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Abstract: In the classical connection problem, it is dealt with determining the coefficients in the
expansion of the product of two polynomials with regard to any given sequence of polynomials.
As a generalization of this problem, we will consider sums of finite products of Fubini polynomials
and represent these in terms of orthogonal polynomials. Here, the involved orthogonal polynomials
are Chebyshev polynomials of the first, second, third and fourth kinds, and Hermite, extended
Laguerre, Legendre, Gegenbauer, and Jabcobi polynomials. These representations are obtained by
explicit computations.

Keywords: fubini polynomials; orthogonal polynomials; Chebyshev polynomials; Hermite
polynomials; extended laguerre polynomials; Legendre polynomials; Gegenbauer polynomials;
Jabcobi polynomials

1. Introduction and Preliminaries

In this section, after fixing some notations, we will state the necessary basic facts on orthogonal
polynomials as minimum as possible. For more details on the fascinating realm of orthogonal
polynomials, the readers may refer to some standard books on those subjects, for example [1,2].

The falling factorial polynomials (x)n and the rising factorial polynomials 〈x〉n for any
nonnegative integer n, are given by

(x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1) (1)

and
〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n− 1), (n ≥ 1), (2)

respectively. The two factorial polynomials in (1) and (2) satisfy the following relations:

(−1)n(x)n = 〈−x〉n , (−1)n 〈x〉n = (−x)n, (n ≥ 0), (3)

Γ(x + n)
Γ(x)

= 〈x〉n ,
Γ(x + 1)

Γ(x + 1− n)
= (x)n, (n ≥ 0), (4)

where Γ(x) is the gamma function. Also, the hypergeometric function pFq is defined by

pFq(a1, · · · , ap; b1, · · · , bq; x) =
∞

∑
n=0

〈a1〉n · · ·
〈

ap
〉

n
〈b1〉n · · ·

〈
bq
〉

n

xn

n!
. (5)
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Next, we will provide some basic facts about Chebyshev polynomials of the first kind Tn(x),
second kind Un(x), third kind Vn(x), and fourth kind Wn(x). Further, we refer to those facts about
Hermite polynomials Hn(x), extended Laguerre polynomials Lα

n(x), Legendre polynomials Pn(x),
Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x). All of these facts can be found

also in [3–9].
The above-mentioned polynomials are explicitly given as in the following:

Tn(x) = 2F1(−n, n;
1
2

;
1− x

2
) (6)

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
(2x)n−2l , (n ≥ 1),

Un(x) = (n + 1)2F1(−n, n + 2;
3
2

;
1− x

2
) (7)

=
[ n

2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (n ≥ 0),

Vn(x) = 2F1(−n, n + 1;
1
2

;
1− x

2
) (8)

=
n

∑
l=0

(
2n− l

l

)
2n−l(x− 1)n−l , (n ≥ 0),

Wn(x) = (2n + 1)2F1(−n, n + 1;
3
2

;
1− x

2
) (9)

= (2n + 1)
n

∑
l=0

2n−l

2n− 2l + 1

(
2n− l

l

)
(x− 1)n−l , (n ≥ 0),

Hn(x) = n!
[ n

2 ]

∑
l=0

(−1)l

l!(n− 2l)!
(2x)n−2l , (n ≥ 0), (10)

L(α)
n (x) =

〈α + 1〉n
n! 1F1(−n; α + 1; x) (11)

=
n

∑
l=0

(−1)l(n+α
n−l )

l!
xl , (α > −1, n ≥ 0),

Pn(x) = 2F1(−n, n + 1; 1;
1− x

2
) (12)

=
1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n− 2l

n

)
xn−2l , (n ≥ 0),

C(λ)
n (x) =

(
n + 2λ− 1

n

)
2F1(−n, n + 2λ; λ +

1
2

;
1− x

2
) (13)

=
[ n

2 ]

∑
k=0

(−1)k Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k, (λ > −1

2
, λ 6= 0, n ≥ 0),

P(α,β)
n (x) =

〈α + 1〉n
n! 2F1(−n, 1 + α + β + n; α + 1;

1− x
2

) (14)

=
n

∑
k=0

(
n + α

n− k

)(
n + β

k

)(
x− 1

2

)k ( x + 1
2

)n−k
, (α, β > −1, n ≥ 0).

We recall here Rodrigues-type formulas for Hermite and extended Laguerre polynomials,
and Rodrigues’ formulas for Chebyshev polynomials of all kinds and Legendre, Gegenbauer and
Jacobi polynomials.
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Tn(x) =
(−1)n2nn!

(2n)!
(1− x2)

1
2

dn

dxn (1− x2)n− 1
2 , (15)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1− x2)−

1
2

dn

dxn (1− x2)n+ 1
2 , (16)

(1− x)−
1
2 (1 + x)

1
2 Vn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n− 1
2 (1 + x)n+ 1

2 , (17)

(1− x)
1
2 (1 + x)−

1
2 Wn(x) =

(−1)n2nn!
(2n)!

dn

dxn (1− x)n+ 1
2 (1 + x)n− 1

2 , (18)

Hn(x) = (−1)nex2 dn

dxn e−x2
, (19)

Lα
n(x) =

1
n!

x−αex dn

dxn (e
−xxn+α), (20)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, (21)

(1− x2)λ− 1
2 C(λ)

n (x) =
(−2)n

n!
〈λ〉n

〈n + 2λ〉n
dn

dxn (1− x2)n+λ− 1
2 , (22)

(1− x)α(1 + x)βP(α,β)
n (x) =

(−1)n

2nn!
dn

dxn (1− x)n+α(1 + x)n+β. (23)

As is well known, the orthogonal polynomials in (6)–(14) satisfy the following orthogonalities
with respect to various weight functions:

∫ 1

−1
(1− x2)−

1
2 Tn(x)Tm(x)dx =

π

εn
δn,m, (24)

where

εn =

{
1, if n = 0,

2, if n ≥ 1,
δn,m =

{
0, if n 6= m,

1, if n = m.
(25)

∫ 1

−1
(1− x2)

1
2 Un(x)Um(x)dx =

π

2
δn,m, (26)

∫ 1

−1

(
1 + x
1− x

) 1
2

Vn(x)Vm(x)dx = πδn,m, (27)

∫ 1

−1

(
1− x
1 + x

) 1
2

Wn(x)Wm(x)dx = πδn,m, (28)∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 2nn!
√

πδn,m, (29)∫ ∞

0
xαe−xLα

n(x)Lα
m(x)dx =

1
n!

Γ(α + n + 1)δn,m, (30)∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δn,m, (31)∫ 1

−1
(1− x2)λ− 1

2 C(λ)
n (x)C(λ)

m (x)dx =
π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δn,m, (32)

∫ 1

−1
(1− x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x)dx

=
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)
δn,m. (33)
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The Fubini polynomials Fn(y) are given (see, [10–13]), in terms of generating function, by

G(t, y) =
1

1− y(et − 1)
=

∞

∑
n=0

Fn(y)
tn

n!
, (34)

Then, from (34), it is easy to see that

Fn(y) =
n

∑
l=0

S2(n, l)l!yl , (35)

where S2(n, l) are the Stirling numbers of the second kind (see, [10–13]).
Note here that En = Fn(− 1

2 ) are the Euler numbers given by

2
et + 1

=
∞

∑
n=0

En
tn

n!
.

In this paper, we are going to investigate the following sums of products of Frobenious
polynomials and express them as linear combinations of nine orthogonal polynomials in (6)–(14)
(see Theorem 1):

αm,r(y) = ∑
i1+···+ir+1=m

(
m

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y), (m, n ≥ 0), (36)

where the summation runs over all nonnegative integers i1, · · · , ir+1 with i1 + · · · ir+1 = m, and we note
that αm,r(y) is a polynomial of degree m. Furthermore, we will represent (36) as linear combinations
of Frobenius polynomials themselves (see Theorem 2) by using the well known inverse relations
between signed Stirling numbers of the first kind and Stirling numbers of the second kind. We note
here that Zhao and Chen [13] expressed (y + 1)rαm,r(y) (see (77)) as linear combinations of Frobenius
polynomials, which was obtained by repeatedly differentiating the generating function of Frobenius
polynomials in (34). Moreover, they were able to determine the coefficients C (r, i) appearing in (77)
only recursively, not explicitly. These were determined explicitly by the above mentioned inverse
relations between the two kinds of Stirling numbers.

We observe here that by taking (r + 1)th power of the equation in (34), the sum of products in (36)
is explicitly given by

αm,r(y) =
m

∑
l=0

(r + l)lS2(m, l)yl , (37)

where (x)n are the falling factorial sequence defined in (1) (see [14,15]).
Before we close this section, we would like to recall some of the previous results related to the

present work. In the same way as in this study, some sums of finite products of Chebyshev polynomials
of the first, second, third and fourth kinds, and those of Legendre, Laguerre, Lucas and Fibonacci
polynomials are expressed in terms of Chebyshev polynomials of all kinds (see [4,16–19]) and also in
terms of Hermite, extended Laguerre, Legendre, Gegenbauer and Jacobi polynomials (see [20–23]).

In addition, those sums of finite products of all such polynomials can be expressed as linear
combinations of Bernoulli polynomials. Indeed, all of these are obtained by deriving Fourier series
expansions for the functions intimately related to such sums of finite products. For these, we let the
reader refer to the papers [24,25] and the references therein.

2. Proof of Theorem 1

The following theorem is our main result and obtained by explicit computations.
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Theorem 1. Let m, r be nonnegative integers. Then we have the following identities:

∑
i1+···+ir+1=m

(
m

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y)

=
1
r!

m

∑
k=0

εk

2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4s(s + k)!s!

S2(m, k + 2s)Tk(y) (38)

=
1
r!

m

∑
k=0

(k + 1)
2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4s(s + k + 1)!s!

S2(m, k + 2s)Uk(y) (39)

=
1
r!

m

∑
k=0

1
2k

m−k

∑
s=0

(r + k + s)!(k + s)!
2s(k + [ s

2 ])![
s
2 ]!

S2(m, k + s)Vk(y) (40)

=
1
r!

m

∑
k=0

1
2k

m−k

∑
s=0

(−1)s(r + k + s)!(k + s)!
2s(k + [ s

2 ])![
s
2 ]!

S2(m, k + s)Wk(y) (41)

=
1
r!

m

∑
k=0

1
2kk!

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4ss!

S2(m, k + 2s)Hk(y) (42)

=
1
r!

m

∑
k=0

(−1)k

Γ(α + k + 1)

m

∑
l=k

(r + l)!l!Γ(l + α + 1)
(l − k)!

S2(m, l)Lα
k (y) (43)

=
1
r!

m

∑
k=0

2k+1(2k + 1)
[ m−k

2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!(k + s + 1)!
s!(2k + 2s + 2)!

S2(m, k + 2s)Pk(y) (44)

=
Γ(λ)

r!

m

∑
k=0

(k + λ)

2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4ss!Γ(s + k + λ + 1)

S2(m, k + 2s)C(λ)
k (y) (45)

=
1
r!

m

∑
k=0

(−2)kΓ(k + α + β + 1)
Γ(2k + α + β + 1)

m

∑
l=k

(−1)l(r + l)!l!
(l − k)!

(46)

× S2(m, l)2F1(k− l, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (y).

Here we are going to show Theorem 1 by using Propositions 1 and 2 which are stated in below.

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then the following hold true.

(a)

q(x) =
n

∑
k=0

Ck,1Tk(x), where

Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k− 1
2 dx,

(b)

q(x) =
n

∑
k=0

Ck,2Uk(x), where

Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k+ 1
2 dx,

(c)

q(x) =
n

∑
k=0

Ck,3Vk(x), where

Ck,3 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k− 1
2 (1 + x)k+ 1

2 dx,
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(d)

q(x) =
n

∑
k=0

Ck,4Wk(x), where

Ck,4 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k+ 1
2 (1 + x)k− 1

2 dx,

(e)

q(x) =
n

∑
k=0

Ck,5Hk(x), where

Ck,5 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx,

(f)

q(x) =
n

∑
k=0

Ck,6Lα
k (x), where

Ck,6 =
1

Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α)dx,

(g)

q(x) =
n

∑
k=0

Ck,7Pk(x), where

Ck,7 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx,

(h)

q(x) =
n

∑
k=0

Ck,8C(λ)
k (x), where

Ck,8 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1− x2)k+λ− 1
2 dx,

(i)

q(x) =
n

∑
k=0

Ck,9P(α,β)
k (x), where

Ck,9 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

∫ 1

−1
q(x)

dk

dxk (1− x)k+α(1 + x)k+βdx.

We note that the formulas (a), (b), (c), (d), (e), (f), (g), (h) and (i) of Proposition 1 are respectively
from (24) of [4], (30) of [4], (23) of [3], (38) of [3], (3.7) of [6], (2.3) of [8], (2.3) of [7], (2.3) of [5] and (2.7)
of [9]. In fact, all the facts can be derived from the orthogonalities in (24), (26)–(33), Rodrigues’ and
Rodrigues-type formulas in (15)–(23), and integration by parts.

Equations (a)–(d) and (e)–(h) of the next proposition are stated and proved respectively in [23,26].

Proposition 2. Let m and k be any nonnegative integers. Then we have the following:

(a) ∫ 1

−1
(1− x2)k− 1

2 xmdx =


0, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 + k)!(m
2 )!k!

, if m ≡ 0 (mod 2),
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(b) ∫ 1

−1
(1− x2)k+ 1

2 xmdx =


0, if m ≡ 1 (mod 2),

m!(2k + 2)!π
2m+2k+2(m

2 + k + 1)!(m
2 )!(k + 1)!

, if m ≡ 0 (mod 2),

(c)

∫ 1

−1
(1− x)k− 1

2 (1 + x)k+ 1
2 xmdx =


(m + 1)!(2k)!π

2m+2k+1(m+1
2 + k)!(m+1

2 )!k!
, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 + k)!(m
2 )!k!

, if m ≡ 0 (mod 2),

(d)

∫ 1

−1
(1− x)k+ 1

2 (1 + x)k− 1
2 xmdx =


− (m + 1)!(2k)!π

2m+2k+1(m+1
2 + k)!(m+1

2 )!k!
, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 + k)!(m
2 )!k!

, if m ≡ 0 (mod 2),

(e) ∫ ∞

−∞
xme−x2

dx =


0, if m ≡ 1 (mod 2),
m!
√

π

(m
2 )!2

m , if m ≡ 0 (mod 2),

(f) ∫ ∞

−∞
xm(1− x2)kdx =


0, if m ≡ 1 (mod 2),
22k+2k!m!(k + m

2 + 1)!
(m

2 )!(2k + m + 2)!
, if m ≡ 0 (mod 2),

(g) ∫ 1

−1
xm(1− x2)k+λ− 1

2 dx =


0, if m ≡ 1 (mod 2),
Γ(k + λ + 1

2 )Γ(
m
2 + 1

2 )

Γ(k + λ + m
2 + 1)

, if m ≡ 0 (mod 2),

(h)

∫ 1

−1
xm(1− x)k+α(1 + x)k+βdx =22k+α+β+1

m

∑
s=0

(
m
s

)
(−1)m−s2s

× Γ(k + α + 1)Γ(k + β + s + 1)
Γ(2k + α + β + s + 2)

.

Now, we will show (38), (40), (43), (45) and (46) in Theorem 1, while leaving the proofs of (39),
(41), (42) and (44) to the reader.

With αm,r(y) as in (36), let us put

αm,r(y) =
m

∑
k=0

Ck,1Tk(y). (47)
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Then, by invoking (a) of Proposition 1, (a) of Proposition 2, (37), and by performing integration
by parts k times, we have

Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
αm,r(y)

dk

dyk (1− y2)k− 1
2 dy

=
(−1)k2kk!εk

(2k)!π

m

∑
l=0

(r + l)lS2(m, l)
∫ 1

−1
yl dk

dyk (1− y2)k− 1
2 dy

=
(−1)k2kk!εk

(2k)!π

m

∑
l=k

(r + l)lS2(m, l)(−1)k(l)k

∫ 1

−1
yl−k(1− y2)k− 1

2 dy,

(48)

where

∫ 1

−1
yl−k(1− y2)k− 1

2 dy =


0, if l 6≡ k (mod 2),
(l − k)!(2k)!π

2l+k( l+k
2 )!( l−k

2 )!k!
, if l ≡ k (mod 2).

(49)

From (48), (49), replacing l by k + 2s, and using (x + r)r =
(x+r)!

x! , (r ∈ Z≥0), we obtain

Ck,1 =
(−1)k2kk!εk

(2k)!π ∑
k≤l≤m

l≡k (mod 2)

(r + l)lS2(m, l)(−1)k(l)k
(l − k)!(2k)!π

2l+k( l+k
2 )!( l−k

2 )!k!

=
(−1)k2kk!εk

(2k)!π

[ m−k
2 ]

∑
s=0

(r + k + 2s)k+2sS2(m, k + 2s)(−1)k(k + 2s)k
(2s)!(2k)!π

22s+2k(s + k)!s!k!

=
εk

r!2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4s(s + k)!s!

S2(m, k + 2s).

(50)

Thus, we have shown that

αm,r(y) =
1
r!

m

∑
k=0

εk

2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4s(s + k)!s!

S2(m, k + 2s)Tk(y).

This verifies (38) in Theorem 1.
Next, we let

αm,r(y) =
m

∑
k=0

Ck,3Vk(y). (51)

Then, by making use of (c) in Proposition 1, (c) in Proposition 2, (37), and integration by parts k
times, we get

Ck,3 =
(−1)kk!2k

(2k)!π

m

∑
l=k

(r + l)lS2(m, l)(−1)k(l)k

∫ 1

−1
yl−k(1− y)k− 1

2 (1 + y)k+ 1
2 dy, (52)

where ∫ 1

−1
yl−k(1− y)k− 1

2 (1 + y)k+ 1
2 dy =


(l−k+1)!(2k)!π

2l+k+1( l+k+1
2 )!( l−k+1

2 )!k!
, if l 6≡ k (mod 2),

(l−k)!(2k)!π
2l+k( l+k

2 )!( l−k
2 )!k!

, if l ≡ k (mod 2).
(53)
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To proceed further, we observe the following:

(−1)kk!2k

(2k)!π ∑
k≤l≤m

l 6≡k (mod 2)

(r + l)lS2(m, l)(−1)k(l)k
(l − k + 1)!(2k)!π

2l+k+1( l+k+1
2 )!( l−k+1

2 )!k!

=
(−1)kk!2k

(2k)!π

[ m−k−1
2 ]

∑
s=0

(r + k + 2s + 1)k+2s+1S2(m, k + 2s + 1)(−1)k(k + 2s + 1)k

× (2s + 2)!(2k)!π
22s+2k+2(s + k + 1)!(s + 1)!k!

=
1

r!2k

[ m−k−1
2 ]

∑
s=0

(r + k + 2s + 1)!(k + 2s + 1)!
22s+1(s + k + 1)!s!

S2(m, k + 2s + 1);

(54)

(−1)kk!2k

(2k)!π ∑
k≤l≤m

l≡m (mod 2)

(r + l)lS2(m, l)(−1)k(l)k
(l − k)!(2k)!π

2l+k( l+k
2 )!( l−k

2 )!k!

=
(−1)kk!2k

(2k)!π

[ m−k
2 ]

∑
s=0

(r + k + 2s)k+2sS2(m, k + 2s)(−1)k(k + 2s)k
(2s)!(2k)!π

22k+2s(k + s)!s!k!

=
1

r!2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
22s(k + s)!s!

S2(m, k + 2s).

(55)

Combining (51)–(55), we finally get

αm,r(y) =
1
r!

m

∑
k=0

1
2k

m−k

∑
s=0

(r + k + s)!(k + s)!
2s(k + [ s

2 ])![
s
2 ]!

S2(m, k + s)Vk(y).

This completes the proof for (40) in Theorem 1.
Next, let us put

αm,r(y) =
m

∑
k=0

Ck,6Lα
k (y). (56)

Then, by (f) of Proposition 1, (37) and integration by parts k times, we have

Ck,6 =
1

Γ(α + k + 1)

m

∑
l=0

(r + l)lS2(m, l)
∫ ∞

0
yl dk

dyk (e
−yyk+α)dy

=
1

Γ(α + k + 1)

m

∑
l=k

(r + l)lS2(m, l)(−1)k(l)k

∫ ∞

0
e−yyl+αdy

=
(−1)k

r!Γ(α + k + 1)

m

∑
l=k

(r + l)!l!Γ(l + α + 1)
(l − k)!

S2(m, l).

(57)

Thus, we have shown that

αm,r(y) =
1
r!

m

∑
k=0

(−1)k

Γ(α + k + 1)

m

∑
l=k

(r + l)!l!Γ(l + α + 1)
(l − k)!

S2(m, l)Lα
k (y).

This verifies (43) in Theorem 1. Next, we let

αm,r(y) =
m

∑
k=0

Ck,8C(λ)
k (y). (58)
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Then, from (h) of Proposition 1, (g) of Proposition 2, (37) and by integration by parts k times,
we obtain

Ck,8 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

m

∑
l=k

(r + l)lS2(m, l)(−1)k(l)k

∫ 1

−1
yl−k(1− y2)k+λ− 1

2 dy, (59)

where ∫ 1

−1
yl−k(1− y2)k+λ− 1

2 dy =

0, if l 6≡ k (mod 2),
Γ(k+λ+ 1

2 )Γ(
l−k

2 + 1
2 )

Γ( l+k
2 +λ+1)

, if l ≡ k (mod 2).
(60)

From (59), (60) and after some simplifications, we get

Ck,8 =
(k + λ)Γ(λ)

2k
√

π
∑

k≤l≤m
l≡k (mod 2)

(r + l)lS2(m, l)(l)k
Γ( l−k+1

2 )

Γ( l+k
2 + λ + 1)

=
(k + λ)Γ(λ)

2k
√

π

[ m−k
2 ]

∑
s=0

(r + k + 2s)k+2sS2(m, k + 2s)(k + 2s)k
Γ(s + 1

2 )

Γ(k + s + λ + 1)

=
(k + λ)Γ(λ)

r!2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4ss!Γ(k + s + λ + 1)

S2(m, k + 2s).

(61)

Thus, we have shown that

αm,r(y) =
Γ(λ)

r!

m

∑
k=0

(k + λ)

2k

[ m−k
2 ]

∑
s=0

(r + k + 2s)!(k + 2s)!
4ss!Γ(k + s + λ + 1)

S2(m, k + 2s)C(λ)
k (y).

This proves (45) in Theorem 1.
Finally, let us put

αm,r(y) =
m

∑
k=0

Ck,9P(α,β)
k (y). (62)

Then, by (i) of Proposition 1, (h) of Proposition 2, (37) and integration by parts k times, we have

Ck,9 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
m

∑
l=k

(r + l)lS2(m, l)(−1)k(l)k

∫ 1

−1
yl−k(1− y)k+α(1 + y)k+βdy,

(63)

where ∫ 1

−1
yl−k(1− y)k+α(1 + y)k+βdy =22k+α+β+1

l−k

∑
s=0

(
l − k

s

)
(−1)l−k−s2s

× Γ(k + α + 1)Γ(k + β + s + 1)
Γ(2k + α + β + s + 2)

.

(64)
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From (63) and (64), and after some simplifications,

Ck,9 =
(2k + α + β + 1)(−2)kΓ(k + α + β + 1)

r!Γ(k + β + 1)

×
m

∑
l=k

(r + l)!l!(−1)lS2(m, l)
l−k

∑
s=0

(−2)sΓ(k + β + s + 1)
s!(l − k− s)!Γ(2k + α + β + s + 2)

=
(−2)kΓ(k + α + β + 1)

r!Γ(2k + α + β + 1)

m

∑
l=k

(r + l)!l!(−1)lS2(m, l)
(l − k)!

l−k

∑
s=0

2s 〈k− l〉s 〈k + β + 1〉s
s! 〈2k + α + β + 2〉s

=
(−2)kΓ(k + α + β + 1)

r!Γ(2k + α + β + 1)

m

∑
l=k

(r + l)!l!(−1)lS2(m, l)
(l − k)! 2F1(k− l, k + β + 1; 2k + α + β + 2; 2).

(65)

Therefore, we have shown that

αm,r(y) =
1
r!

m

∑
k=0

(−2)kΓ(k + α + β + 1)
Γ(2k + α + β + 1)

×
m

∑
l=k

(r + l)!l!(−1)lS2(m, l)2F1(k− l, k + β + 1; 2k + α + β + 2; 2)
(l − k)!

P(α,β)
k (y).

This completes the proof for (46) in Theorem 1.

Example 1. Here we will illustrate Theorem 1 in the case that r = 1, m = 2. We first recall the following
values of the Stirling numbers of the second kind:

S2(0, 0) = 1, S2(1, 0) = 0, S2(1, 1) = 1, S2(2, 0) = 0, S2(2, 1) = 1, S2(2, 2) = 1.

Then, from (37), we observe that

F0(y) = 1, F1(y) = y, F2(y) = y + 2y2.

Also, from (6), (10) and (12) we see that Chebyshev polynomials of the second kind, Hermite polynomials
and Legendre polynomials with degrees ≤ 2 are given by:

T0(y) = 1, T1(y) = y, T2(y) = 2y2 − 1, H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2,

P0(y) = 1, P1(y) = y, P2(y) =
1
2
(3y2 − 1).

For r = 1, m = 2, we have

α2,1(y) = ∑
i1+i2=2

(
2

i1, i2

)
Fi1(y)Fi2(y)

= F2(y)F0(y) + 2F1(y)F1(y) + F0(y)F2(y)

= 2y + 6y2.

From (38), (42) and (44), we have

α2,1(y) =
2

∑
k=0

εk

2k

[ 2−k
2 ]

∑
s=0

(1 + k + 2s)!(k + 2s)!
4s(s + k)!s!

S2(2, k + 2s)Tk(y)

= S2(2, 0)T0(y) + 3S2(2, 2)T0(y) + 2S2(2, 1)T1(y) + 3S2(2, 2)T2(y)

= 2y + 6y2,
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α2,1(y) =
2

∑
k=0

1
2kk!

[ 2−k
2 ]

∑
s=0

(1 + k + 2s)!(k + 2s)!
4ss!

S2(2, k + 2s)Hk(y)

= S2(2, 0)H0(y) + 3S2(2, 2)H0(y) + S2(2, 1)H1(y) +
3
2

S2(2, 2)H2(y)

= 2y + 6y2,

α2,1(y) =
2

∑
k=0

2k+1(2k + 1)
[ 2−k

2 ]

∑
s=0

(1 + k + 2s)!(k + 2s)!(k + s + 1)!
s!(2k + 2s + 2)!

S2(2, k + 2s)Pk(y)

= S2(2, 0)P0(y) + 2S2(2, 2)P0(y) + 2S2(2, 1)P1(y) + 4S2(2, 2)P2(y)

= 2y + 6y2.

3. Further Remarks

Recall here that for any positive integer r, the Bernoulli numbers B(r)
n of order r are given by(

t
et − 1

)r
=

∞

∑
n=0

B(r)
n

tn

n!
. (66)

The first identity (67) in the next proposition was noted earlier (see (36), (37)). Here we show the
second identity (68).

Proposition 3. Let n, r be any nonnegative integers. Then we have

∑
i1+···+ßr+1=n

(
n

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y) =

n

∑
k=0

(r + k)kS2(n, k)yk (67)

=

(
1
r!

)2 n

∑
m=0

(n
m)

(m+r
r )

B(r)
n−mF(r)

m+r(y). (68)

Proof. By taking the rth derivative ∂r

∂yr on (34), we obtain

r!(et − 1)r(1− y(et − 1))−(r+1) =
∞

∑
m=0

F(r)
m+r(y)

tm+r

(m + r)!
. (69)

From (69), we have

(1− y(et − 1))−(r+1) =
1
r!

(
t

et − 1

)r ∞

∑
m=0

F(r)
m+r(y)

tm

(m + r)!

=
1
r!

(
∞

∑
l=0

B(r)
l

tl

l!

)(
∞

∑
m=0

m!
(m + r)!

F(r)
m+r(y)

tm

m!

)

=
1
r!

∞

∑
n=0

(
n

∑
m=0

(
n
m

)
m!

(m + r)!
B(r)

n−mF(r)
m+r(y)

)
tm

m!

=

(
1
r!

)2 ∞

∑
n=0

(
n

∑
m=0

(n
m)

(m+r
r )

B(r)
n−mF(r)

m+r(y)

)
tn

n!
.

Corollary 1. Let n, l, r be any integers with 0 ≤ l ≤ n, r ≥ 1. Then we have the following identity.

S2(n, l) =
(

l + r
r

) n

∑
m=l

(n
m)

(m+r
r )

B(r)
n−mS2(m + r, l + r). (70)
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Proof. First, from (35) we note that

F(r)
m+r(y) =

m

∑
l=0

(l + r)!S2(m + r, l + r)(l + r)ryl . (71)

Substituting (71) into (68), and changing the order of summation, we get

n

∑
l=0

n

∑
m=l

((l + r)!)2

(r!)2l!
(n

m)

(m+r
r )

B(r)
n−mS2(m + r, l + r)yl . (72)

Comparison of the right hand side of (67) and (72) yields the result.

Remark 1. Taking r = 1 in (70) gives us the following identity:

S2(n, l) =
l + 1
n + 1

n

∑
m=l

(
n + 1
m + 1

)
Bn−mS2(m + 1, l + 1), (0 ≤ l ≤ n).

As a check, we illustrate this for n = 7, l = 3. First, we recall the following values of Stirling numbers of
the second kind and Bernoulli numbers

S2(7, 3) = 301, S2(4, 4) = 1, S2(5, 4) = 10, S2(6, 4) = 65, S2(7, 4) = 350, S2(8, 4) = 1701,

B0 = 1, B1 = −1
2

, B2 =
1
6

, B3 = 0, B4 = − 1
30

.

Then, we check that

3 + 1
7 + 1

7

∑
m=3

(
7 + 1
m + 1

)
B7−mS2(m + 1, 4)

=
1
2

{(
8
4

)
B4S2(4, 4) +

(
8
5

)
B3S2(5, 4) +

(
8
6

)
B2S2(6, 4) +

(
8
7

)
B1S2(7, 4) +

(
8
8

)
B0S2(8, 4)

}
=

1
2

{
70 · (− 1

30
) · 1 + 56 · 0 · 10 + 28 · 1

6
· 65 + 8 · (−1

2
) · 350 + 1 · 1 · 1701

}
= 301.

As is well known, for any sequences {am}∞
m=0, {bm}∞

m=0 of complex numbers, we have:

ak =
n

∑
l=0

S2(l, k)bl , (0 ≤ k ≤ n) if and only if bk =
n

∑
l=0

S1(l, k)al , (0 ≤ k ≤ n), (73)

where S1(l, k) are the signed Stirling numbers of the first kind.
Next, we would like to express the sums of finite products of Fubini polynomials in the left hand

side of (67) as linear combinations of Fubini polynomials.

Theorem 2. Let n, r be any nonnegative integers. Then we have

∑
i1+···+ir+1=n

(
n

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y) =

n

∑
k=0

n

∑
l=k

(
r + l

r

)
S1(l, k)S2(n, l)Fk(y). (74)

Proof. Let us put

∑
i1+···+ir+1=n

(
n

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y) =

n

∑
l=0

Cl Fl(y).
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Then, from the first identity in Proposition 3 and (35), we get

n

∑
k=0

(r + k)kS2(n, k)yk =
n

∑
k=0

(
n

∑
l=k

ClS2(l, k)k!

)
yk. (75)

By comparing the coefficients of (75), we obtain(
r + k

r

)
S2(n, k) =

n

∑
l=0

ClS2(l, k), (0 ≤ k ≤ n). (76)

Now, the application of (73) to (76) gives us

Ck =
n

∑
l=0

(
r + l

r

)
S1(l, k)S2(n, l)

=
n

∑
l=k

(
r + l

r

)
S1(l, k)S2(n, l), (0 ≤ k ≤ n),

which completes the proof.

In [13], it was shown that for any nonnegative integers n, r, the following identity holds:

∑
i1+···+ir+1=n

(
n

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y) =

1
r!(y + 1)r

r

∑
i=0

C(r, i)Fn+r−i(y), (77)

where C(r, i), (0 ≤ i ≤ r) are determined by C(r, 0) = 1, C(r, r) = r!, and

C(r + 1, k + 1) = C(r, k + 1) + (r + 1)C(r, k), (0 ≤ k ≤ r).

Here and below, we understand that C(r, k) = 0, if k > r.
We note here, in passing, that an identity similar to (77) was derived for two variable Fubini

polynomials in [10] (see also [14,15,27]).
Taking n = 0 in (77) gives us

r!(y + 1)r =
r

∑
i=0

C(r, i)Fr−i(y). (78)

By making use of (35), we obtain

r!
r

∑
k=0

(
r
k

)
yk =

r

∑
k=0

(
r−k

∑
i=0

C(r, i)k!S2(r− i, k)

)
yk. (79)

Comparing both sides of (79), we have

r!
k!

(
r
k

)
=

r−k

∑
i=0

S2(r− i, k)C(r, i)

=
r

∑
i=0

S2(r− i, k)C(r, i)

=
r

∑
i=0

S2(i, k)C(r, r− i).

(80)
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Again, an application of (73) to (80) yields

C(r, r− k) =
r

∑
i=0

r!
i!

(
r
i

)
S1(i, k),

or equivalently,

C(r, k) =
r

∑
i=0

r!
i!

(
r
i

)
S1(i, r− k)

=
r

∑
i=r−k

r!
i!

(
r
i

)
S1(i, r− k).

(81)

Substituting (81) into (77), we obtain the following expression:

∑
i1+···+ir+1=n

(
n

i1, · · · , ir+1

)
Fi1(y) · · · Fir+1(y)

=
1

r!(y + 1)r

r

∑
i=0

r

∑
k=r−i

r!
k!

(
r
k

)
S1(k, r− i)Fn+r−i(y).

4. Conclusions

In this paper, we considered the sums of finite products of Fubini polynomials αm,r(y) in (36),
and expressed each of them as linear combinations of Tn(y), Un(y), Vn(y), Wn(y), Hn(y), Lα

n(y), Pn(y),
C(λ)

n (y), and P(α,β)
n (y) by performing explicit computations. Here we used the expression of αm,r(y) in

(37). We could have exploited the expression of αm,r(y) in (68). However, it would have yielded more
complicated expressions than the ones in Theorem 1. Then our results were obtained, in addition to
(37), by using Propositions 1 and 2, and integration by parts. As a corollary to Proposition 3, we were
able to discover the identity involving Stirling numbers of the second kind and higher order Bernoulli
numbers which gives an interesting identity already in the special case of ordinary Bernoulli numbers
(see Corollary 1, Remark 1). We also expressed αm,r(y) as linear combinations of Fubini polynomials by
using the well known inverse relations between signed Stirling numbers of the first kind and Stirling
numbers of the second kind in (73) (see Theorem 2). Finally, we remarked that by applying the same
inverse relations, we can give explicit expressions for the coefficients C (r, i) appearing in the identity
(77) that has been recently obtained by Zhao and Chen (see [13]) and determined only recursively.
Along the same line as the present paper, we will continue to study sums of finite products of some
interesting special polynomials and numbers and to find their applications to mathematics, physics
and engineering, etc.
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