}+\left(-c^{2}+2 c+4 k c-\frac{11 k^{2}}{6}-\frac{5 k}{2}-\frac{2}{3}\right) z \\
& +\frac{k s^{2}}{2}-\frac{k^{2} s}{6}-\frac{k s}{2}+\frac{5 k^{3}}{3}+\frac{5 k^{2}}{3}+\frac{s^{2}}{2}+\frac{4 k}{3}-\frac{s^{3}}{3}-6 k^{2} c+3 k c^{2}-\frac{c^{3}}{3}-4 k c+c^{2}-\frac{2 c}{3}, \\
l_{z}(z) & =l_{z}(z, c) \\
& =(k+1-2 c) z-c^{2}+2 c+4 k c-\frac{11 k^{2}}{6}-\frac{5 k}{2}-\frac{2}{3} .
\end{aligned}
$$

Then, it is enough to determine whether or not $l(z, c) \geq 0$ is true. By some calculations, we can obtain the following claim:

Claim 1. $z_{1}=2 k-c+1, z_{2}=2 k-c+2$ are the two roots of $l(z, c)=0$ with $c \neq \frac{k+1}{2}$.
Proof. For any $c \in[1, k-1]$, let $z_{1}=2 k-c+1, z_{2}=2 k-c+2$, and we have $l(2 k-c+1, c)=$ $0, l(2 k-c+2, c)=0$. If $c \neq \frac{k+1}{2}$, then Claim is true.

For fixed $c \in\left[1, \frac{k+1}{2}\right)$, that is, $\frac{k}{2}+\frac{1}{2}-c>0$, then the function of $l(z, c)$ about z is open up. Since z is an integer and by Fact 2 , we have $l(z, c) \geq 0$ for $z \geq 2 k-c+1$ and Theorem 4 is true; if $c=\frac{k+1}{2}$ and $k \geq 1$, we have $l_{z}(z)=\frac{1-k^{2}}{12} \leq 0$, that is, $l\left(z, \frac{k+1}{2}\right)$ is decreasing about z. By the proof of Fact 2 , we have $l(2 k-c+1, c)=0$. For $z \geq 2 k-c+1$, we can get that $l\left(z, \frac{k+1}{2}\right) \leq l\left(2 k-c+1, \frac{k+1}{2}\right)=0$ and Theorem 4 is true; for fixed $c \in\left(\frac{k+1}{2}, k-1\right]$, that is, $\frac{k}{2}+\frac{1}{2}-c<0$, then the function of $l(z, c)$ about z is open down. Since z is an integer and by Claim, we can obtain that $l(z, c) \leq 0$ for $z \geq 2 k-c+1$ and this finishes the proof of Theorem 4.

4. Conclusions

We can see that the k-stars attain the maximal values of $P I$-values for k-trees. One of the guesses is that the k-paths attain the minimal values. Actually, it is not the case and some $P I$-values of k-spirals
is even smaller than that of k-paths. Meanwhile, not all $P I$-values of k-spirals are less than the values of all other k-trees. This fact indicates an interesting problem-which type of k-trees will achieve the minimum $P I$-value?

Author Contributions: S.W. contributes for supervision, methodology, validation, project administration and formal analysing. S.W., Z.S., J.-B.L., B.W. contribute for resources, investigation some computations and wrote the initial draft of the paper which were investigated and approved by S.W. and B.W. wrote the final draft.
Funding: This research was funded by Natural Science Foundation of Guangdong Province under grant 2018A0303130115.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wiener, H. Structural Determination of Paraffin Boiling Points. J. Am. Chem. Soc. 1947, 69, 17-20. [CrossRef]
2. Gutman, I. A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes 1994, 27, 9-15.
3. Khadikar, P.V. On a Novel Structural Descriptor PI. Nat. Acad. Sci. Lett. 2000, 23, 113-118.
4. Khalifeh, M.H.; Yousefi-Azari, H.; Ashrafi, A.R. Vertex and edge PI indices of Cartesian product graphs. Discret. Appl. Math. 2008, 156, 1780-1789. [CrossRef]
5. Das, K.C.; Gutman, I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2004, 52, 103-112.
6. Song, L.; Staton, W.; Wei, B. Independence polynomials of k-tree related graphs. Discret. Appl. Math. 2010, 158, 943-950. [CrossRef]
7. Beineke, L.W.; Pippert, R.E. The number labeled k-dimentional trees. J. Comb. Theory 1969, 6, 200-205. [CrossRef]
8. de Caen, D. An upper bound on the sum of squares of degrees in a graph. Discret. Math. 1998, 185, 245-248. [CrossRef]
9. Das, K.C. Maximizing the sum of the squares of the degrees of a graph. Discret. Math. 2004, 285, 57-66. [CrossRef]
10. Gutman, I. Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka 2011, 18, 17-23.
11. Li, X.; Shi, Y. A survey on the randic index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127-156.
12. Li, X.; Li, Y. The asymptotic behavior of the Estrada index for trees. Bull. Malays. Math. Sci. Soc. 2013, 36, 97-106.
13. Wang, S.; Wang, C.; Liu, J. On extremal multiplicative Zagreb indices of trees with given domination number. Appl. Math. Comput. 2018, 332, 338-350. [CrossRef]
14. Lang, R.; Deng, X.; Lu, H. Bipartite graphs with the maximal value of the second Zagreb index. Bull. Malays. Math. Sci. Soc. 2013, 36, 1-6.
15. Ma, G.; Bian, Q.; Wang, J. Bounds on the PI index of unicyclic and bicyclic graphs with given girth. Discret. Appl. Math. 2017, 230, 156-161. [CrossRef]
16. Shi, Y. Note on two generalizations of the randic index. Appl. Math. Comput. 2015, 265, 1019-1025. [CrossRef]
17. Shao, Z.; Wu, P.; Gao, Y.; Gutman, I.; Zhang, X. On the maximum ABC index of graphs without pendent vertices. Appl. Math. Comput. 2017, 315, 298-312. [CrossRef]
18. Shao, Z.; Wu, P.; Zhang, X.; Dimitrov, D.; Liu, J.B. On the maximum ABC index of graphs with prescribed size and without pendent vertices. IEEE Access 2018, 6, 27604-27616. [CrossRef]
19. Estes, J.; Wei, B. Sharp bounds of the Zagreb indices of k-trees. J. Comb. Optim. 2014, 27, 271-291. [CrossRef]
20. Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535-538. [CrossRef]
21. Hosoya, H. Topological Index. A New Proposed Quantity Characterizing Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jpn. 1972, 45, 2332-2339.
22. Iranmanesh, A.; Hosseinzadeh, M.A.; Gutman, I. On multiplicative Zagreb indices of graphs. Iran. J. Math. Chem. 2012, 7, 145-154.
23. Ahmad, Y.; Ali, U.; bilal, M.; Zafar, S.; Zahid, Z. Some new standard graphs labeled by 3-total edge product cordial labeling. Appl. Math. Nonlinear Sci. 2017, 2, 61-72. [CrossRef]
24. Sudhakar, S.; Francis, S.; Balaji, V. Odd mean labeling for two star graph. Appl. Math. Nonlinear Sci. 2017, 2, 195-200. [CrossRef]
25. Basavanagoud, B.; Desai, V.R.; Patil, S. (β, α)-Connectivity Index of Graphs. Appl. Math. Nonlinear Sci. 2017, 2, 21-30. [CrossRef]
26. Zhou, S.; $\mathrm{Xu}, \mathrm{L} . ; \mathrm{Xu}, \mathrm{Y}$. A sufficient condition for the existence of a k-factor excluding a given r-factor. Appl. Math. Nonlinear Sci. 2017, 2, 13-20. [CrossRef]
27. Klavžar, S. On the PI index: PI-partitions and Cartesian product graphs. MATCH Commun. Math. Comput. Chem. 2007, 57, 573-586.
28. Pattabiraman, K.; Paulraja, P. Wiener and vertex PI indices of the strong product of graphs. Discuss. Math. Graph Theory 2012, 32, 749-769. [CrossRef]
29. Ilić, A.; Milosavljević, N. The weighted vertex PI index. Math. Comput. Model. 2013, 57, 623-631.
30. Wang, C.; Wang, S.; Wei, B. Cacti with Extremal PI Index. Trans. Comb. 2016, 5, 1-8.
31. Das, K.C.; Gutman, I. Bound for vertex PI index in terms of simple graph parameters. Filomat 2013, 27, 1583-1587. [CrossRef]
32. Hoji, M.; Luo, Z.; Vumar, E. Wiener and vertex PI indices of Kronecker products of graphs. Discret. Appl. Math. 2010, 158, 1848-1855. [CrossRef]
33. Bondy, J.A.; Murty, J.A. Graph Theory; Springer: New York, NY, USA, 2008.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
