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Abstract: The normalized Laplacian plays an important role on studying the structure properties of
non-regular networks. In fact, it focuses on the interplay between the structure properties and the
eigenvalues of networks. Let Hn be the linear heptagonal networks. It is interesting to deduce the
degree-Kirchhoff index and the number of spanning trees of Hn due to its complicated structures.
In this article, we aimed to first determine the normalized Laplacian spectrum of Hn by decomposition
theorem and elementary operations which were not stated in previous results. We then derived the
explicit formulas for degree-Kirchhoff index and the number of spanning trees with respect to Hn.
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1. Introduction

A network sometimes can be viewed as a graph. In this context, we just consider connected,
simple and undirected graphs. It means the graphs without the multiple edges or loops. A given graph
G = (VG, EG) can be presented by a set VG = {v1, v2, . . . , vn} of vertices and a set EG = {e1, e2, . . . , em}
of edges. For other terminology and notation not stated here, refer to Reference [1,2].

The adjacency matrix A(G) of G is a square matrix with order n, which elements αij are 1 or
0, depending on whether there is an edge or not between vertices i and j. Denoted by D(G) =

diag(d1, d2, . . . , dn), the degree diagonal matrix of G, where d1, d2, . . . , dn are the degree of vertices
v1, v2, . . . , vn. Combining the adjacency and degree matrix, we get the Laplacian matrix, for which
expressions can be written as L(G) = D(G)− A(G), respectively. One may deeply understand them
with the help of Reference [3–6]. The normalized Laplacian [7] is given by:

(L(G))ij =


1, i = j;

− 1√
didj

, i 6= j, and vi is adjacent to vj;

0, otherwise.

(1)

Obviously, L(G) = D(G)−
1
2 L(G)D(G)−

1
2 = I − D(G)−

1
2 (D−1 A)D(G)−

1
2 .

As we know, the normalized Laplacian plays an important role in studying the structure properties
of non-regular graphs. In fact, the spectral graph theory focuses on the interplay between the structure
properties and the eigenvalues of a graph.

In mathematical chemistry, topological descriptors are always used to make a prediction for the
physico-chemical, biological, and structural properties of some molecule graphs. For instance, one of
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the most studied topological indices the Harary index. The larger the Harary index, the larger the
compactness of the molecule. Other topological indices were also used to study the structure properties
of graphs. One well-known valency-based topological descriptor was the Wiener index [8,9], which is
defined as:

W(G) = ∑
i<j

dij,

where dij is the distance between vertices i and j, that is, the length of the shortest path between
vertices i and j.

As a weighted version of Wiener index, Gutman has introduced the Gutman index in Reference [10]
as:

Gut(G) = ∑
i<j

didjdij.

According to the theory of electrical networks N, Klein and Randić proposed a new distance
function, named resistance distance, in 1993 [11]. He denoted rij as the resistance distance for any pair
of vertices between i and j of a graph, which means the effective resistance between the vertices i and j
in N with replacing each edge of a graph by a unit resistor. The Kirchhoff index [12,13] was defined as:

K f (G) = ∑
i<j

rij.

It is equal to the sum of resistance distances between all pairs of vertices of G. For analog
considerations to the Gutman index, Chen and Zhang [14] defined the weighted version of the
Kirchhoff index, which was called the degree-Kirchhoff index and given by:

K f ∗(G) = ∑
i<j

didjrij.

Recently, more and more researchers have concentrated on the Kirchhoff index and
degree-Kirchhoff index, due to its wide applications. Despite all that, it seems hard to deal with
the Kirchhoff index and degree-Kirchhoff index of complex graphs. Thus, some researchers have tried
to find some techniques to solve the problems about the Kirchhoff and degree-Kirchhoff index, such
as general star-mesh transformation [15], combinatorial formulas, and others (see Reference [16] for
details). In Reference [17,18], Klein and Lovász proved independently that:

K f (G) = n
n

∑
k=2

1
µk

. (2)

Based on the definition of the Laplacian matrix, one finds the sum of each rows of the Laplacian
matrix is zero. Futher, 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues of L(G).

In Reference [14], Chen and Zhang also proposed a method to obtain the formula of
degree-Kirchhoff index, which is associated with the eigenvalues of the normalized Laplacian, namely,

K f ∗(G) = 2m
n

∑
k=1

1
λk

, (3)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L(G).
The number of spanning trees [7] of a given graph G, also known as the complexity of G, is the

number of subgraphs which contains all the vertices of G. Further, all those subgraphs must be trees.
In 1985, Yang et al. [19] proposed a general solution in theoretically treating linear viscoelasticity

by using the knowledge in graph theory. On the basis of this solution, many problems in linear
systems have been solved. For instance, based on the decomposition theorem of Laplacian matrix,
Y. Yang et al. [20] obtained the Kirchhoff index of linear hexagonal chains in 2007. Y. Pan et al.
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constructed a crossed hexagonal by adding two pairs of crossed edges in linear hexagonal chains,
and they got the Kirchhoff and degree-Kirchhoff index [21], respectively (see Reference [5,22,23]
for details.)

Let Hn be the heptagonal networks as illustrated in Figure 1, of which two heptagons have two
common edges. That is, two heptagons can be seen as adding two P2 and attaching them. Notice
that there are some applications of the heptagons derived from different aspects, which are listed as
follows. The 20p and 50p coins of the United Kingdom have two heptagons. Although there are less
heptagonal floor plans, a remarkable example is the Mausoleum of Prince Ernst. Meanwhile, cacti are
the most common plants with heptagons in natural structures.

...

1 2 3 4 5 6 7 4n-1 4n 4n+1

(4n+1)'(4n)'(4n-1)'7'6'5'4'3'2'1'

1 2 n

Figure 1. Linear Heptagonal Networks.

For the exited results of linear networks [20–23], there were only two types of vertices considered
in these paper. The structure of linear heptagonal networks is much more complex, of which have
three types of vertices, shown in Figure 1. It was challenging and meaningful for us to study the
structural properties of linear heptagonal networks. On the other hand, the degree-Kirchhoff index
and the number of spanning trees are the important parameters to predict the structure properties
of graphs. Therefore, computing the degree-Kirchhoff index and the number of spanning trees of
linear heptagonal networks are interesting works. In the rest of the context, we recall some necessary
notations and methods used in the proofs of the main results in Section 2. We aimed to first determine
the normalized Laplacian spectrum of Hn by the decomposition theorem for the normalized Laplacian
matrix of Hn. We then derived the explicit formulas for the degree-Kirchhoff index and the number of
spanning trees of Hn through using the relationships between the roots and coefficients in Section 3.
The discussion of the previous results is given in Section 4. A conclusion is summarized in Section 5.

2. Materials and Methods

In this section, we first recall some basic notations and introduce a classical method, which laid
the foundations for this paper. All equations that we introduce below can be found in Reference [1,19].

Fix a square matrix M with order n, denote the submatrix of M the M[i1, . . . , ik], and yield by the
deletion of the i1-th, . . . , ik-th rows and corresponding columns. Assume that PM(x) = det(xI −M) is
the characteristic polynomial of the n× n matrix M.

Let Hn be the graph, as illustrated in Figure 1, with V0 = {1̄, 2̄, . . . , n̄},V1 = {1, 2, . . . , 4n + 1} and
V2 = {1′, 2′, . . . , (4n + 1)′}. It is straightforward to verify that π = (1̄)(2̄) · · · (n̄)(1, 1′)(2, 2′) · · · (4n +

1, (4n + 1)′) is an automorphism. Then the normalized laplacian matrix of Hn can be given as the
following block matrices.

L(Hn) =

 LV0V0 LV0V1 LV0V2

LV1V0 LV1V1 LV1V2

LV2V0 LV2V1 LV2V2

 . (4)

Notice that, LV0V1 = LV0V2 ,LV1V0 = LV2V0 ,LV1V1 = LV2V2 and LV1V2 = LV2V1 .
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Given:

T =

 In 0 0
0 1√

2
In

1√
2

In

0 1√
2

In − 1√
2

In

 ,

then

TL(Hn)T′ =

(
LA 0
0 LS

)
, (5)

where T′ is the transposition of T.

LA =

(
In

√
2LV0V1√

2LV1V0 LV1V1 + LV1V2

)
, Ls = LV1V1 −LV1V2 . (6)

At this place, the matrices introduced above are given in the following. In view of Equation (1)
and Figure 1, one has LV0V0 = In.

LV0V1 = (lij)n×(4n+1)

=



0 0 − 1√
6

0 0 0 0 · · · 0 0 0

0 0 0 0 0 0 − 1√
6
· · · 0 0 0

0 0 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · − 1√

6
0 0


n×(4n+1)

,

where lij = − 1√
6

and lij = 0, if j = 4i− 1 and otherwise, respectively.

LV1V1 =



1 − 1
2 0 0 · · · 0 0 0

− 1
2 1 −1√

6
0 · · · 0 0 0

0 −1√
6

1 −1√
6
· · · 0 0 0

0 0 −1√
6

1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −1√

6
0

0 0 0 0 · · · −1√
6

1 − 1
2

0 0 0 0 · · · 0 − 1
2 1


(4n+1)×(4n+1)

.

On the other hand, one gets:

LV1V2 = (lij)(4n+1)×(4n+1) = diag(−1
2

, 0, 0, 0,−1
3

, . . . ,−1
3

, 0, 0, 0,−1
2
),

where l11 = l4n+1,4n+1 = − 1
2 , l4k+1,4k+1 = − 1

3 for k ∈ {1, 2, . . . , n− 1} and 0 otherwise.
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According to Equation (5), one has:

LV1V1 + LV1V2 = (lij)(4n+1)×(4n+1)

=



1
2 − 1

2 0 0 0 · · · 0 0 0
− 1

2 1 −1√
6

0 0 · · · 0 0 0

0 −1√
6

1 −1√
6

0 · · · 0 0 0

0 0 −1√
6

1 −1√
6
· · · 0 0 0

0 0 0 −1√
6

2
3 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · · 1 −1√

6
0

0 0 0 0 0 · · · −1√
6

1 − 1
2

0 0 0 0 0 · · · 0 − 1
2

1
2


(4n+1)×(4n+1)

,

where l11 = l4n+1,4n+1 = 1
2 , lii = 1 for i ∈ {2, 3, . . . , 4n} and i 6= 4k + 1, l4k+1,4k+1 = 2

3 for
k ∈ {1, 2, . . . , n − 1}. Also, l12 = l21 = l4n,4n+1 = l4n+1,4n = − 1

2 , li,i+1 = li+1,i = − 1√
6

for
i ∈ {2, 3, . . . , 4n-1} and lij = 0 for |i− j| > 1.

And:

LS = (lij)(4n+1)×(4n+1)

=



3
2 − 1

2 0 0 0 · · · 0 0 0
− 1

2 1 −1√
6

0 0 · · · 0 0 0

0 −1√
6

1 −1√
6

0 · · · 0 0 0

0 0 −1√
6

1 −1√
6
· · · 0 0 0

0 0 0 −1√
6

4
3 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · · 1 −1√

6
0

0 0 0 0 0 · · · −1√
6

1 − 1
2

0 0 0 0 0 · · · 0 − 1
2

3
2


(4n+1)×(4n+1)

,

where l11 = l4n+1,4n+1 = 3
2 , lii = 1 for i ∈ {2, 3, . . . , 4n} and i 6= 4k + 1, l4k+1,4k+1 = 4

3 for k ∈
{1, 2, . . . , n− 1}. Also, l12 = l21 = l4n,4n+1 = l4n+1,4n = − 1

2 , li,i+1 = li+1,i = − 1√
6

for i ∈ {2, 3, . . . , 4n−
1} and lij = 0 for |i− j| > 1.

In what follows, the lemmas that we present will be used throughout the main results.

Lemma 1. Assume that LA,Ls are defined as mentioned above [1]. Then:

PL(Ln)(x) = PLA(x)PLs(x).

According to the relation between the number of spanning trees and its normalized laplacian
eigenvalues, one arrives the following lemma.

Lemma 2. Assume that G is a connected graph with order n and size m [7], then

n

∏
i=1

dG(vi)
n

∏
i=2

λi = 2mτ(G),

where τ(G) is the number of spanning trees of G.
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Lemma 3. Let M1, M2, M3 and M4 be the p× p, p× q, q× p and q× q matrices, respectively [24]. Then:

(a). det

(
M1 M2

M3 M4

)
= det(M4) · det

(
M1 −M2M−1

4 M3
)
,

(b). det

(
M1 M2

M3 M4

)
= det(M1) · det

(
M4 −M3M−1

1 M2
)
,

where M1 and M4 are invertible, and M1 − M2M−1
4 M3 and M4 − M3M−1

1 M2 are called the Schur
complements of M4 and M1, respectively.

In what follows, a flowchart (Figure 2) is given on the basis of the steps we have processed, and it
will facilitate the understanding of the proposed approach. The explanations of these notations that
appear in the flowchart are presented in Section 3.

Figure 2. The steps processed in this paper.

3. Main Results

In this section, we first figure out the explicit formula for the degree-Kirchhoff index of Hn.
The steps of computing the degree-Kirchhoff index follow the flowchart in Figure 2. Combining the
eigenvalues of LA and Ls, it is easy to get the normalized Laplacian spectrum of Hn by Lemma 1.
On the other hand, one can find that the number or spanning trees of Hn consists of the products of the
degree of all vertices, the eigenvalues of LA and Ls, respectively. Suppose 0 = α1 < α2 ≤ · · · ≤ α5n+1

and 0 < β1 ≤ β2 ≤ · · · ≤ β4n+1 are the roots of PLA(x) = 0 and PLs(x) = 0, respectively. By
Equation (3), one has:

Lemma 4. Suppose that Hn are the linear heptagonal networks. Then:

K f ∗(Hn) = 2 · (11n + 1) · (
5n+1

∑
i=2

1
αi

+
4n+1

∑
j=1

1
β j
). (7)

Evidently, one just needs to calculate the eigenvalues of the LA and LS. Hence, the formulas of
∑5n+1

i=2
1
αi

and ∑4n+1
j=1

1
β j

are given in the following lemmas.
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Lemma 5. Suppose that 0 = α1 < α2 ≤ · · · ≤ α5n+1 are the eigenvalues of LA. One has:

5n+1

∑
i=2

1
αi

=
401n3 − 170n2 + 54n

11n + 1
.

Proof. It is straightforward to verify that:

PLA(x) = x5n+1 + a1x5n + · · ·+ a5n−1x2 + a5nx = x(x5n + a1x5n−1 + · · ·+ a5n−1x + a5n),

with a5n 6= 0. Then, one knows that 1
α2

, 1
α3

, . . . , 1
α5n+1

are the roots of the following equation:

a5n · x5n + a5n−1 · x5n−1 + · · ·+ a1 · x + 1 = 0.

According to the relationships between the roots and the coefficients and Vieta theorem,
one arrives at:

5n+1

∑
i=2

1
αi

=
(−1)5n−1 · a5n−1

(−1)5n · a5n
.

Proposition 1. (−1)5n · a5n = 11n+1
8 ( 1

6 )
2n−1.

Proof. Since the number (−1)5na5n is the sum of all those principal minors of LA which have 5n rows
and columns, we get:

(−1)5n · a5n =
5n+1

∑
i=1

detLA[i]. (8)

In view of Equation (6), one may find that i can be selected in the identity matrix In or LV1V1 +

LV1V2 . Thus, all these cases are listed as below.
Case 1. One first considers the case 1 ≤ i ≤ n. That is to say, LA[i] is obtained by deleting

the i row of the identity matrix In and
√

2LV0V1 , and also the corresponding column of the In and√
2LV1V0 . Denoted by In−1, R(n−1)×(4n+1), R′(n−1)×(4n+1) and U(4n+1)×(4n+1) are the resulting blocks,

respectively. According to the Lemma 3, and applying elementary operations (see also in Reference[25],
P8), one knows:

detLA[i] =

∣∣∣∣∣ In−1 R(n−1)×(4n+1)
R′(n−1)×(4n+1) U(4n+1)×(4n+1)

∣∣∣∣∣ =
∣∣∣∣∣ In−1 0

0 M1

∣∣∣∣∣ ,

where M1 = U(4n+1)×(4n+1) − R′(n−1)×(4n+1)R(n−1)×(4n+1) = (mpq), of which m11 = m4n+1,4n+1 =
1
2 , mpp = 1 for p ∈ {2, 4, 6, . . . , 4n}, mpp = 2

3 for p ∈ {3, 5, 7, 4n− 1} but p 6= 4i− 1, m4i−1,4i−1 = 1.
Also, m12 = m21 = m4n,4n+1 = m4n+1,4n = − 1

2 , mp,p+1 = mp+1,p = − 1√
6

for p ∈ {2, 3, . . . , 4n− 1} and
mpq = 0 for |p− q| > 1. With a explicit calculation, one gets:

detLA[i] = det M1 =
1
8
×
(1

6

)2n−1
. (9)

Case 2. One now takes into account the case n + 1 ≤ i ≤ 5n + 1. Namely, LA[i] is obtained
by deleting the i row of the LV1V1 + LV1V2 and

√
2LV1V0 , also the corresponding column of the

LV1V1 + LV1V2 and
√

2LV0V1 . Denote by In, Rn×4n, R′n×4n and U4n×4n the resulting blocks, respectively.
According to Lemma 3 and applying elementary operations, we arrive at:
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detLA[i] =

∣∣∣∣∣ In Rn×4n
R′n×4n U4n×4n

∣∣∣∣∣ =
∣∣∣∣∣ In 0

0 M2

∣∣∣∣∣ ,

where M2 = U4n×4n − R′n×4nRn×4n. Set M2′ = (mpq) with order 4n + 1, of which m11 = m4n+1,4n+1 =
1
2 , mpp = 1 for p ∈ {2, 4, 6, . . . , 4n}, mpp = 2

3 for p ∈ {3, 5, 7, 4n− 1}. Also, m12 = m21 = m4n,4n+1 =

m4n+1,4n = − 1
2 , mp,p+1 = mp+1,p = − 1√

6
for p ∈ {2, 3, . . . , 4n − 1} and mpq = 0 for |p − q| > 1.

Evidently, M2 = M2′ [i− n]. With an explicit calculation, one gets:

detLA[i] = det M2′ [i− n] =


1
4 ×

(
1
6

)2n−1
, i f i = n + 1 or i = 5n + 1;

1
4 ×

(
1
6

)2n−1
, i f n + 2 ≤ i ≤ 5n, i is even;

1
16 ×

(
1
6

)2n−2
, i f n + 2 ≤ i ≤ 5n, i is odd.

(10)

Combining Equations (8)–(10), we have:

(−1)5n · a5n =
5n+1

∑
i=1

detLA[i] =
n

∑
i=1

detLA[i] +
5n+1

∑
i=n+1

detLA[i]

= n · 1
8
×
(1

6

)2n−1
+ 2n · 1

4
×
(1

6

)2n−1
+ (2n− 1) · 1

16
×
(1

6

)2n−2
+ 2× 1

4
×
(1

6

)2n−1

=
11n + 1

8
·
(1

6

)2n−1
.

This completes the proof of the Proposition 1.

In what follows, we will focus on the calculation of the (−1)5n−1a5n−1.

Proposition 2. (−1)5n−1a5n−1 = 1
48 (401n3 − 170n2 + 54n)

( 1
6
)2n−2.

Proof. Since the number (−1)5n−1a5n−1 is the sum of all those principal minors of LA which have
5n− 1 rows and columns, it is straightforward to obtain that:

(−1)5n−1 · a5n−1 =
5n+1

∑
i=1

detLA[i, j]. (11)

Similar to consideration of Proposition 1, all these cases are listed as follows.
Case 1. One first considers the case 1 ≤ i < j ≤ n. That is to say, LA[i, j] is obtained by deleting

the i and j rows of the identity matrix In and
√

2LV0V1 , also the corresponding columns of the In

and
√

2LV1V0 . Denote by In−2, R(n−2)×(4n+1), R′(n−2)×(4n+1) and U(4n+1)×(4n+1) the resulting blocks,
respectively. According to Lemma 3 and applying elementary operations, one has:

detLA[i, j] =

∣∣∣∣∣ In−2 R(n−2)×(4n+1)
R′(n−2)×(4n+1) U(4n+1)×(4n+1)

∣∣∣∣∣ =
∣∣∣∣∣ In−2 0

0 M3

∣∣∣∣∣ ,

where M3 = U(4n+1)×(4n+1) − R′(n−2)×(4n+1)R(n−2)×(4n+1) = (mpq), of which m11 = m4n+1,4n+1 =
1
2 , mpp = 1 for p ∈ {2, 4, 6, . . . , 4n}, mpp = 2

3 for p ∈ {3, 5, 7, 4n− 1} but p 6= 4i− 1 and p 6= 4j− 1,
m4i−1,4i−1 = m4j−1,4j−1 = 1. Also, m12 = m21 = m4n,4n+1 = m4n+1,4n = − 1

2 , mp,p+1 = mp+1,p = − 1√
6

for p ∈ {2, 3, . . . , 4n− 1} and mpq = 0 for |p− q| > 1. With an explicit calculation, one gets:
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detLA[i, j] = det M3 =
1
8
· (j− i + 2) ·

(1
6

)2n−1
. (12)

Case 2. One now takes into account the case n + 1 ≤ i < j ≤ 5n + 1. Namely, LA[i, j] is obtained
by deleting the (i− n)-th and (j− n)-th rows of the LV1V1 +LV1V2 and

√
2LV1V0 , also the corresponding

columns of the LV1V1 +LV1V2 and
√

2LV0V1 . Denote by In, Rn×(4n−1), R′n×(4n−1) and U(4n−1)×(4n−1) the
resulting blocks, respectively. According to Lemma 3 and applying elementary operations, one arrives
at:

detLA[i, j] =

∣∣∣∣∣ In Rn×(4n−1)
R′n×(4n−1) U(4n−1)×(4n−1)

∣∣∣∣∣ =
∣∣∣∣∣ In 0

0 M4

∣∣∣∣∣ ,

where M4 = U(4n−1)×(4n−1) − R′n×(4n−1)Rn×(4n−1) = M2′ [i− n, j− n] . With an explicit calculation,
one gets:

detLA[i, j] =



1
8 (j− i)

(
1
6

)2n−2
, i f n + 2 ≤ i = n + l < j = n + k ≤ 5n, l is even, k is odd;

1
12 (j− i)

(
1
6

)2n−2
, i f n + 2 ≤ i = n + l < j = n + k ≤ 5n, l is even, k is even;

1
8 (j− i)

(
1
6

)2n−2
, i f n + 2 ≤ i = n + l < j = n + k ≤ 5n, l is odd, k is even;

3
16 (j− i)

(
1
6

)2n−2
, i f n + 2 ≤ i = n + l < j = n + k ≤ 5n, l is odd, k is odd;

1
8 (j− i)

(
1
6

)2n−2
, i f i = n + 1, j = n + k, k is odd;

1
6 (j− i)

(
1
6

)2n−2
, i f i = n + 1, j = n + k, k is even;

1
8 (j− i)

(
1
6

)2n−2
, i f i = n + k, j = 5n + 1, k is odd;

1
12 (j− i)

(
1
6

)2n−2
, i f i = n + k, j = 5n + 1, k is even;

2n
(

1
6

)2n−1
, i f i = n + 1, j = 5n + 1.

(13)

Case 3. One devotes to consideration of the case 1 ≤ i ≤ n, n + 1 ≤ j ≤ 5n + 1. That is,
LA[i, j] is obtained by deleting the i rows of the identity matrix In and

√
2LV0V1 , (j− n)-th rows of the√

2LV1V0 and LV1V1 + LV1V2 , respectively. In addition, the corresponding columns of the In,
√

2LV1V0 ,
LV1V1 + LV1V2 and

√
2LV0V1 . Denote by In−1, R(n−1)×4n, R′(n−1)×4n and U4n×4n the resulting blocks,

respectively. According to Lemma 3 and applying elementary operations, one has:

detLA[i, j] =

∣∣∣∣∣ In−1 R(n−1)×4n
R′(n−1)×4n U4n×4n

∣∣∣∣∣ =
∣∣∣∣∣ In 0

0 M5

∣∣∣∣∣ ,

where M5 = U4n×4n − R′(n−1)×4nR(n−1)×4n = M1[j− n]. By an explicit calculation, we get:
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detLA[i, j] =



( 1
2 + i)

(
1
6

)2n−1
, i f j = n + 1;

1
24 (j− n− 2i)

(
1
6

)2n−2
, i f n + 2 ≤ j = n + k ≤ 5n, j− n− 2i > 0, k is even;

1
12

(
1
6

)2n−2
, i f n + 2 ≤ j = n + k ≤ 5n, j− n− 2i = 0, k is even;

1
12 (|

j−n−2i
2 |+ 1)

(
1
6

)2n−2
, i f n + 2 ≤ j = n + k ≤ 5n, j− n− 2i < 0, k is even;

1
16 (j− n− 2i)

(
1
6

)2n−2
, i f n + 2 ≤ j = n + k ≤ 5n, j− n− 2i ≥ 0, k is odd;

1
16 (|j− n− 2i|+ 2)

(
1
6

)2n−2
, i f n + 2 ≤ j = n + k ≤ 5n, j− n− 2i < 0, k is odd;

1
4 (4n− 2i + 1)

(
1
6

)2n−1
, i f j = 5n + 1.

(14)

Together with Equations (11)–(14), one gets:

(−1)5n−1a5n−1 =
5n+1

∑
1≤i≤j

detLA[i, j]

=
n

∑
1≤i≤j

detLA[i, j] +
5n+1

∑
n+1≤i≤j

detLA[i, j] +
5n+1

∑
1≤i≤n,n+1≤j≤5n+1

detLA[i, j]

=
n3 + 12n2 + 11n

48

(1
6

)2n−1
+

290n3 − 144n2 + 25n
36

(1
6

)2n−2

+
40n3 + 30n2 + 29n

144

(1
6

)2n−2

=
1

48
(401n3 − 170n2 + 54n)

(1
6
)2n−2.

The proof of the Proposition 2 completed.

By Propositions 1 and 2 , we have the desired result of Lemma 5.

Lemma 6. Suppose that β1, β2, . . . , β4n+1 are the eigenvalues of LS. One has:

4n+1

∑
j=1

1
β j

=
δ(n) + ζ(n)

441
[
(−24 + 2183

√
2)(11− 6

√
2)n − (24 + 2183

√
2)(11 + 6

√
2)n
] ,

where δ(n) = 4
(

461133− 44560
√

2− 6n(249938 + 99525
√

2)
)
(11 + 6

√
2)n,

ζ(n) = 4
(

461133 + 44560
√

2 + 6n(−249938 + 99525
√

2)
)
(11− 6

√
2)n.

Proof. It is straightforward to verify that:

PLS(x) = x4n+1 + b1x4n + · · ·+ b4n−1x2 + b4nx + b4n+1,

with b4n+1 6= 0. Then, one knows that 1
β1

, 1
β2

, . . . , 1
β4n+1

are the roots of the following equation:

b4n+1 · x4n+1 + b4n · x4n + · · ·+ b1 · x + 1 = 0.

In the line with the relationships between the roots and the coefficients of PLs(x), one arrives at:

4n+1

∑
j=1

1
β j

=
(−1)4nb4n

(−1)4n+1b4n+1
=

(−1)4nb4n
detLs

.
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On the one hand, we first consider l-th order principal submatrix, Dl , and yield by the first l rows
and columns of Ls, l = 1, 2, . . . , 4n. Set dl = det Dl . Then d1 = 3

2 , d2 = 5
4 , d3 = 1, d4 = 19

24 , d5 = 8
9 , d6 =

109
144 , d7 = 263

432 , d8 = 139
288 and:


d4i = d4i−1 − 1

6 d4i−2,

d4i+1 = 4
3 d4i − 1

6 d4i−1,

d4i+2 = d4i+1 − 1
6 d4i,

d4i+3 = d4i+2 − 1
6 d4i+1.

(15)

With a explicit calculation, we get:

d4i =
460+3

√
2

196
√

2

(
11+6

√
2

36

)i
+ −460+3

√
2

196
√

2

(
11−6

√
2

36

)i
,

d4i+1 = 31+18
√

2
24
√

2

(
11+6

√
2

36

)i
+ −31+18

√
2

24
√

2

(
11−6

√
2

36

)i
,

d4i+2 = 27+15
√

2
24
√

2

(
11+6

√
2

36

)i
+ −27+15

√
2

24
√

2

(
11−6

√
2

36

)i
,

d4i+3 = 131+72
√

2
144
√

2

(
11+6

√
2

36

)i
+ −131+72

√
2

144
√

2

(
11−6

√
2

36

)i
.

(16)

Proposition 3.

detLs =
540 + 493

√
2

1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
.

Proof. By expanding detLs with regards to the last row, one gets:

detLs =
3
2

d4n −
1
4

d4n−1 =
3
2

[460 + 3
√

2
196
√

2

(11 + 6
√

2
36

)n
+
−460 + 3

√
2

196
√

2

(11− 6
√

2
36

)n]
−1

4

[131 + 72
√

2
144
√

2

(11 + 6
√

2
36

)n−1
+
−131 + 72

√
2

144
√

2

(11− 6
√

2
36

)n−1]
=

540 + 493
√

2
1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
.

This has completed the proof of the Proposition 3.

On the other hand, we will take into account the k-th order principal submatrix, Rk, and yield by
the last k rows and columns of Ls, k = 1, 2, . . . , 4n. Set rk = det Rk. Then r1 = 3

2 , r2 = 5
4 , r3 = 1, r4 =

19
24 , r5 = 8

9 , r6 = 109
144 , r7 = 263

432 , r8 = 139
288 and:


r4i = r4i−1 − 1

6 r4i−2,

r4i+1 = 4
3 r4i − 1

6 r4i−1,

r4i+2 = r4i+1 − 1
6 r4i,

r4i+3 = r4i+2 − 1
6 r4i+1.

(17)

Obviously, one finds that d4i = r4i, d4i+1 = r4i+1, d4i+2 = r4i+2, d4i+3 = r4i+3.
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Proposition 4.

(−1)4nb4n =
−92, 607− 46, 462

√
2 + 6n(80, 482 + 52, 947

√
2)

127, 008

(11 + 6
√

2
36

)n−1

+
−92, 607 + 46, 462

√
2− 6n(−80, 482 + 52, 947

√
2)

127, 008

(11− 6
√

2
36

)n−1
.

Proof. Denoted lii the diagonal entries of LS. Since the number (−1)4nb4n is the sum of all those
principal minors of LS which have 4n rows and columns, one arrives at:

(−1)4nb4n =
4n+1

∑
i=1

detLS[i] =
4n+1

∑
i=1

det

(
Di−1 0

0 R4n+1−i

)
=

4n+1

∑
i=1

det Di−1 · det R4n+1−i, (18)

where

R4n+1−i =


li+1,i+1 · · · 0 0

...
. . .

...
...

0 · · · l4n,4n − 1√
6

0 · · · − 1√
6

l4n+1,4n+1

 .

Let d0 := det D0 = 1 and det R = 1, if i = 4n + 1. In line with Equation (18), one gets:

(−1)4nb4n =
4n+1

∑
i=1

detLS[i] =
4n

∑
i=1

detLS[i] + d4n =
n

∑
k=1

detLS[4k]

+
n−1

∑
k=0

detLS[4k + 1] +
n−1

∑
k=0

detLS[4k + 2] +
n−1

∑
k=0

detLS[4k + 3] + d4n

=
n

∑
k=1

d4(k−1)+3d4(n−k)+1 +
n−1

∑
k=1

d4kd4(n−k) +
n−1

∑
k=0

d4k+1d4(n−k−1)+3

+
n−1

∑
k=0

d4k+2d4(n−k−1)+2 + 2d4n. (19)

By a straightforward calculation, we can obtain the following expressions.

n

∑
k=1

d4(k−1)+3d4(n−k)+1 = n · 6653 + 4590
√

2
6912 · 36n−1 (11 + 6

√
2)n−1 + n · 6653− 4590

√
2

6912 · 36n−1 (11− 6
√

2)n−1

+
1

12
· −1469

√
2

6912 · 36n−1 (11 + 6
√

2)n +
1

12
· 1469

√
2

6912 · 36n−1 (11− 6
√

2)n. (20)

n−1

∑
k=1

d4kd4(n−k) = (n− 1) · 105809 + 1380
√

2
38416 · 36n (11 + 6

√
2)n + (n− 1) · 105809− 1380

√
2

38416 · 36n (11− 6
√

2)n

+
1

12
· −105791

√
2

38416 · 36n (11 + 6
√

2)n−1 +
1

12
· 105791

√
2

38416 · 36n (11− 6
√

2)n−1. (21)

n−1

∑
k=0

d4k+1d4(n−k−1)+3 = n · 6653 + 4590
√

2
6912 · 36n−1 (11 + 6

√
2)n−1 + n · 6653− 4590

√
2

6912 · 36n−1 (11− 6
√

2)n−1

+
1

12
· −1469

√
2

6912 · 36n−1 (11 + 6
√

2)n +
1

12
· 1469

√
2

6912 · 36n−1 (11− 6
√

2)n. (22)
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n−1

∑
k=0

d4k+2d4(n−k−1)+2 = n · 131 + 90
√

2
128 · 36n−1 (11 + 6

√
2)n−1 + n · 131− 90

√
2

128 · 36n−1 (11− 6
√

2)n−1

+
1
12
· −31

√
2

128 · 36n−1 (11 + 6
√

2)n +
1
12
· 31

√
2

128 · 36n−1 (11− 6
√

2)n. (23)

2d4n =
6 + 460

√
2

196 · 36n (11 + 6
√

2)n +
6− 460

√
2

196 · 36n (11− 6
√

2)n. (24)

Substituting Equations (20)–(24) to (19), we can get the desired result.

Together with the Propositions 3 and 4, one gets Lemma 6 immediately.
By Lemmas 5 and 6, we have the following theorem.

Theorem 1. For graph Hn,

K f ∗(Hn) = (22n + 2) ·
(401n3 − 170n2 + 54n

11n + 1
+

(−1)4n · b4n
detLs

)
,

where

(−1)4nb4n =
−92607− 46462 + 6n(80482 + 52947

√
2)

127008

(11 + 6
√

2
36

)n−1

+
−92607 + 46462− 6n(−80482 + 52947

√
2)

127008

(11− 6
√

2
36

)n−1
.

detLs =
540 + 493

√
2

1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
.

Theorem 2. For graph Hn,

τ(Hn) = 23n+1 · 32n−1 ·
[

540 + 493
√

2
1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
]

.

Proof. By Lemma 2, one has ∏
|V(Hn)|
i=1 di ∏5n+1

i=2 αi ∏4n+1
j=1 β j = 2|E(Hn)|τ(Hn). Notice that:

|V(Hn)|

∏
i=1

di = 25n+4 · 34n−2,

5n+1

∏
i=2

αi = (−1)5na5n =
11n + 1

8

(1
6

)2n−1
,

4n+1

∏
j=1

β j = detLs =
540 + 493

√
2

1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
.

Evidently,

τ(Hn) = 23n+1 · 32n−1 ·
[

540 + 493
√

2
1152

(11 + 6
√

2
36

)n−1
+

540− 493
√

2
1152

(11− 6
√

2
36

)n−1
]

.

This completes the proof of the theorem.

4. Discussion

In recent decades, the resistance distance has attracted some attentions due to its practical
applications. The spectral graph theory focuses on the interplay between the structure properties and
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eigenvalues of a graph. In Reference [17,18], Klein and Lovász independently found that the sum of
resistance distance, namely, the Kirchhoff index, could be determined by the Laplacian eigenvalues
of the graph. In later years, Chen and Zhang [14] defined the degree-Kirchhoff index. Meanwhile,
they proved that the degree-Kirchhoff index could be given by the normalized Laplacian eigenvalues
of the graph. Since the relationships between Kirchhoff (and degree-Kirchhoff, respectively ) index
and the Laplacian (normalized Laplacian, respectively ) eigenvalues of the graph, the Kirchhoff and
degree-Kirchhoff index are highly concerned. Y. Yang et al. [20] determined the Laplacian spectrum and
Kirchhoff index of linear hexagonal chains by the decomposition theorem of the Laplacian polynomial
in 2007. More surprising, they found the Wiener index of linear hexagonal chains is almost twice that of
its Kirchhoff index. Reference [22] explored the normalized Laplacian spectrum and degree-Kirchhoff
index of linear hexagonal chains by the decomposition theorem of normalized Laplacian polynomial.
They also found the Gutman index of linear hexagonal chains is almost twice that of its degree-Kirchhoff
index. Y. Pan et al. [21] constructed a crossed hexagonal by adding two pairs of crossed edges in linear
hexagonal chains, and the Kirchhoff and degree-Kirchhoff indices are derived, respectively. Besides,
they presented the Wiener (Gutman, respectively) index of linear crossed hexagonal chains is almost
four times that of its Kirchhoff (degree-Kirchhoff, respectively) index. Applying similar methods, X.
Ma et al. [26] determined the degree-Kirchhoff index and spanning trees of linear hexagonal Möbius
graphs. For the results of linear phenylenes, see Reference [5,23]. Considering a more complex graph
and different methods, the degree-Kirchhoff index and number of spanning trees of liner heptagonal
networks were given in this paper.

5. Conclusions

In this paper, we were committed to computing the degree-Kirchhoff index and the number of
spanning trees of liner heptagonal networks. Though we also used the decomposition theorem of the
normalized Laplacian polynomial that appeared in the previous results, the methods of calculating the
expression ∑5n+1

i=2
1
αi

were much different than previous results. The main techniques we used were
Lemma 3 and elementary operations. Indeed, one can use the Doolittle decomposition theorem to solve
the normalized Laplacian matrix of liner heptagonal networks, if one hopes to check the correction
of the proofs. Additionally, it is interesting to deduce the Kirchhoff index, degree-Kirchhoff index,
and the number of spanning trees of linear crossed heptagonal networks or linear heptagonal Möbius
networks, due to its much more complex structures than liner heptagonal networks, as in Refs. [21,26].
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