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Abstract: The Padmakar–Ivan (PI) index is a distance-based topological index and a molecular
structure descriptor, which is the sum of the number of vertices over all edges uv of a graph such that
these vertices are not equidistant from u and v. In this paper, we explore the results of PI-indices from
trees to recursively clustered trees, the k-trees. Exact sharp upper bounds of PI indices on k-trees are
obtained by the recursive relationships, and the corresponding extremal graphs are given. In addition,
we determine the PI-values on some classes of k-trees and compare them, and our results extend and
enrich some known conclusions.
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1. Introduction

Let G be a simple connected non-oriented graph with vertex set V(G) and edge set E(G).
The distance d(x, y) between the vertices x, y ∈ V(G) is the minimum length of the paths between
x and y in G. The oldest and most thoroughly examined molecular descriptor is Wiener index
or path number [1], which was first considered in trees by Wiener in 1947 as follows: W(G) =

∑{x,y}⊂V(G) d(x, y). Compared to Wiener index, Szeged index was proposed by Gutman [2] in 1994
that, given xy ∈ E(G), let nxy(x) be the number of vertices w ∈ V(G) such that d(x, w) < d(y, w),
Sz(G) = ∑xy∈E(G) nxy(x)nxy(y). Based on the considerable success of Wiener index and Sz index,
Khadikar proposed a new distance-based index [3] to be used in the field of nano-technology, that is
edge Padmakar–Ivan (PIe) index, PIe(G) = ∑xy∈E(G)[ne(x) + ne(y)], where ne(x) denotes the number
of edges which are closer to the vertex x than to the vertex y, and ne(y) denotes the number of edges
which are closer to the vertex y than to the vertex x, respectively.

It is easy to see that the above concept does not count edges equidistant from both ends of the
edge e = xy. Based on this idea, Khalifeh et al. [4] introduced a new PI index of vertex version that
PI(G) = PIv(G) = ∑xy∈E(G)[nxy(x) + nxy(y)]. Note that, in order to obtain a good recursive formulas,
we do not consider the vertices x, y for nxy(x) and nxy(y). Thus, nxy(x) + nxy(y) ≤ n− 2.

Nowadays, Padmakar–Ivan indices are widely used in Quantitative Structure–Activity
Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) [5,6], and there are
many interesting results [5,7–26] between graph theory and chemistry. For instances, Klavz̆ar [27]
provided PI-partitions and arbitrary Cartesian product. Pattabiraman and Paulraja [28] presented the
formulas for vertex PI indices of the strong product of a graph and the complete multipartite graph.
Ilić and Milosavljević [29] established basic properties of weighted vertex PI index and some lower
and upper bounds on special graphs. Wang and Wei [30] studied vertex PI index on an extention of
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trees (cacti). In [31], Das and Gutman obtained a lower bound on the vertex PI index of a connected
graph in terms of numbers of vertices, edges, pendent vertices, and clique number. Hoji et al. [32]
provided exact formulas for the vertex PI indices of Kronecker product of a connected graph G and
a complete graph. Since the tree is a basic class of graphs in mathematics and chemistry, and these
results indicate that either the stars or the paths attain the maximal or minimal bounds for particular
chemical indices, then a natural question is how about the situations for vertex Padmakar–Ivan index?

Because PI index is a distance-based index and not very easy to calculate, we first consider the
bipartite graph G with n vertices. Note that the tree is a subclass of bipartite graphs which have no
odd cycles. By the definition of PI(G) and the assumption that we do not consider the vertices x, y for
nxy(x) and nxy(y), one can obtain that every edge of G has the PI-value as n− 2. Thus, the following
observation is obtained.

Obervation 1. For a bipartite graph G with n vertices and m edges, PI(G) = (n− 2)m. In particular, if G is
a tree, then PI(G) = (n− 1)(n− 2).

Next, we will consider the graphs with odd cycles. In particular, the general tree, k-tree, contains
a lot of odd cycles. Then, we are going to consider the PI indices of k-trees and figure out whether
or not a k-star or a k-path attains the maximal or minimal bound for PI-indices of k-trees. Our main
results are as follows: Theorems 1 and 2 give the exact PI-values of k-stars, k-paths and k-spirals (see
Definitions 1–5 below).

Theorem 1. For any k-star Sk
n and k-path Pk

n with n = kp + s vertices, where p ≥ 0 is an integer and
s ∈ [2, k + 1], we have

(i)PI(Sk
n) = k(n− k)(n− k− 1),

(ii)PI(Pk
n) =

k(k+1)(p−1)(3kp+6s−2k−4)
6 + (s−1)s(3k−s+2)

3 .

Theorem 2. For any k-spiral Tk∗
n,c with n ≥ k vertices, where c ∈ [1, k− 1], we have

PI(Tk∗
n,c) =


(n−k)(n−k−1)(4k−n+2)

3 if n ∈ [k, 2k− c],
3c(n−2k+c−1)(n−2k+c)+(k−c)(2c2+3nc−4kc+3kn−4k2−6k+3n−2)

3 if n ≥ 2k− c + 1.

Theorem 3 proves that k-stars achieve the maximal values of PI-values for k-trees, and Theorem 4
shows that k-paths do not arrive the minimal values and certain PI-values of k-spirals are less than
that of k-paths.

Theorem 3. For any k-tree Tk
n with n ≥ k ≥ 1, we have PI(Tk

n) ≤ PI(Sk
n).

Theorem 4. For any k-spiral Tk∗
n,c with n ≥ k ≥ 1, we have

(i) PI(Pk
n) ≥ PI(Tk∗

n,c) if c ∈ [1, k+1
2 ),

(ii) PI(Pk
n) ≤ PI(Tk∗

n,c) if c ∈ [ k+1
2 , k− 1].

2. Preliminary

In this section, we first give some notations and lemmas that are crucial in the following sections.
As usual, G = (V, E) is a connected finite simple undirected graph with vertex set V = V(G) and edge
set E = E(G). Let |G| or |V| be the cardinality of V. For any S ⊆ V(G) and F ⊆ E(G), we use G[S] to
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denote the subgraph of G induced by S, G− S to denote the subgraph induced by V(G)− S and G− F
to denote the subgraph of G obtained by deleting F. w(G− S) is the number of components of G− S
and S is a cut set if w(G− S) ≥ 2. For any u, v ∈ V(G), Puv is a path connecting u and v, d(u, v) is the
distance between u and v, N(v) = NG(v) = {w ∈ V(G), vw ∈ E(G)} is the neighborhood of v and
N[v] = N(v) ∪ {v}. For any integers a, b with a ≤ b, the interval [a, b] is the set of all integers between
a and b including a, b. In addition, let [a, b) = [a, b] − {b} and (a, b] = [a, b] − {a}. In particular,
[a, b] = φ for a > b. f ′(x) is a derivative of any differentiable function f (x), where x is the variable.
bxc is the largest integer that is less than or equal to x; dxe is the smallest integer that is greater than or
equal to x. It is clear that d is from 0 to the diameter of graphs. Other undefined notations are referred
to [33].

It is commonly known that a chordal graph G with at least three vertices is a triangulated graph
and contains a simplicial vertex, whose neighborhood induces a clique. During recent decades,
there are many interesting studies related to chordal graphs. In 1969, Beineke and Pippert [7] gave
the definition of k-trees, which is a significant subclass of chordal graphs. Now, we just give some
definitions about k-trees below.

Definition 1. For positive integers n, k with n ≥ k, the k-tree, denoted by Tk
n , is defined recursively as follows:

The smallest k-tree is the k-clique Kk. If G is a k-tree with n ≥ k vertices and a new vertex v of degree k is added
and joined to the vertices of a k-clique in G, then the obtained graph is a k-tree with n + 1 vertices.

Definition 2. For positive integers n, k with n ≥ k, the k-path, denoted by Pk
n , is defined as follows:

starting with a k-clique G[{v1, v2 . . . vk}]. For i ∈ [k + 1, n], the vertex vi is adjacent to vertices
{vi−1, vi−2 . . . vi−k} only.

Definition 3. For positive integers n, k with n ≥ k, the k-star, denoted by Sk
n, is defined as follows: Starting

with a k-clique G[{v1, v2 . . . vk}] and an independent set S with |S| = n− k. For i ∈ [k + 1, n], the vertex vi
is adjacent to vertices {v1, v2 . . . vk} only.

Definition 4. For positive integers n, k, c with n ≥ k and c ∈ [1, k− 1], let v1, v2, . . . , vn−c be the simplicial
ordering of Pk−c

n−c . The k-spiral, denoted by Tk∗
n,c, is defined as Pk−c

n−c + Kc, which is, V(Tk∗
n,c) = {v1, v2, . . . , vn}

and E(Tk∗
n,c) = E(Pk−c

n−c) ∪ E(Kc) ∪ {v1vl , v2vl , . . . , vn−cvl}, for l ∈ [n− c + 1, n].

Definition 5. Let v ∈ V(Tk
n) be a vertex of degree k whose neighbors form a k-clique of Tk

n , then v is
called a k-simplicial vertex. Let S1(Tk

n) be the set of all k-simplicial vertices of Tk
n , for n ≥ k + 2, and set

S1(Kk) = φ, S1(Kk+1) = {v}, where v is any vertex of Kk+1. Let G0 = G, Gi = Gi−1 − vi, where vi is
a k-simplicial vertex of Gi−1, then {v1, v2 . . . vn} is called a simplicial elimination ordering of the n-vertex
graph G.

In order to consider the PI-value of any k-tree G, let G′ = G∪ {u} be a k-tree obtained by adding a
new vertex u to G. For any v1, v2 ∈ V(G), let d(v1, v2) be the distance between v1 and v2 in G, d′(v1, v2)

be the distance between v1 and v2 in G′. Now, we define a function that measures the difference of
PI-values of any edge relating a vertex from G to G′ as follows: f : {w ∈ V(G′), xy ∈ E(G)} to {1, 0}
as follows:

f (w, xy) =


0, if w = u and d′(x, w) = d′(y, w),
0, if w ∈ V(G) and d(x, w)− d′(x, w) = d(y, w)− d′(y, w),
1, if otherwise.

Using the construction of k-trees, we can derive the following lemmas. Note that PI(xy) =

nxy(x) + nxy(y) and PI(xy) ≤ n− 2.

Lemma 1. Let xy be any edge of a k-tree G with at least n ≥ k + 1 vertices, then PI(xy) ≤ n− k− 1.
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Proof. Since every vertex of any k-tree G with at least k + 1 vertices must be in some (k + 1)-cliques,
which is, |N(x)∩N(y)| ≥ k− 1 for any xy ∈ E(G), we have PI(xy) ≤ n− (k− 1)− 2 = n− k− 1.

Lemma 2. Let xy be any edge of a k-tree G with n vertices and G′ = G ∪ {u} be a k-tree obtained by adding u
to G. If w ∈ V(G) , then f (w, xy) = 0.

Proof. By adding u to G, since G′ is a k-tree, we can get that the distance of any pair of vertices of G
will increase at most 1, then f (w, xy) ≤ 1. If w ∈ V(G), then there exists a shortest path Pxw or Pyw

such that u /∈ V(Pxw) or V(Pyw), that is, f (w, xy) = 0.

Lemma 3. For any k-path G with n vertices, where n ≥ k + 2, let S1(G) = {v1, vn} and {v1, v2, . . . , vn}
be the simplicial elimination ordering of G, then d(vi, vj) = d

j−i
k e, for i < j and i, j ∈ [1, n]. Furthermore,

if n = kp + s with p ≥ 1, s ∈ [2, k + 1], then

d(v, vkp+s) =

{
p + 1 if v ∈ {v1, v2, . . . , vs−1},
p− i if v ∈ {vki+s, vki+s+1, . . . , vk(i+1)+s−1}, i ∈ [0, p− 1].

Proof. If j − i ≤ k, then vi, vj must be in the same (k + 1)-clique of G, and we have d(vi, vj) = 1;
if j− i ≥ k + 1, then Pvivj = vivi+kvi+2k . . . v

i+(b j−i
k c−1)k

v
i+b j−i

k ck
vj is one of the shortest paths between

vi and vj. Thus, d(vi, vj) = d
j−i
k e and Lemma 3 is proved.

Lemma 4. For any k-spiral Tk∗
n,c with n vertices and vi, vj ∈ V(Tk∗

n,c) for i < j,

d(vi, vj) =


1, if j− i ≤ k− c, i, j ∈ [1, n− c],
1, if i or j ∈ [n− c + 1, n],
2, if j− i ≥ k− c + 1, i, j ∈ [1, n− c].

Proof. If j− i ≤ k− c with i, j ∈ [1, n− c], by Definition 4, we can get that vi, vj must be in the same
(k + 1)-clique of G and d(vi, vj) = 1; If i or j ∈ [n− c + 1, n], without loss of generality, say vi such that
i ∈ [n− c + 1, n], then N[vi] = V(Tk∗

n,c), that is, d(vi, vj) = 1; If j− i ≥ k− c + 1 with i, j ∈ [1, n− c],
then vi /∈ N(vj) and Pvivj = vivnvj is one of the shortest paths between vi and vj, that is, d(vi, vj) = 2.
Thus, Lemma 4 is proved.

3. Main Proofs

In this section, we give the proofs of main results by inductions. For a k-tree Tk
n , if n = k or k + 1,

then Tk
n is a k or (k+1)-clique, that is, PI(Tk

n) = 0. Thus, all of the theorems are true and we will only
consider the case when n ≥ k + 2 below.

Proof of Theorem 1. For (i), let V(Sk
n) = {u1, u2, . . . , un}, G[{u1, . . . , uk}] be a k-clique and N(ul0) =

{u1, u2, . . . , uk} for l0 ≥ k + 1. Just by Definition 3, we can get that for i, j ∈ [1, k], N[ui] =

N[uj] = V(Sk
n), then PI(uiuj) = nuiuj(ui) + nuiuj(uj) = 0; for i ∈ [1, k] and l0 ∈ [k + 1, n],

|N[ui]−N[ul0 ]| = n− k− 1, then PI(uiul) = n− k− 1. Thus, we can get PI(Sk
n) = ∑i,j∈[1,k] PI(uiuj) +

∑i∈[1,k],l0∈[k+1,n] PI(uiul0) = k(n− k)(n− k− 1).
For (ii), we will proceed it by induction on |Pk

n | = n ≥ k + 2. If n = k + 2, let {v1, v2, . . . , vk+2} be
the simplicial elimination ordering of Pk

k+2. By Lemma 3, we can get that PI(v1vi) = 1, PI(vivi′) = 0
and PI(vivk+2) = 1 for i, i′ ∈ [2, k + 1]. Thus, PI(Pk

k+2) = ∑k+1
i=2 PI(v1vi) + ∑k+1

i=2 PI(vivk+2) = 2k.
Assume that Theorem 1 is true for a k-path with at most kp + s− 1 vertices, where p ≥ 1, 2 ≤ s ≤ k + 1.
Let Pk

n be a k-path such that |Pk
n | = kp + s, V(Pk

n) = {v1, v2, . . . , vkp+s} and {v1, v2, . . . , vkp+s} be
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the simplicial elimination ordering of Pk
n . Set Pk

n−1 = Pk
n − {vkp+s}, then {v1, v2, . . . , vkp+s−1} is the

simplicial elimination ordering of Pk
n−1 and for any edge vivj ∈ E(Pk

n), d(vi, vj) or d′(vi, vj) is the
distance of vi and vj in Pk

n−1 or Pk
n , respectively.

Let α = [ k(k+1)(p−1)(3kp+6s−2k−4)
6 + (s−1)s(3k−s+2)

3 ] − [ k(k+1)(p−1)(3kp+6s−2k−10)
6 +

(s−2)(s−1)(3k−s+3)
3 ] = pk2 + pk − k2 − 3k + 2ks − s2 + 3s − 2. If we can show that by adding

vkp+s to Pk
n−1, PI(Pk

n) = PI(Pk
n−1) + α, then Theorem 1 is true.

Set w = vkp+s, A1 = {v1vs, v1vs+1, . . . , v1vk+1}, A2 = {v2vs, . . . , v2vk+2}, . . . , As−1 =

{vs−1vs, . . . , vs−1vk+s−1} and B1 = {v1v2, v1v3, . . . , v1vs−1}, B2 = {v2v3, . . . , v2vs−1}, . . . , Bs−2 =

{vs−2vs−1}, Bs−1 = φ. By Definition 2 and Lemma 3, we have d′(v1, vkp+s) = p + 1, d′(vs, vkp+s) = p
and d′(v1, vkp+s) = p+ 1, d′(v2, vkp+s) = p+ 1, that is, d′(v1, vkp+s) 6= d′(vs, vkp+s) and d′(v1, vkp+s) =

d′(v2, vkp+s). Thus, f (w, v1vs) = 1 and f (w, v1v2) = 0. Similarly, for any edge vh1 vh2 ∈ ∪
s−1
i=1 Ai with

h1 < h2, we have d′(vh1 , vkp+s) 6= d′(vh2 , vkp+s), that is, f (w, vh1 vh2) = 1; For vh1 vh2 ∈ ∪
s−1
i=1 Bi with

h1 < h2, we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s), that is, f (w, vh1 vh2) = 0. Thus, we can get that

f (vkp+s, xy) =

{
1, if xy ∈ ∪s−1

i=1 Ai,
0, if xy ∈ ∪s−1

i=1 Bi.

For t ∈ [0, p− 2], set Akt+s = {vkt+svk(t+1)+s}, Akt+s+1 = {vkt+s+1vk(t+1)+s, vkt+s+1vk(t+1)+s+1},
. . . , Ak(t+1)+s−1 = {vk(t+1)+s−1vk(t+1)+s, vk(t+1)+s−1vk(t+1)+s+1, . . . , vk(t+1)+s−1vk(t+2)+s−1}, and
Bkt+s = {vkt+svkt+s+1, . . . , vkt+svk(t+1)+s−1}, Bkt+s+1 = {vkt+s+1vkt+s+2, ..., vkt+s+1vk(t+1)+s−1}, . . . ,
Bk(t+1)+s−2 = {vk(t+1)+s−2vk(t+1)+s−1}, Bk(t+1)+s−1 = φ. For t = 0 and by Lemma 3, we have
d′(vs, vkp+s) = p, d′(vk+s, vkp+s) = p − 1 and d′(vs, vkp+s) = p, d′(vs+1, vkp+s) = p, that is,
d′(vs, vkp+s) 6= d′(vk+s, vkp+s) and d′(vs, vkp+s) = d′(vs+1, vkp+s). Thus, f (w, vsvk+s) = 1 and

f (w, vsvs+1) = 0. similarly, for any edge vh1 vh2 ∈ ∪
k(t+1)+s−1
i=kt+s Ai with h1 < h2, we have

d′(vh1 , vkp+s) 6= d′(vh2 , vkp+s), that is, f (w, vh1 vh2) = 1; for vh1 vh2 ∈ ∪
k(t+1)+s−1
i=kt+s Bi with h1 < h2,

we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s), that is, f (w, vh1 vh2) = 0. Thus, we can get that

f (vkp+s, xy) =

{
1, if xy ∈ ∪k(t+1)+s−1

i=kt+s Ai,

0, if xy ∈ ∪k(t+1)+s−1
i=kt+s Bi.

Next, we consider the edges in the (k + 1)-clique Pk
n [N[vkp+s]]. For any edge vh1 vh2 with

h1, h2 ∈ [k(p− 1) + s, kp + s− 1], we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s) = 1, that is, f (w, vh1 vh2) = 0.
For any edge vhvkp+s with h ∈ [k(p − 1) + s, kp], by Lemma 3, we can obtain that d′(v1, vh) =

p, d′(v1, vkp+s) = p + 1, d′(vh−k, vh) = 1, d′(vh−k, vkp+s) = 2 and when h 6= k(p − 1) + s,
d′(vk(p−1)+s, vh) = 1, d′(vk(p−1)+s, vkp+s) = 1, that is, d′(v1, vh) 6= d′(v1, vkp+s), d′(vh−k, vh) 6=
d′(vh−k, vkp+s) and d′(vk(p−1)+s, vh) = d′(vk(p−1)+s, vkp+s). Similarly, we get that for j ∈ [1, p − 1],
j′ ∈ [1, p] and l 6= h,{

d′(vl , vh) 6= d′(vl , vkp+s) if l ∈ [1, s− 1] ∪ [h− jk, k(p− j) + s− 1],
d′(vl , vh) = d′(vl , vkp+s) if l ∈ [k(p− j′) + s, h− j′k + k− 1] ∪ [h + 1, kp + s− 1].

Thus, if vh = vk(p−1)+s, then d′(vl , vk(p−1)+s) 6= d′(vl , vkp+s) with l ∈ [1, s − 1] ∪ {∪p−1
j=1 [k(p −

1) + s − jk, (p − j)k + s − 1]} = [1, (p − 1)k + s − 1] and d′(vl , vk(p−1)+s) = d′(vl , vkp+s) with l ∈
[(p − 1)k + s + 1, kp + s], that is, PI(vk(p−1)+svkp+s) = (p − 1)k + s − 1; similarly, we can obtain
that PI(vk(p−1)+s+1vkp+s) = (p − 1)(k − 1) + s − 1; PI(vk(p−1)+s+2vkp+s) = (p − 1)(k − 2) + s −
1; . . . ; PI(vkpvkp+s) = (p− 1)s + s− 1.

For any edge vhvkp+s with h ∈ [kp + 1, kp + s− 1], by Lemma 3, we can obtain that d′(vh−k, vh) =

1, d′(vh−k, vkp+s) = 2 and d′(vk(p−1)+s, vh) = 1, d′(vk(p−1)+s, vkp+s) = 1, that is, d′(vh−k, vh) 6=
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d′(vh−k, vkp+s) and d′(vk(p−1)+s, vh) = d′(vk(p−1)+s, vkp+s). Similarly, we get that for j′′ ∈ [1, p]
and l 6= h,{

d′(vl , vh) 6= d′(vl , vkp+s) if l ∈ [h− j′′k, k(p− j′′) + s− 1],
d′(vl , vh) = d′(vl , vkp+s) if l ∈ [k(p− j′′) + s, h− j′′k + k− 1] ∪ [h + 1, kp + s− 1].

Thus, if vh = vkp+1, then d′(vl , vkp+1) 6= d′(vl , vkp+s) for l ∈ ∪p
j′′=1[kp + 1− j′′k, k(p− j′′) + s− 1]

and d′(vl , vkp+1) = d′(vl , vkp+s) with l ∈ {∪p
j′′=1[k(p− j′′) + s, k(p + 1− j′′)]} ∪ [h + 1, kp + s− 1], that

is, PI(vkp+1vkp+s) = (s− 1)p; similarly, we have PI(vkp+1vkp+s) = (s− 2)p; . . . ; PI(vkp+s−2vkp+s) =

2p; PI(vkp+s−1vkp+s) = p.
Set w ∈ V(Pk

n−1), if xy ∈ E(Pk
n) with x or y 6= vkp+s, by Lemma 2, we have f (w, xy) = 0. Thus,

PI(Pk
n)− PI(Pk

n−1) = ∑
xy∈∪k(p−1)+s−1

i=1 (Ai∪Bi)
f (w, xy) + PI(vk(p−1)+svkp+s)

+PI(vk(p−1)+s+1vkp+s) + · · ·+ PI(vkp+s−1vkp+s)

= [(k + 2− s) + (k + 3− s) + · · ·+ k] + (1 + 2 + · · ·+ k)(p− 1)
+[k(p− 1) + s− 1] + [(k− 1)(p− 1) + s− 1] + [(k− 2)(p− 1) + s
−1] + · · ·+ [s(p− 1) + s− 1] + [(s− 1)p + (s− 2)p + · · ·+ 2p + p]

= pk2 + pk− k2 − 3k + 2ks− s2 + 3s− 2
= α.

Thus, PI(Pk
n) = k(k+1)(p−1)(3kp+6s−2k−4)

6 + (s−1)s(3k−s+2)
3 , for |Pk

n | = kp + s and Theorem 1
is proved.

Proof of Theorem 2. We will proceed with it by induction on n ≥ k + 2. If n = k + 2, by Definition 4,
we have Tk∗

n,c is also a k-path, that is, PI(Tk∗
n,c) = 2k. If n ≥ k + 3, assume that Theorem 2 is true

for the k-spiral with at most n − 1 vertices, we will consider Tk∗
n,c with n vertices. Let Tk∗

n,c be a
k-spiral with V(Tk∗

n,c) = V(Tk∗
n−1,c)∪ {v} and E(Tk∗

n,c) = E(Tk∗
n−1,c)∪ {vvn−1, vvn−2, . . . , vvn−k} such that

v1, v2, . . . , vn−c−1 is the simplicial ordering of Pk−c
n−c−1, where Tk∗

n−1,c = Pk−c
n−c−1 + Kc with V(Tk∗

n−1,c) =

{v1, v2, . . . , vn−1} and E(Tk∗
n−1,c) = E(Pk−c

n−c−1)∪ E(Kc)∪ {v1vl , v2vl , . . . , vn−c−1vl} for l ∈ [n− c, n− 1].
For any edge vivj ∈ E(Tk∗

n,c), d(vi, vj) or d′(vi, vj) is the distance of vi and vj in Tk∗
n−1,c or Tk∗

n,c, respectively.

For k + 2 ≤ n ≤ 2k− c, let γ = (n−k)(n−k−1)(4k−n+2)
3 − (n−k−1)(n−k−2)(4k−n+3)

3 = (n− k− 1)(3k−
n + 2). If we can show that by adding v to Tk∗

n−1,c, PI(Tk∗
n,c) = PI(Tk∗

n−1,c) + γ, then Theorem 2 is true.
Set w = v and let l ∈ [n − c, n − 1], by Lemma 4, we have d′(vl , v) = 1 and d′(vi, v) = 2

for i ∈ [1, n − k − 1], that is, f (w, vlvi) = 1; d′(vl , v) = d′(vi, v) = 1 for i ∈ [n − k, n − 1], that is,
f (w, vlvi) = 0. Set C1 = {v1v2, v1v3, . . . , v1vn−k−1}, C2 = {v2v3, v2v4, . . . , v2vn−k−1}, . . . , Cn−k−2 =

{vn−k−2vn−k−1}, Cn−k−1 = φ, D1 = {v1vn−k, v1vn−k+1, . . . , v1vk−c+1}, D2 =

{v2vn−k, v2vn−k+1, . . . , v2vk−c+2}, . . . , Dn−k−1 = {vn−k−1vn−k, vn−k−1vn−k+1, . . . , vn−k−1vn−c−1}.
By Lemma 4, we have d′(v1, v) = d′(v2, v) = 2 and d′(vn−k, v) = 1, that is, f (w, v1v2) = 0 and
f (w, v1vn−k) = 1. Similarly, for vh1 vh2 ∈ ∪

n−k−1
i=1 Ci with h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) = 2,

that is, f (w, vh1 vh2) = 0; for vh1 vh2 ∈ ∪
n−k−1
i=1 Di with h1 < h2, we have d′(vh1 , v) = 2 and d′(vh2 , v) = 1,

that is, f (w, vh1 vh2) = 1. Set Cn−k = {vn−kvn−k+1, vn−kvn−k+2, . . . , vn−kvn−c−1}, Cn−k+1 =

{vn−k+1vn−k+2, vn−k+1vn−k+3, . . . , vn−k+1vn−c−1}, . . . , Cn−c−2 = {vn−c−2vn−c−1}. By Lemma 4, we
have d′(vn−k, v) = d′(vn−k−1, v) = 1, that is, f (w, vn−kvn−k−1) = 0. Similarly, for vh1 vh2 ∈ ∪

n−c−2
i=n−k Ci

with h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) = 1, that is, f (w, vh1 vh2) = 0.
Set E1 = {vvi, i ∈ [n − k, n − c − 1]}, by Lemma 4, we have d′(vi, v) = 2, d′(vi, vn−k) = 1

for i ∈ [1, n − k − 1] and d′(vj, v) = d′(vj, vn−k) = 1 for i ∈ [n − k + 1, n]. Thus, PI(vn−kv) =

n− k− 1. Similarly, PI(vn−k+1v) = PI(vn−k+2v) = · · · = PI(vk−c+1v) = n− k− 1. In addition, by
Lemma 4, we have d′(vi, v) = 2, d′(vi, vk−c+2) = 1 for i ∈ [2, n− k− 1], d′(v1, v) = d′(v1, vk−c+2) = 2
and d′(vj, v) = d(vj, vk−c+2) = 1 for j ∈ [n − k, n]. Thus, PI(vk−c+2v) = n − k − 2. Similarly, we
have PI(vk−c+3v) = n − k − 3, PI(vk−c+4v) = n − k − 4, . . . , PI(vn−c−1v) = 1. Set E2 = {vvl , l ∈
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[n − c, n − 1]}, since N[vl ] − N[v] = n − k − 1, we have PI(vvl) = n − k − 1. Set E3 = {vivl , i ∈
[1, n− c− 1], l ∈ [n− c, n− 1]}, by Lemma 4, we have d′(vi, v) = 2 for i ∈ [1, n− k− 1], d′(vi, v) = 1
for i ∈ [n− k, n− c− 1], d′(vl , v) = 1 for l ∈ [n− c, n− 1]. Thus, f (w, vivl) = 1 for i ∈ [1, n− k− 1]
and f (w, vivl) = 0 for i ∈ [n− k, n− c− 1].

Set w ∈ V(Tk∗
n )− {v}, if xy ∈ E(Tk∗

n,c) with x or y 6= v, by Lemma 2, we have f (w, xy) = 0. Thus,

PI(Tk∗
n )− PI(Tk∗

n−1) = ∑xy∈∪n−c−2
i=1 Ci

f (w, xy) + ∑xy∈n−k−1
i=1 Di

f (w, xy) + ∑xy∈E1∪E2
PI(xy)+

∑xy∈E3
f (w, xy)

= 0 + [(2k− n− c + 2) + (2k− n− c + 3) + · · ·+ (k− c)]
+[1 + 2 + · · ·+ (n− k− 2) + (n− k− 1)(2k− n− c + 2)]
+c(n− k− 1) + c(n− k− 1)

= (n− k− 1)(3k− n + 2)
= γ,

and Theorem 2 is proved.

For n ≥ 2k − c + 1, let σ = 3c(n−2k+c−1)(n−2k+c)+(k−c)(2c2+3nc−4kc+3kn−4k2−6k+3n−2)
3 −

3c(n−2k+c−2)(n−1−2k+c)+(k−c)(2c2+3(n−1)c−4kc+3k(n−1)−4k2−6k+3n−2)
3 = k2 − 4kc + c2 + 2nc − 3c + k. If

we can show that by adding v to Tk∗
n−1,c, PI(Tk∗

n,c) = PI(Tk∗
n−1,c) + σ, then Theorem 2 is proved.

Set w = v, by Lemma 4, we have d′(vl , v) = 1 for l ∈ [n− c, n− 1], d′(vi, v) = 2 for i ∈ [1, n− k− 1]
and d′(vj, v) = 1 for j ∈ [n − k, n − c − 1]. Thus, f (w, vlvi) = 1 and f (w, vlvj) = 0. Set C1 =

{v1v2, v1v3, . . . , v1vk−c+1}, C2 = {v2v3, v2v4, . . . , v2vk−c+2}, . . . , Cn−2k+c−1 = {vn−2k+c−1vn−2k+c,
vn−2k+c−1vn−2k+c+1, . . . , vn−2k+c−1vn−k−1}, Cn−2k+c = {vn−2k+cvn−2k+s+1, vn−2k+cvn−2k+s+2, . . . ,
vn−2k+cvn−k−1}, Cn−2k+c+1 = {vn−2k+c+1vn−2k+c+2, vn−2k+c+1vn−2k+c+3, . . . , vn−2k+c+1vn−k−1}, . . . . ,
Cn−k−1 = φ, Dn−2k+c = {vn−2k+cvn−k}, Dn−2k+c+1 = {vn−2k+c+1vn−k, vn−2k+c+1vn−k+1}, . . . , Dn−k−1
= {vn−k−1vn−k, vn−k−1vn−k+1, . . . , vn−k−1vn−c−1}.

By Lemma 4, we can get that d′(v1, v) = d′(v2, v) = 2 and d′(vn−k, v) = 1, that is, f (w, v1v2) = 0
and f (w, v1vn−k) = 1. Similarly, for vh1 vh2 ∈ ∪

n−k−1
i=1 Ci with h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) =

2, that is, f (w, vh1 vh2) = 0; for vh1 vh2 ∈ ∪
n−k−1
i=n−2k+cDi with h1 < h2, we have d′(vh1 , v) = 2 and

d′(vh2 , v) = 1, that is, f (w, vh1 vh2) = 1. Set Cn−k = {vn−kvn−k+1, vn−kvn−k+2, . . . , vn−kvn−c−1}, Cn−k+1
= {vn−k+1vn−k+2, vn−k+1vn−k+3, . . . , vn−k+1vn−c−1}, . . . , Cn−c+2 = {vn−c−2vn−c−1}. By Lemma 4, we
can get that d′(vn−k, v) = d′(vn−k+1, v) = 1, that is, f (w, vn−kvn−k+1) = 0. Similarly, for vh1 vh2 ∈
∪n−c−2

i=n−k Ci with h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) = 1, that is, f (w, vh1 vh2) = 0.
Set E1 = {vvi, i ∈ [n − k, n − c − 1]}, by Lemma 4, we have d′(v, vn−k−1) =

2, d′(vn−c−1, vn−k−1) = 1, d′(v, vi) = d′(vn−c−1, vi) = 1 for i ∈ [n − k, n − c − 2] ∪ [n − c, n − 1]
and d′(v, vj) = d(vn−c−1, vj) = 2 for j ∈ [1, n− k − 2]. Thus, PI(vvn−c−1) = 1. Similarly, we have
PI(vvn−c−2) = 2, PI(vvn−c−3) = 3, . . . , PI(vvn−k) = k − c. Set E2 = {vvl , l ∈ [n− c, n− 1]}, since
N[vl ] − N[v] = n − k − 1, we have PI(vvl) = n − k − 1. Set E3 = {vivl , i ∈ [1, n − c − 1], l ∈
[n − c, n − 1]}, by Lemma 4, we have d′(v, vi) = 2, d′(v, vl) = 1 for i ∈ [1, n − k − 1] and
d′(v, vi) = d′(v, vl) = 1 for i ∈ [n − k, n − c − 1]. Thus, f (w, vivl) = 1 for i ∈ [1, n − k − 1] and
f (w, vivl) = 0 for i ∈ [n− k, n− c− 1].

Set w ∈ V(Tk∗
n )− {v}, if xy ∈ E(Tk∗

n,c) with x or y 6= v, by Lemma 2, we have f (w, xy) = 0. Thus,

PI(Tk∗
n )− PI(Tk∗

n−1) = ∑xy∈∪n−c−2
i=1 Ci

f (w, xy) + ∑xy∈n−k−1
i=n−2k+cDi

f (w, xy) + ∑xy∈E1∪E2
PI(xy)

+∑xy∈E3
f (w, xy)

= 0 + [1 + 2 + 3 + · · ·+ (k− c)] + [1 + 2 + 3 + · · ·+ (k− c)]
+c(n− k− 1) + c(n− k− 1)

= k2 − 4kc + c2 + 2nc− 3c + k
= σ,

and Theorem 2 is proved.
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Proof of Theorem 3. For n ≥ k + 2, we will proceed it by introduction on |Tk
n | = n. If n = k + 2,

Tk
n is also a k-path, that is, PI(Tk

n) = 2k. If n ≥ k + 3, assume that Theorem 3 is true for the k-tree
with at most n − 1 vertices, let v ∈ S1(Tk

n) and Tk
n−1 = Tk

n − v, by the induction hypothesis, we
have PI(Tk

n−1) ≤ PI(Sk
n−1) = k(n− k− 1)(n− k− 2). By adding back v, let N(v) = {x1, x2, . . . , xk}

and w = v. Since Tk
n [v, x1, x2, . . . , xk] is a (k + 1)-clique, we have f (w, xixj) = 0 for i, j ∈ [1, k]. By

Lemmas 1 and 2, we can obtain that PI(vxi) ≤ n− k− 1 with i ∈ [1, k] and f (w, xy) ≤ 1 for any edge
xy ∈ E(Tk

n)− E(Tk
n [v, x1, x2, . . . , xk]). Next, set w ∈ V(Tk

n)− {v}, by Lemma 2, if xy ∈ E(Tk
n) with x or

y 6= v, we have f (w, xy) = 0. Since |E(Tk
n)− E(Tk

n [v, x1, x2, . . . , xk])| = k(n− k− 1), we have

PI(Tk
n) = PI(Tk

n−1) + ∑xy∈E(Tk
n−{vxi ,i∈[1,k]}) f (w, xy) + ∑k

i=1 PI(vxi)

≤ PI(Sk
n−k) + k(n− k− 1) + k(n− k− 1)

= k(n− k− 1)(n− k− 2) + k(n− k− 1) + k(n− k− 1)
= k(n− k)(n− k− 1)
= PI(Sk

n).

Thus, this finishes the proof of Theorem 3.

Proof of Theorem 4. For k = 1 and by Fact 1, we can get that every tree with the same vertices has the
same PI-value; then, Theorem 4 is obvious; for k ≥ 2, if k + 2 ≤ n ≤ 2k− c, let n = kp + s with p = 1
and s = n− k, by Theorem 1, we have PI(Pk

n)− PI(Tk∗
n,c) = (s−1)s(3k−s+2)

3 − (n−k)(n−k−1)(4k−n+2)
3 =

(n−k−1)(n−k)[3k−(n−k)+2]
3 − (n−k)(n−k−1)(4k−n+2)

3 = 0, and Theorem 4 is true. If n ≥ 2k− c + 1, p = n−s
k

and by Theorems 1 and 2, define the new functions as follows: for z ≥ 2k− c + 1, 1 ≤ c ≤ k− 1 and
2 ≤ s ≤ k + 1,

g(z) = (k+1)(z−s−k)(3z+3s−2k−4)
6 + s(s−1)(3k−s+2)

3 ,

h(z, c) = c(z− 2k + c− 1)(z− 2k + c) + (k−c)(2c2+3zc−4kc+3kz−4k2−6k+3z−2)
3 ,

l(z, c) = g(z)− h(z, c)
= ( k

2 + 1
2 − c)z2 + (−c2 + 2c + 4kc− 11k2

6 −
5k
2 −

2
3 )z

+ ks2

2 −
k2s
6 −

ks
2 + 5k3

3 + 5k2

3 + s2

2 + 4k
3 −

s3

3 − 6k2c + 3kc2 − c3

3 − 4kc + c2 − 2c
3 ,

lz(z) = lz(z, c)
= (k + 1− 2c)z− c2 + 2c + 4kc− 11k2

6 −
5k
2 −

2
3 .

Then, it is enough to determine whether or not l(z, c) ≥ 0 is true. By some calculations, we can
obtain the following claim:

Claim 1. z1 = 2k− c + 1, z2 = 2k− c + 2 are the two roots of l(z, c) = 0 with c 6= k+1
2 .

Proof. For any c ∈ [1, k − 1], let z1 = 2k − c + 1, z2 = 2k − c + 2, and we have l(2k − c + 1, c) =

0, l(2k− c + 2, c) = 0. If c 6= k+1
2 , then Claim is true.

For fixed c ∈ [1, k+1
2 ), that is, k

2 + 1
2 − c > 0, then the function of l(z, c) about z is open up. Since z

is an integer and by Fact 2, we have l(z, c) ≥ 0 for z ≥ 2k− c + 1 and Theorem 4 is true; if c = k+1
2

and k ≥ 1, we have lz(z) = 1−k2

12 ≤ 0, that is, l(z, k+1
2 ) is decreasing about z. By the proof of Fact 2, we

have l(2k− c + 1, c) = 0. For z ≥ 2k− c + 1, we can get that l(z, k+1
2 ) ≤ l(2k− c + 1, k+1

2 ) = 0 and
Theorem 4 is true; for fixed c ∈ ( k+1

2 , k− 1], that is, k
2 + 1

2 − c < 0, then the function of l(z, c) about z is
open down. Since z is an integer and by Claim, we can obtain that l(z, c) ≤ 0 for z ≥ 2k− c + 1 and
this finishes the proof of Theorem 4.

4. Conclusions

We can see that the k-stars attain the maximal values of PI-values for k-trees. One of the guesses
is that the k-paths attain the minimal values. Actually, it is not the case and some PI-values of k-spirals
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is even smaller than that of k-paths. Meanwhile, not all PI-values of k-spirals are less than the values
of all other k-trees. This fact indicates an interesting problem—which type of k-trees will achieve the
minimum PI-value?
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