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Abstract: The principal objective of this work is to propose a fourth, eighth and sixteenth order
scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth
order method uses two evaluations of the function and one evaluation of the first derivative; the
eighth order method uses three evaluations of the function and one evaluation of the first derivative;
and sixteenth order method uses four evaluations of the function and one evaluation of the first
derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition,
the theoretical convergence properties of our schemes are fully explored with the help of the main
theorem that demonstrates the convergence order. The performance and effectiveness of our optimal
iteration functions are compared with the existing competitors on some standard academic problems.
The conjugacy maps of the presented method and other existing eighth order methods are discussed,
and their basins of attraction are also given to demonstrate their dynamical behavior in the complex
plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and
Planck’s radiation law problem as an application.

Keywords: non-linear equation; basins of attraction; optimal order; higher order method; computational
order of convergence
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1. Introduction

One of the most frequent problems in engineering, scientific computing and applied mathematics,
in general, is the problem of solving a nonlinear equation f (x) = 0. In most of the cases, whenever
real problems are faced, such as weather forecasting, accurate positioning of satellite systems in the
desired orbit, measurement of earthquake magnitudes and other high-level engineering problems,
only approximate solutions may get resolved. However, only in rare cases, it is possible to solve the
governing equations exactly. The most familiar method of solving non linear equation is Newton’s
iteration method. The local order of convergence of Newton’s method is two and it is an optimal
method with two function evaluations per iterative step.

In the past decade, several higher order iterative methods have been developed and analyzed for
solving nonlinear equations that improve classical methods such as Newton’s method, Chebyshev
method, Halley’s iteration method, etc. As the order of convergence increases, so does the number
of function evaluations per step. Hence, a new index to determine the efficiency called the efficiency
index is introduced in [1] to measure the balance between these quantities. Kung-Traub [2] conjectured
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that the order of convergence of any multi-point without memory method with d function evaluations
cannot exceed the bound 2d−1, the optimal order. Thus the optimal order for three evaluations per
iteration would be four, four evaluations per iteration would be eight, and so on. Recently, some fourth
and eighth order optimal iterative methods have been developed (see [3–14] and references therein).
A more extensive list of references as well as a survey on the progress made in the class of multi-point
methods is found in the recent book by Petkovic et al. [11].

This paper is organized as follows. An optimal fourth, eighth and sixteenth order methods are
developed by using divided difference techniques in Section 2. In Section 3, convergence order is
analyzed. In Section 4, tested numerical examples to compare the proposed methods with other
known optimal methods. The problem of Projectile motion is discussed in Section 5 where the
presented methods are applied on this problem with some existing ones. In Section 6, we obtain the
conjugacy maps of these methods to make a comparison from dynamical point of view. In Section
7, the proposed methods are studied in the complex plane using basins of attraction. Section 8 gives
concluding remarks.

2. Design of an Optimal Fourth, Eighth and Sixteenth Order Methods

Definition 1 ([15]). If the sequence {xn} tends to a limit x∗ in such a way that

lim
n→∞

xn+1 − x∗

(xn − x∗)p = C

for p ≥ 1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error
constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively.
Let en = xn − x∗, then the relation

en+1 = C ep
n + O

(
ep+1

n

)
= O

(
ep

n

)
. (1)

is called the error equation. The value of p is called the order of convergence of the method.

Definition 2 ([1]). The Efficiency Index is given by

EI = p
1
d , (2)

where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.

Let xn+1 = ψ(xn) define an Iterative Function (IF). Let xn+1 be determined by new information at
xn, φ1(xn), ..., φi(xn), i ≥ 1. No old information is reused. Thus,

xn+1 = ψ(xn, φ1(xn), ..., φi(xn)). (3)

Then ψ is called a multipoint IF without memory.
The Newton (also called Newton-Raphson) IF (2ndNR) is given by

ψ2nd NR(x) = x− f (x)
f ′(x)

. (4)

The 2ndNR IF is one-point IF with two function evaluations and it satisfies the Kung-Traub
conjecture with d = 2. Further, EI2nd NR = 1.414.
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2.1. An Optimal Fourth Order Method

We attempt to get a new optimal fourth order IF as follows, let us consider two step Newton’s
method

ψ4th NR(x) = ψ2nd NR(x)− f (ψ2nd NR(x))
f ′(ψ2nd NR(x))

. (5)

The above one is having fourth order convergence with four function evaluations. But, this is not
an optimal method. To get an optimal, need to reduce a function and preserve the same convergence
order, and so we estimate f ′(ψ2nd NR(x)) by the following polynomial

q(t) = a0 + a1(t− x) + a2(t− x)2, (6)

which satisfies
q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)).

On implementing the above conditions on Equation (6), we obtain three unknowns a0, a1 and a2.
Let us define the divided differences

f [y, x] =
f (y)− f (x)

y− x
, f [y, x, x] =

f [y, x]− f ′(x)
y− x

.

From conditions, we get a0 = f (x), a1 = f ′(x) and a2 = f [ψ2nd NR(x), x, x], respectively, by using
divided difference techniques. Now, we have the estimation

f ′(ψ2nd NR(x)) ≈ q′(ψ2nd NR(x)) = a1 + 2a2(ψ2th NR(x)− x).

Finally, we propose a new optimal fourth order method as

ψ4thYM(x) = ψ2nd NR(x)− f (ψ2nd NR(x))
f ′(x) + 2 f [ψ2nd NR(x), x, x](ψ2th NR(x)− x)

. (7)

The efficiency of the method (7) is EI4thYM = 1.587.

2.2. An Optimal Eighth Order Method

Next, we attempt to get a new optimal eighth order IF as following way

ψ8thYM(x) = ψ4thYM(x)−
f (ψ4thYM(x))
f ′(ψ4thYM(x))

.

The above one is having eighth order convergence with five function evaluations. But, this is not
an optimal method. To get an optimal, need to reduce a function and preserve the same convergence
order, and so we estimate f ′(ψ4thYM(x)) by the following polynomial

q(t) = b0 + b1(t− x) + b2(t− x)2 + b3(t− x)3, (8)

which satisfies

q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)), q(ψ4thYM(x)) = f (ψ4thYM(x)).

On implementing the above conditions on (8), we obtain four linear equations with four unknowns
b0, b1, b2 and b3. From conditions, we get b0 = f (x) and b1 = f ′(x). To find b2 and b3, we solve the
following equations:

f (ψ2nd NR(x)) = f (x) + f ′(x)(ψ2nd NR(x)− x) + b2(ψ2nd NR(x)− x)2 + b3(ψ2nd NR(x)− x)3

f (ψ4thYM(x)) = f (x) + f ′(x)(ψ4thYM(x)− x) + b2(ψ4thYM(x)− x)2 + b3(ψ4thYM(x)− x)3.



Mathematics 2019, 7, 322 4 of 22

Thus by applying divided differences, the above equations simplifies to

b2 + b3(ψ2nd NR(x)− x) = f [ψ2nd NR(x), x, x] (9)

b2 + b3(ψ4thYM(x)− x) = f [ψ4thYM(x), x, x] (10)

Solving Equations (9) and (14), we have

b2 =
f [ψ2nd NR(x), x, x](ψ4thPM(x)− x)− f [ψ4thYM(x), x, x](ψ2nd NR(x)− x)

ψ4thYM(x)− ψ2nd NR(x)
,

b3 =
f [ψ4thYM(x), x, x]− f [ψ2nd NR(x), x, x]

ψ4thYM(x)− ψ2nd NR(x)
.

(11)

Further, using Equation (11), we have the estimation

f ′(ψ4thYM(x)) ≈ q′(ψ4thYM(x)) = b1 + 2b2(ψ4thYM(x)− x) + 3b3(ψ4thYM(x)− x)2.

Finally, we propose a new optimal eighth order method as

ψ8thYM(x) = ψ4thYM(x)−
f (ψ4thYM(x))

f ′(x) + 2b2(ψ4thYM(x)− x) + 3b3(ψ4thYM(x)− x)2 . (12)

The efficiency of the method (12) is EI8thYM = 1.682. Remark that the method is seems a particular
case of the method of Khan et al. [16], they used weight function to develop their methods. Whereas
we used finite difference scheme to develop proposed methods. We can say the methods 4thYM and
8thYM are reconstructed of Khan et al. [16] methods.

2.3. An Optimal Sixteenth Order Method

Next, we attempt to get a new optimal sixteenth order IF as following way

ψ16thYM(x) = ψ8thYM(x)−
f (ψ8thYM(x))
f ′(ψ8thYM(x))

.

The above one is having eighth order convergence with five function evaluations. However,
this is not an optimal method. To get an optimal, need to reduce a function and preserve the same
convergence order, and so we estimate f ′(ψ8thYM(x)) by the following polynomial

q(t) = c0 + c1(t− x) + c2(t− x)2 + c3(t− x)3 + c4(t− x)4, (13)

which satisfies

q(x) = f (x), q′(x) = f ′(x), q(ψ2nd NR(x)) = f (ψ2nd NR(x)),

q(ψ4thYM(x)) = f (ψ4thYM(x)), q(ψ8thYM(x)) = f (ψ8thYM(x)).

On implementing the above conditions on (13), we obtain four linear equations with four
unknowns c0, c1, c2 and c3. From conditions, we get c0 = f (x) and c1 = f ′(x). To find c2, c3 and c4, we
solve the following equations:

f (ψ2nd NR(x)) = f (x) + f ′(x)(ψ2nd NR(x)− x) + c2(ψ2nd NR(x)− x)2 + c3(ψ2nd NR(x)− x)3 + c4(ψ2nd NR(x)− x)4

f (ψ4thYM(x)) = f (x) + f ′(x)(ψ4thYM(x)− x) + c2(ψ4thYM(x)− x)2 + c3(ψ4thYM(x)− x)3 + c4(ψ4thYM(x)− x)4

f (ψ8thYM(x)) = f (x) + f ′(x)(ψ8thYM(x)− x) + c2(ψ8thYM(x)− x)2 + c3(ψ8thYM(x)− x)3 + c4(ψ8thYM(x)− x)4.
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Thus by applying divided differences, the above equations simplifies to

c2 + c3(ψ2nd NR(x)− x) + c4(ψ2nd NR(x)− x)2 = f [ψ2nd NR(x), x, x]

c2 + c3(ψ4thYM(x)− x) + c4(ψ4thYM(x)− x)2 = f [ψ4thYM(x), x, x] (14)

c2 + c3(ψ8thYM(x)− x) + c4(ψ8thYM(x)− x)2 = f [ψ8thYM(x), x, x]

Solving Equation (14), we have

c2 =

(
f [ψ2nd NR(x), x, x]

(
− S2

2S3 + S2S2
3

)
+ f [ψ4thYM(x), x, x]

(
S2

1S3 − S1S2
3

)
+ f [ψ8thYM(x), x, x]

(
− S2

1S2 + S1S2
2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

c3 =

(
f [ψ2nd NR(x), x, x]

(
S2

2 − S2
3

)
+ f [ψ4thYM(x), x, x]

(
− S2

1 + S2
3

)
+ f [ψ8thYM(x), x, x]

(
S2

1 − S2
2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

c4 =

(
f [ψ2nd NR(x), x, x]

(
− S2 + S3

)
+ f [ψ4thYM(x), x, x]

(
S1 − S3

)
+ f [ψ8thYM(x), x, x]

(
− S1 + S2

))
−S2

1S2 + S1S2
2 + S2

1S3 − S2
2S3 − S1S2

3 + S2S2
3

,

S1 = ψ2nd NR(x)− x, S2 = ψ4thYM(x)− x, S3 = ψ8thYM(x)− x.

(15)

Further, using Equation (15), we have the estimation

f ′(ψ8thYM(x)) ≈ q′(ψ8thYM(x)) = c1 + 2c2(ψ8thYM(x)− x) + 3c3(ψ8thYM(x)− x)2 + 4c4(ψ8thYM(x)− x)3.

Finally, we propose a new optimal sixteenth order method as

ψ16thYM(x) = ψ8thYM(x)−
f (ψ8thYM(x))

f ′(x) + 2c2(ψ8thYM(x)− x) + 3c3(ψ8thYM(x)− x)2 + 4c4(ψ8thYM(x)− x)3 . (16)

The efficiency of the method (16) is EI16thYM = 1.741.

3. Convergence Analysis

In this section, we prove the convergence analysis of proposed IFs with help of Mathematica
software.

Theorem 1. Let f : D ⊂ R→ R be a sufficiently smooth function having continuous derivatives. If f (x) has
a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the method
4thYM IFs (7) is of local fourth order convergence, and the 8thYM IFs (12) is of local eighth order convergence.

Proof. Let e = x− x∗ and c[j] =
f (j)(x∗)
j! f ′(x∗)

, j = 2, 3, 4, .... Expanding f (x) and f ′(x) about x∗ by Taylor’s

method, we have

f (x) = f ′(x∗)
(

e + e2c[2] + e3c[3] + e4c[4] + e5c[5] + e6c[6] + e7c[7] + e8c[8] + . . .
)

(17)

and

f ′(x) = f ′(x∗)
(

1 + 2e c[2] + 3e2c[3] + 4e3c[4] + 5e4c[5] + 6e5c[6] + 7e6c[7] + 8e7c[8] + 9e8c[9] + . . .
)

(18)
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Thus,

ψ2nd NR(x) = x∗ + c[2]e2 +
(
− 2c[2]2 + 2c[3]

)
e3 +

(
4c[2]3 − 7c[2]c[3] + 3c[4]

)
e4 +

(
− 8c[2]4

+ 20c[2]2c[3]− 6c[3]2 − 10c[2]c[4] + 4c[5]
)

e5 +
(

16c[2]5 − 52c[2]3c[3] + 28c[2]2c[4]− 17c[3]c[4]

+ c[2](33c[3]2 − 13c[5]) + 5c[6]
)

e6 − 2
(

16c[2]6 − 64c[2]4c[3]− 9c[3]3 + 36c[2]3c[4] + 6c[4]2 + 9c[2]2(7c[3]2

− 2c[5]) + 11c[3]c[5] + c[2](−46c[3]c[4] + 8c[6])− 3c[7]
)

e7 +
(

64c[2]7 − 304c[2]5c[3]

+ 176c[2]4c[4] + 75c[3]2c[4] + c[2]3(408c[3]2 − 92c[5])− 31c[4]c[5]− 27c[3]c[6]

+ c[2]2(−348c[3]c[4] + 44c[6]) + c[2](−135c[3]3 + 64c[4]2 + 118c[3]c[5]− 19c[7]) + 7c[8]
)

e8 + . . . .

(19)

Expanding f (ψ2nd NR(x)) about x∗ by Taylor’s method, we have

f (ψ2nd NR(x)) = f ′(x∗)
(

c[2]e2 +
(
− 2c[2]2 + 2c[3]

)
e3 +

(
5c[2]3 − 7c[2]c[3] + 3c[4]

)
e4 − 2

(
6c[2]4

− 12c[2]2c[3] + 3c[3]2 + 5c[2]c[4]− 2c[5]
)

e5 +
(

28c[2]5 − 73c[2]3c[3] + 34c[2]2c[4]− 17c[3]c[4]

+ c[2](37c[3]2 − 13c[5]) + 5c[6]
)

e6 − 2
(

32c[2]6 − 103c[2]4c[3]− 9c[3]3 + 52c[2]3c[4] + 6c[4]2

+ c[2]2(80c[3]2 − 22c[5]) + 11c[3]c[5] + c[2](−52c[3]c[4] + 8c[6])− 3c[7]
)

e7

+
(

144c[2]7 − 552c[2]5c[3] + 297c[2]4c[4] + 75c[3]2c[4] + 2c[2]3(291c[3]2 − 67c[5])

− 31c[4]c[5]− 27c[3]c[6] + c[2]2(−455c[3]c[4] + 54c[6]) + c[2](−147c[3]3 + 73c[4]2

+ 134c[3]c[5]− 19c[7]) + 7c[8]
)

e8 + . . . .
)

(20)

Using Equations (17)–(20) in divided difference techniques. We have

f [ψ2nd NR(x), x, x] = f ′(x∗)
(

c[2] + 2c[3]e +
(

c[2]c[3] + 3c[4]
)

e2 + 2
(
− c[2]2c[3] + c[3]2

+ c[2]c[4] + 2c[5]
)

e3 +
(

4c[2]3c[3]− 3c[2]2c[4] + 7c[3]c[4] + c[2](−7c[3]2 + 3c[5]) + 5c[6]
)

e4

+
(
− 8c[2]4c[3]− 6c[3]3 + 4c[2]3c[4] + 4c[2]2(5c[3]2 − c[5]) + 10c[3]c[5]

+ 4c[2](−5c[3]c[4] + c[6]) + 6(c[4]2 + c[7])
)

e5 +
(

16c[2]5c[3]− 4c[2]4c[4]

− 25c[3]2c[4] + 17c[4]c[5] + c[2]3(−52c[3]2 + 5c[5]) + c[2]2(46c[3]c[4]− 5c[6])

+ 13c[3]c[6] + c[2](33c[3]3 − 14c[4]2 − 26c[3]c[5] + 5c[7]) + 7c[8]
)

e6 + . . . .
)

(21)

Substituting Equations (18)–(21) into Equation (7), we obtain, after simplifications,

ψ4thYM(x) = x∗ +
(

c[2]3 − c[2]c[3]
)

e4 − 2
(

2c[2]4 − 4c[2]2c[3] + c[3]2 + c[2]c[4]
)

e5 +
(

10c[2]5 − 30c[2]3c[3]

+ 12c[2]2c[4]− 7c[3]c[4] + 3c[2](6c[3]2 − c[5])
)

e6 − 2
(

10c[2]6 − 40c[2]4c[3]− 6c[3]3

+ 20c[2]3c[4] + 3c[4]2 + 8c[2]2(5c[3]2 − c[5]) + 5c[3]c[5] + c[2](−26c[3]c[4] + 2c[6])
)

e7 +
(

36c[2]7

− 178c[2]5c[3] + 101c[2]4c[4] + 50c[3]2c[4] + 3c[2]3(84c[3]2 − 17c[5])− 17c[4]c[5]− 13c[3]c[6]

+ c[2]2(−209c[3]c[4] + 20c[6]) + c[2](−91c[3]3 + 37c[4]2 + 68c[3]c[5]− 5c[7])
)

e8 + . . . .

(22)
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Expanding f (ψ4thYM(x)) about x∗ by Taylor’s method, we have

f (ψ4thYM(x)) = f ′(x∗)
((

c[2]3 − c[2]c[3]
)

e4 − 2
(

2c[2]4 − 4c[2]2c[3] + c[3]2 + c[2]c[4]
)

e5 +
(

10c[2]5

− 30c[2]3c[3] + 12c[2]2c[4]− 7c[3]c[4] + 3c[2](6c[3]2 − c[5])
)

e6 − 2
(

10c[2]6 − 40c[2]4c[3]

− 6c[3]3 + 20c[2]3c[4] + 3c[4]2 + 8c[2]2(5c[3]2 − c[5]) + 5c[3]c[5] + c[2](−26c[3]c[4] + 2c[6])
)

e7

+
(

37c[2]7 − 180c[2]5c[3] + 101c[2]4c[4] + 50c[3]2c[4] + c[2]3(253c[3]2 − 51c[5])− 17c[4]c[5]

− 13c[3]c[6] + c[2]2(−209c[3]c[4] + 20c[6]) + c[2](−91c[3]3 + 37c[4]2 + 68c[3]c[5]− 5c[7])
)

e8 + . . . .
)

(23)

Now,

f [ψ4thYM(x), x, x] = f ′(x∗)
(

c[2] + 2c[3]e + 3c[4]e2 + 4c[5]e3 +
(

c[2]3c[3]− c[2]c[3]2 + 5c[6]
)

e4

+
(
− 4c[2]4c[3] + 8c[2]2c[3]2 − 2c[3]3 + 2c[2]3c[4]− 4c[2]c[3]c[4] + 6c[7]

)
e5

+
(

10c[2]5c[3]− 8c[2]4c[4] + 28c[2]2c[3]c[4]− 11c[3]2c[4] + c[2]3(−30c[3]2 + 3c[5])+

2c[2](9c[3]3 − 2c[4]2 − 3c[3]c[5]) + 7c[8]
)

e6 + . . . .
)

(24)

Substituting Equations (19)–(21), (23) and (24) into Equation (12), we obtain, after simplifications,

ψ8thYM(x)− x∗ = c[2]2
(

c[2]2 − c[3]
)(

c[2]3 − c[2]c[3] + c[4]
)

e8 + O(e9) (25)

Hence from Equations (22) and (25), we concluded that the convergence order of the 4thYM and
8thYM are four and eight respectively.

The following theorem is given without proof, which can be worked out with the help of Mathematica.

Theorem 2. Let f : D ⊂ R → R be a sufficiently smooth function having continuous derivatives. If f (x)
has a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the
method (16) is of local sixteenth order convergence and and it satisfies the error equation

ψ16thYM(x)− x∗ =
(
(c[2]4)((c[2]2 − c[3])2)(c[2]3 − c[2]c[3] + c[4])(c[2]4 − c[2]2c[3] + c[2]c[4]− c[5])

)
e16 + O(e17).

4. Numerical Examples

In this section, numerical results on some test functions are compared for the new methods
4thYM, 8thYM and 16thYM with some existing eighth order methods and Newton’s method. Numerical
computations have been carried out in the MATLAB software with 500 significant digits. We have used
the stopping criteria for the iterative process satisfying error = |xN − xN−1| < ε, where ε = 10−50 and
N is the number of iterations required for convergence. The computational order of convergence is
given by ([17])

ρ =
ln |(xN − xN−1)/(xN−1 − xN−2)|

ln |(xN−1 − xN−2)/(xN−2 − xN−3)|
.

We consider the following iterative methods for solving nonlinear equations for the purpose of
comparison: ψ4thSB, a method proposed by Sharma et al. [18]:

y = x− 2 f (x)
3 f ′(x)

, ψ4thSB(x) = x−
(
− 1

2
+

9
8

f ′(x)
f ′(y)

+
3
8

f ′(y)
f ′(x)

) f (x)
f ′(x)

. (26)

ψ4thCLND, a method proposed by Chun et al. [19]:

y = x− 2 f (x)
3 f ′(x)

, ψ4thCLND(x) = x− 16 f (x) f ′(x)
−5 f ′(x)2 + 30 f ′(x) f ′(y)− 9 f ′(y)2 . (27)
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ψ4thSJ , a method proposed by Singh et al. [20]:

y = x− 2
3

f (x)
f ′(x)

, ψ4thSJ(x) = x−
(

17
8
− 9

4
f ′(y)
f ′(x)

+
9
8

( f ′(y)
f ′(x)

)2
)(

7
4
− 3

4
f ′(y)

f ′(xn)

)
f (x)
f ′(x)

. (28)

ψ8thKT , a method proposed by Kung-Traub [2]:

y = x− f (x)
f ′(x)

, z = y− f (y) ∗ f (x)
( f (x)− f (y))2

f (x)
f ′(x)

,

ψ8thKT(x) = z− f (x)
f ′(x)

f (x) f (y) f (z)
( f (x)− f (y))2

f (x)2 + f (y)( f (y)− f (z))
( f (x)− f (z))2( f (y)− f (z))

.
(29)

ψ8th LW , a method proposed by Liu et al. [8]

y = x− f (x)
f ′(x)

, z = y− f (x)
f (x)− 2 f (y)

f (y)
f ′(x)

,

ψ8th LW(x) = z− f (z)
f ′(x)

(( f (x)− f (y)
f (x)− 2 f (y)

)2
+

f (z)
f (y)− f (z)

+
4 f (z)

f (x) + f (z)

)
.

(30)

ψ8thPNPD, a method proposed by Petkovic et al. [11]

y = x− f (x)
f ′(x)

, z = x−
(( f (y)

f (x)

)2
− f (x)

f (y)− f (x)

)
f (x)
f ′(x)

, ψ8thPNPD(x) = z− f (z)
f ′(x)

(
ϕ(t) +

f (z)
f (y)− f (z)

+
4 f (z)
f (x)

)
,

where ϕ(t) = 1 + 2t + 2t2 − t3 and t =
f (y)
f (x)

.

(31)

ψ8thSA1, a method proposed by Sharma et al. [12]

y = x− f (x)
f ′(x)

, z = y−
(

3− 2
f [y, x]
f ′(x)

)
f (y)
f ′(x)

, ψ8thSA1(x) = z− f (z)
f ′(x)

(
f ′(x)− f [y, x] + f [z, y]

2 f [z, y]− f [z, x]

)
. (32)

ψ8thSA2, a method proposed by Sharma et al. [13]

y = x− f (x)
f ′(x)

, z = y− f (y)
2 f [y, x]− f ′(x)

, ψ8thSA2(x) = z− f [z, y]
f [z, x]

f (z)
2 f [z, y]− f [z, x]

(33)

ψ8thCFGT , a method proposed by Cordero et al. [6]

y = x− f (x)
f ′(x)

, z = y− f (y)
f ′(x)

1
1− 2t + t2 − t3/2

, ψ8thCFGT(x) =

z− 1 + 3r
1 + r

f (z)
f [z, y] + f [z, x, x](z− y)

, r =
f (z)
f (x)

.
(34)

ψ8thCTV , a method proposed by Cordero et al. [7]

y = x− f (x)
f ′(x)

, z = x− 1− t
1− 2t

f (x)
f ′(x)

, ψ8thCTV(x) = z−
( 1− t

1− 2t
− v
)2 1

1− 3v
f (z)
f ′(x)

, v =
f (z)
f (y)

. (35)

Table 1 shows the efficiency indices of the new methods with some known methods.
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Table 1. Comparison of Efficiency Indices.

Methods p d EI

2ndNR 2 2 1.414
4thSB 4 3 1.587

4thCLND 4 3 1.587
4thSJ 4 3 1.587

4thYM 4 3 1.587
8thKT 8 4 1.682
8thLW 8 4 1.682

8thPNPD 8 4 1.682
8thSA1 8 4 1.682
8thSA2 8 4 1.682

8thCFGT 8 4 1.682
8thCTV 8 4 1.682
8thYM 8 4 1.682
16thYM 16 5 1.741

The following test functions and their simple zeros for our study are given below [10]:

f1(x) = sin(2 cos x)− 1− x2 + esin(x3), x∗ = −0.7848959876612125352...

f2(x) = xex2 − sin2x + 3 cos x + 5, x∗ = −1.2076478271309189270...

f3(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457...

f4(x) = sin(x) + cos(x) + x, x∗ = −0.4566247045676308244...

f5(x) =
x
2
− sin x, x∗ = 1.8954942670339809471...

f6(x) = x2 + sin(
x
5
)− 1

4
, x∗ = 0.4099920179891371316...

Table 2, shows that corresponding results for f1 − f6. We observe that proposed method 4thYM is
converge in a lesser or equal number of iterations and with least error when compare to compared
methods. Note that 4thSB and 4thSJ methods are getting diverge in f5 function. Hence, the proposed
method 4thYM can be considered competent enough to existing other compared equivalent methods.

Also, from Tables 3–5 are shows the corresponding results for f1 − f6. The computational order of
convergence agrees with the theoretical order of convergence in all the functions. Note that 8thPNPD
method is getting diverge in f5 function and all other compared methods are converges with least error.
Also, function f1 having least error in 8thCFGT, function f2 having least error in 8thCTV, functions f3

and f4 having least error in 8thYM, function f5 having least error in 8thSA2, function f6 having least
error in 8thCFGT. The proposed 16thYM method converges less number of iteration with least error
in all the tested functions. Hence, the 16thYM can be considered competent enough to existing other
compared equivalent methods.
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Table 2. Numerical results for nonlinear equations.

Methods f1(x), x0 = −0.9 f2(x), x0 = −1.6

N |x1− x0| |xN − xN−1| ρ N |x1− x0| |xN − xN−1| ρ

2nd NR (4) 7 0.1080 7.7326 × 10−74 1.99 9 0.2044 9.2727 × 10−74 1.99
4thSB (26) 4 0.1150 9.7275 × 10−64 3.99 5 0.3343 1.4237 × 10−65 3.99

4thCLND (27) 4 0.1150 1.4296 × 10−64 3.99 5 0.3801 1.1080 × 10−72 3.99
4thSJ (28) 4 0.1150 3.0653 × 10−62 3.99 5 0.3190 9.9781 × 10−56 3.99
4thYM (7) 4 0.1150 6.0046 × 10−67 3.99 5 0.3737 7.2910 × 10−120 4.00

Methods f3(x), x0 = 0.9 f4(x), x0 = −1.9

2nd NR (4) 8 0.6263 1.3514 × 10−72 2.00 8 1.9529 1.6092 × 10−72 1.99
4thSB (26) 5 0.5018 4.5722 × 10−106 3.99 5 1.5940 6.0381 × 10−92 3.99

4thCLND (27) 5 0.5012 4.7331 × 10−108 3.99 5 1.5894 2.7352 × 10−93 3.99
4thSJ (28) 5 0.4767 3.0351 × 10−135 3.99 5 1.5776 9.5025 × 10−95 3.99
4thYM (7) 5 0.4735 2.6396 × 10−156 3.99 5 1.5519 1.4400 × 10−102 3.99

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

2nd NR (4) 9 2.4123 1.3564 × 10−83 1.99 8 0.3056 3.2094 × 10−72 1.99
4thSB (26) Diverge 5 0.3801 2.8269 × 10−122 3.99

4thCLND (27) 14 0.0566 6.8760 × 10−134 3.99 5 0.3812 7.8638 × 10−127 3.99
4thSJ (28) Diverge 5 0.3780 1.4355 × 10−114 3.99
4thYM (7) 6 1.2887 2.3155 × 10−149 3.99 5 0.3840 1.1319 × 10−143 3.99

Table 3. Numerical results for nonlinear equations.

Methods f1(x), x0 = −0.9 f2(x), x0 = −1.6

N |x1− x0| |xN − xN−1| ρ N |x1− x0| |xN − xN−1| ρ

8thKT (29) 3 0.1151 1.6238 × 10−61 7.91 4 0.3876 7.2890 × 10−137 7.99
8thLW (30) 3 0.1151 4.5242 × 10−59 7.91 4 0.3904 1.1195 × 10−170 8.00

8thPNPD (31) 3 0.1151 8.8549 × 10−56 7.87 4 0.3734 2.3461 × 10−85 7.99
8thSA1 (32) 3 0.1151 3.4432 × 10−60 7.88 4 0.3983 8.4343 × 10−121 8.00
8thSA2 (33) 3 0.1151 6.9371 × 10−67 7.99 4 0.3927 5.9247 × 10−225 7.99

8thCFGT (34) 3 0.1151 1.1715 × 10−82 7.77 5 0.1532 2.0650 × 10−183 7.99
8thCTV (35) 3 0.1151 4.4923 × 10−61 7.94 4 0.3925 2.3865 × 10−252 7.99
8thYM (12) 3 0.1151 1.1416 × 10−70 7.96 4 0.3896 8.9301 × 10−163 8.00
16thYM (16) 3 0.1151 0 15.99 3 0.3923 3.5535 × 10−85 16.20

Table 4. Numerical results for nonlinear equations.

Methods f3(x), x0 = 0.9 f4(x), x0 = −1.9

N |x1− x0| |xN − xN−1| ρ N |x1− x0| |xN − xN−1| ρ

8thKT (29) 4 0.4659 5.0765 × 10−216 7.99 4 1.4461 5.5095 × 10−204 8.00
8thLW (30) 4 0.4660 2.7346 × 10−213 7.99 4 1.4620 3.7210 × 10−146 8.00

8thPNPD (31) 4 0.3821 9.9119 × 10−71 8.02 4 1.3858 2.0603 × 10−116 7.98
8thSA1 (32) 4 0.4492 1.5396 × 10−122 8.00 4 1.4170 2.2735 × 10−136 7.99
8thSA2 (33) 4 0.4652 4.1445 × 10−254 7.98 4 1.4339 2.5430 × 10−166 7.99

8thCFGT (34) 4 0.4654 2.4091 × 10−260 7.99 4 1.4417 4.7007 × 10−224 7.99
8thCTV (35) 4 0.4652 3.8782 × 10−288 8.00 4 1.3957 3.7790 × 10−117 7.99
8thYM (12) 4 0.4653 3.5460 × 10−309 7.99 4 1.4417 2.9317 × 10−229 7.99

16thYM (16) 3 0.4652 3.6310 × 10−154 16.13 3 1.4434 1.8489 × 10−110 16.36
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Table 5. Numerical results for nonlinear equations.

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

N |x1− x0| |xN − xN−1| ρ N |x1− x0| |xN − xN−1| ρ

8thKT (29) 5 1.8787 2.6836 × 10−182 7.99 4 0.3898 6.0701 × 10−234 7.99
8thLW (30) 6 40.5156 4.6640 × 10−161 7.99 4 0.3898 6.1410 × 10−228 7.99

8thPNPD (31) Diverge 4 0.3894 3.6051 × 10−190 7.99
8thSA1 (32) 7 891.9802 2.1076 × 10−215 9.00 4 0.3901 5.9608 × 10−245 8.00
8thSA2 (33) 4 0.7161 5.3670 × 10−128 7.99 4 0.3900 8.3398 × 10−251 8.61

8thCFGT (34) 5 2.8541 0 7.99 4 0.3900 0 7.99
8thCTV (35) 5 0.6192 1.6474 × 10−219 9.00 4 0.3901 1.0314 × 10−274 8.00
8thYM (12) 4 0.7733 1.3183 × 10−87 7.98 4 0.3900 1.2160 × 10−286 7.99

16thYM (16) 4 0.6985 0 16.10 3 0.3900 1.1066 × 10−143 15.73

5. Applications to Some Real World Problems

5.1. Projectile Motion Problem

We consider the classical projectile problem [21,22] in which a projectile is launched from a tower
of height h > 0, with initial speed v and at an angle θ with respect to the horizontal onto a hill, which
is defined by the function ω, called the impact function which is dependent on the horizontal distance,
x. We wish to find the optimal launch angle θm which maximizes the horizontal distance. In our
calculations, we neglect air resistances.

The path function y = P(x) that describes the motion of the projectile is given by

P(x) = h + x tan θ − gx2

2v2 sec2 θ (36)

When the projectile hits the hill, there is a value of x for which P(x) = ω(x) for each value of x.
We wish to find the value of θ that maximize x.

ω(x) = P(x) = h + x tan θ − gx2

2v2 sec2 θ (37)

Differentiating Equation (37) implicitly w.r.t. θ, we have

ω′(x)
dx
dθ

= x sec2 θ +
dx
dθ

tan θ − g
v2

(
x2 sec2 θ tan θ + x

dx
dθ

sec2 θ

)
(38)

Setting
dx
dθ

= 0 in Equation (38), we have

xm =
v2

g
cot θm (39)

or

θm = arctan
(

v2

g xm

)
(40)

An enveloping parabola is a path that encloses and intersects all possible paths. Henelsmith [23]
derived an enveloping parabola by maximizing the height of the projectile fora given horizontal distance
x, which will give the path that encloses all possible paths. Let w = tan θ, then Equation (36) becomes

y = P(x) = h + xw− gx2

2v2 (1 + w2) (41)



Mathematics 2019, 7, 322 12 of 22

Differentiating Equation (41) w.r.t. w and setting y′ = 0, Henelsmith obtained

y′ = x− xg2

v2 (w) = 0

w =
v2

g x

(42)

so that the enveloping parabola defined by

ym = ρ(x) = h +
v2

2g
− gx2

2v2 (43)

The solution to the projectile problem requires first finding xm which satisfies ρ(x) = ω(x) and
solving for θm in Equation (40) because we want to find the point at which the enveloping parabola
ρ intersects the impact function ω, and then find θ that corresponds to this point on the enveloping
parabola. We choose a linear impact function ω(x) = 0.4x with h = 10 and v = 20. We let g = 9.8.
Then we apply our IFs starting from x0 = 30 to solve the non-linear equation

f (x) = ρ(x)−ω(x) = h +
v2

2g
− gx2

2v2 − 0.4x

whose root is given by xm = 36.102990117..... and

θm = arctan
(

v2

g xm

)
= 48.5◦.

Figure 1 shows the intersection of the path function, the enveloping parabola and the linear impact
function for this application. The approximate solutions are calculated correct to 500 significant figures.
The stopping criterion |xN − xN−1| < ε, where ε = 10−50 is used. Table 6 shows that proposed method
16thYM is converging better than other compared methods. Also, we observe that the computational
order of convergence agrees with the theoretical order of convergence.
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Figure 1. The enveloping parabola with linear impact function.
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Table 6. Results of projectile problem.

IF N Error cpu Time(s) ρ

2ndNR 7 4.3980 × 10−76 1.074036 1.99
4thYM 4 4.3980 × 10−76 0.902015 3.99
8thKT 3 1.5610 × 10−66 0.658235 8.03
8thLW 3 7.8416 × 10−66 0.672524 8.03

8thPNPD 3 4.2702 × 10−57 0.672042 8.05
8thSA1 3 1.2092 × 10−61 0.654623 8.06
8thCTV 3 3.5871 × 10−73 0.689627 8.02
8thYM 3 4.3980 × 10−76 0.618145 8.02
16thYM 3 0 0.512152 16.01

5.2. Planck’s Radiation Law Problem

We consider the following Planck’s radiation law problem found in [24]:

ϕ(λ) =
8πchλ−5

ech/λkT − 1
, (44)

which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of
the radiation, T is the absolute temperature of the blackbody, k is Boltzmann’s constant, h is the
Planck’s constant and c is the speed of light. Suppose, we would like to determine wavelength λ which
corresponds to maximum energy density ϕ(λ). From (44), we get

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5
)
= A · B.

It can be checked that a maxima for ϕ occurs when B = 0, that is, when

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.

Here putting x = ch/λkT, the above equation becomes

1− x
5
= e−x. (45)

Define
f (x) = e−x − 1 +

x
5

. (46)

The aim is to find a root of the equation f (x) = 0. Obviously, one of the root x = 0 is not taken for
discussion. As argued in [24], the left-hand side of (45) is zero for x = 5 and e−5 ≈ 6.74× 10−3. Hence,
it is expected that another root of the equation f (x) = 0 might occur near x = 5. The approximate
root of the Equation (46) is given by x∗ ≈ 4.96511423174427630369 with x0 = 3. Consequently, the
wavelength of radiation (λ) corresponding to which the energy density is maximum is approximated as

λ ≈ ch
(kT)4.96511423174427630369

.

Table 7 shows that proposed method 16thYM is converging better than other compared methods.
Also, we observe that the computational order of convergence agrees with the theoretical order
of convergence.
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Table 7. Results of Planck’s radiation law problem.

IF N Error cpu Time(s) ρ

2ndNR 7 1.8205 × 10−70 0.991020 2.00
4thYM 5 1.4688 × 10−181 0.842220 4.00
8thKT 4 4.0810 × 10−288 0.808787 7.99
8thLW 4 3.1188 × 10−268 0.801304 7.99

8thPNPD 4 8.0615 × 10−260 0.800895 7.99
8thSA1 4 1.9335 × 10−298 0.791706 8.00
8thCTV 4 5.8673 × 10−282 0.831006 8.00
8thYM 4 2.5197 × 10−322 0.855137 8.00

16thYM 3 8.3176 × 10−153 0.828053 16.52

Hereafter, we will study the optimal fourth and eighth order methods along with Newton’s method.

6. Corresponding Conjugacy Maps for Quadratic Polynomials

In this section, we discuss the rational map Rp arising from 2ndNR, proposed methods 4thYM
and 8thYM applied to a generic polynomial with simple roots.

Theorem 3. (2ndNR) [18] For a rational map Rp(z) arising from Newton’s method (4) applied to p(z) =

(z− a)(z− b), a 6= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z2.

Theorem 4. (4thYM) For a rational map Rp(z) arising from Proposed Method (7) applied to p(z) = (z−
a)(z− b), a 6= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z4.

Proof. Let p(z) = (z − a)(z − b), a 6= b, and let M be Möbius transformation given by M(z) =

(z− a)/(z− b) with its inverse M−1(z) = (zb−a)
(z−1) , which may be considered as map from C ∪ {∞}.

We then have
S(z) = M ◦ Rp ◦M−1(z) = M

(
Rp

( zb− a
z− 1

))
= z4.

Theorem 5. (8thYM) For a rational map Rp(z) arising from Proposed Method (12) applied to p(z) = (z−
a)(z− b), a 6= b, Rp(z) is conjugate via the a Möbius transformation given by M(z) = (z− a)/(z− b) to

S(z) = z8.

Proof. Let p(z) = (z − a)(z − b), a 6= b, and let M be Möbius transformation given by M(z) =

(z− a)/(z− b) with its inverse M−1(z) = (zb−a)
(z−1) , which may be considered as map from C ∪ {∞}.

We then have
S(z) = M ◦ Rp ◦M−1(z) = M

(
Rp

( zb− a
z− 1

))
= z8.

Remark 1. The methods (29)–(35) are given without proof, which can be worked out with the help of Mathematica.

Remark 2. All the maps obtained above are of the form S(z) = zpR(z), where R(z) is either unity or a rational
function and p is the order of the method.



Mathematics 2019, 7, 322 15 of 22

7. Basins of Attraction

The study of dynamical behavior of the rational function associated to an iterative method gives
important information about convergence and stability of the method. The basic definitions and
dynamical concepts of rational function which can found in [4,25].

We take a square R×R = [−2, 2]× [−2, 2] of 256× 256 points and we apply our iterative methods
starting in every z(0) in the square. If the sequence generated by the iterative method attempts a zero
z∗j of the polynomial with a tolerance | f (z(k))| < ×10−4 and a maximum of 100 iterations, we decide

that z(0) is in the basin of attraction of this zero. If the iterative method starting in z(0) reaches a zero in
N iterations (N ≤ 100), then we mark this point z(0) with colors if |z(N) − z∗j | < ×10−4. If N > 50, we
conclude that the starting point has diverged and we assign a dark blue color. Let ND be a number
of diverging points and we count the number of starting points which converge in 1, 2, 3, 4, 5 or
above 5 iterations. In the following, we describe the basins of attraction for Newton’s method and
some higher order Newton type methods for finding complex roots of polynomials p1(z) = z2 − 1,
p2(z) = z3 − 1 and p3(z) = z5 − 1.
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Figure 2. Basins of attraction for 2nd NR for the polynomial p1(z), p2(z), p3(z).

Figures 2 and 3 shows the polynomiographs of the methods for the polynomial p1(z). We can
see that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB,
4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and 8thCTV are shows some chaotic behavior near the
boundary points. The method 4thCLND have sensitive to the choice of initial guess in this case.

Figures 2 and 4 shows the polynomiographs of the methods for the polynomial p2(z). We can see
that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB, 8thKT,
8thLW and 8thCTV are shows some chaotic behavior near the boundary points. The methods 4thCLND,
4thSJ, 8thPNPD, 8thSA1, and 8thCFGT have sensitive to the choice of initial guess in this case.

Figures 2 and 5 shows the polynomiographs of the methods for the polynomial p3(z). We can
see that the methods 4thYM, 8thSA2 and 8thYM are shows some chaotic behavior near the boundary
points. The methods 2ndNR, 4thSB, 4thCLND, 4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and
8thCTV have sensitive to the choice of initial guess in this case. In Tables 8–10, we classify the number
of converging and diverging grid points for each iterative method.
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Figure 3. Basins of attraction for p1(z) = z2 − 1.
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Figure 5. Basins of attraction for p3(z) = z5 − 1.
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Table 8. Results of the polynomials p1(z) = z2 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 4 516 7828 23,272 20,548 13,368 0
4thSB 340 22,784 29,056 6836 2928 3592 0

4thCLND 372 24,600 29,140 6512 2224 2688 1076
4thSJ 300 19,816 28,008 5844 2968 8600 0

4thYM 520 31,100 27,520 4828 1208 360 0
8thKT 4684 44,528 9840 3820 1408 1256 24
8thLW 4452 43,236 11,408 3520 1540 1380 0

8thPNPD 2732 39,768 13,112 3480 1568 4876 16
8thSA1 4328 45,824 8136 2564 1484 3200 0
8thSA2 15,680 45,784 3696 376 0 0 0

8thCFGT 9616 43,716 7744 2916 980 564 64
8thCTV 7124 48,232 7464 1892 632 192 0
8thYM 8348 50,792 5572 824 0 0 0

Table 9. Results of the polynomials p2(z) = z3 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 0 224 2908 11,302 19,170 31,932 0
4thSB 160 9816 27,438 9346 5452 13,324 6

4thCLND 170 11,242 28,610 9984 4202 11,328 7176
4thSJ 138 7760 25,092 8260 5058 19,228 1576

4thYM 270 18,064 30,374 9862 3688 3278 0
8thKT 2066 34,248 11,752 6130 4478 6862 0
8thLW 2092 33,968 12,180 4830 3030 9436 0

8thPNPD 1106 25,712 11,258 3854 1906 21,700 10,452
8thSA1 1608 36,488 12,486 3718 1780 9456 872
8thSA2 6432 46,850 9120 2230 640 264 0

8thCFGT 3688 40,740 13,696 4278 1390 1744 7395
8thCTV 3530 43,554 11,724 3220 1412 2096 0
8thYM 3816 43,596 12,464 3636 1302 722 0

Table 10. Results of the polynomials p3(z) = z5 − 1.

IF N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 ND

2ndNR 2 100 1222 4106 7918 52,188 638
4thSB 76 3850 15,458 18,026 5532 22,594 5324

4thCLND 86 4476 18,150 17,774 5434 19,616 12,208
4thSJ 62 3094 11,716 16,840 5682 28,142 19,900

4thYM 142 7956 27,428 15,850 5726 8434 0
8thKT 950 17,884 20,892 5675 4024 16,111 217
8thLW 1032 18,764 20,622 5056 3446 16,616 1684

8thPNPD 496 12,770 21,472 6576 2434 21,788 14,236
8thSA1 692 26,212 15,024 4060 1834 17,714 8814
8thSA2 2662 41,400 12,914 4364 1892 2304 0

8thCFGT 2008 21,194 23,734 6180 3958 8462 1953
8thCTV 1802 36,630 13,222 4112 2096 7674 350
8thYM 1736 27,808 21,136 5804 2704 6348 0

We note that a point z0 belongs to the Julia set if and only if the dynamics in a neighborhood of
z0 displays sensitive dependence on the initial conditions, so that nearby initial conditions lead to
wildly different behavior after a number of iterations. For this reason, some of the methods are getting
divergent points. The common boundaries of these basins of attraction constitute the Julia set of the
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iteration function. It is clear that one has to use quantitative measures to distinguish between the
methods, since we have a different conclusion when just viewing the basins of attraction.

In order to summarize the results, we have compared mean number of iteration and total number
of functional evaluations (TNFE) for each polynomials and each methods in Table 11. The best method
based on the comparison in Table 11 is 8thSA2. The method with the fewest number of functional
evaluations per point is 8thSA2 followed closely by 4thYM. The fastest method is 8thSA2 followed
closely by 8thYM. The method with highest number of functional evaluation and slowest method
is 8thPNPD.

Table 11. Mean number of iteration (Nµ) and TNFE for each polynomials and each methods.

IF Nµ f or p1(z) Nµ f or p2(z) Nµ f or p3(z) Average TNFE

2ndNR 4.7767 6.4317 9.8531 7.0205 14.0410
4thSB 3.0701 4.5733 9.2701 5.6378 16.9135

4thCLND 3.6644 8.6354 12.8612 8.3870 25.1610
4thSJ 3.7002 7.0909 14.5650 8.4520 25.3561

4thYM 2.6366 3.1733 4.0183 3.2760 9.8282
8thKT 2.3647 3.1270 4.4501 3.3139 13.2557
8thLW 2.3879 3.5209 6.3296 4.0794 16.3178

8thPNPD 2.9959 10.5024 12.3360 8.6114 34.4457
8thSA1 2.5097 4.5787 9.7899 5.6262 22.5044
8thSA2 1.8286 2.1559 2.5732 2.1859 8.7436

8thCFGT 2.1683 2.8029 3.4959 2.8223 11.2894
8thCTV 2.1047 2.4708 3.9573 2.8442 11.3770
8thYM 1.9828 2.3532 3.3617 2.5659 10.2636

8. Concluding Remarks and Future Work

In this work, we have developed optimal fourth, eighth and sixteenth order iterative methods
for solving nonlinear equations using the divided difference approximation. The methods require
the computations of three functions evaluations reaching order of convergence is four, four functions
evaluations reaching order of convergence is eight and five functions evaluations reaching order of
convergence is sixteen. In the sense of convergence analysis and numerical examples, the Kung-Traub’s
conjecture is satisfied. We have tested some examples using the proposed schemes and some known
schemes, which illustrate the superiority of the proposed method 16thYM. Also, proposed methods
and some existing methods have been applied on the Projectile motion problem and Planck’s radiation
law problem. The results obtained are interesting and encouraging for the new method 16thYM.
The numerical experiments suggests that the new methods would be valuable alternative for solving
nonlinear equations. Finally, we have also compared the basins of attraction of various fourth and
eighth order methods in the complex plane.

Future work includes:

• Now we are investigating the proposed scheme to develop optimal methods of arbitrarily high
order with Newton’s method, as in [26].

• Also, we are investigating to develop derivative free methods to study dynamical behavior and
local convergence, as in [27,28].
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