
mathematics

Article

Improving the Computational Efficiency of a Variant
of Steffensen’s Method for Nonlinear Equations

Fuad W. Khdhr 1, Rostam K. Saeed 1 and Fazlollah Soleymani 2,*
1 Department of Mathematics, College of Science, Salahaddin University, Erbil, Iraq;

fuad.khdhr@su.edu.krd (F.W.K.); rostam.saeed@su.edu.krd (R.K.S.)
2 Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS),

Zanjan 45137-66731, Iran
* Correspondence: fazlollah.soleymani@gmail.com

Received: 21 January 2019; Accepted: 18 March 2019; Published: 26 March 2019
����������
�������

Abstract: Steffensen-type methods with memory were originally designed to solve nonlinear
equations without the use of additional functional evaluations per computing step. In this paper,
a variant of Steffensen’s method is proposed which is derivative-free and with memory. In fact, using
an acceleration technique via interpolation polynomials of appropriate degrees, the computational
efficiency index of this scheme is improved. It is discussed that the new scheme is quite fast and
has a high efficiency index. Finally, numerical investigations are brought forward to uphold the
theoretical discussions.

Keywords: iterative methods; Steffensen’s method; R-order; with memory; computational efficiency

1. Introduction

One of the commonly encountered topics in computational mathematics is to tackle solving
a nonlinear algebraic equation. The equation can be presented as in the scalar case f (x) = 0, or more
complicated as a system of nonlinear algebraic equations. The procedure of finding the solutions (if it
exists) cannot be done analytically. In some cases, the analytic techniques only give the real result
while its complex zeros should be found and reported. As such, numerical techniques are a viable
choice for solving such nonlinear problems. Each of the existing computational procedures has their
own domain of validity with some pros and cons [1,2].

Two classes of methods with the use of derivatives and without the use of derivatives are known to
be useful depending on the application dealing with [3]. In the derivative-involved methods, a larger
attraction basin along with a simple coding effort for higher dimensional problems is at hand which,
in derivative-free methods, the area of choosing the initial approximations is smaller and extending to
higher dimensional problems is via the application of a divided difference operator matrix, which is
basically a dense matrix. However, the ease in not computing the derivative and, subsequently,
the Jacobians, make the application of derivative-free methods more practical in several problems [4–7].

Here, an attempt is made at developing a computational method which is not only efficient in
terms of the computational efficiency index, but also in terms of larger domains for the choice of the
initial guesses/approximations for starting the proposed numerical method.

The Steffensen’s method [8] for solving nonlinear scalar equations has quadratic convergence for
simple zeros and given by:

xk+1 = xk −
f (xk)

f
[xk, wk]

,

wk = xk + β f (xk), β ∈ R\{0}, k ≥ 0,

(1)

Mathematics 2019, 7, 306; doi:10.3390/math7030306 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6905-8951
http://www.mdpi.com/2227-7390/7/3/306?type=check_update&version=1
http://dx.doi.org/10.3390/math7030306
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 306 2 of 9

where the two-point divided difference is defined by:

f [xk, wk] =
f (xk)− f (wx)

xk − wk
,

This scheme needs two function evaluations per cycle. Scheme (1) shows an excellent tool for
constructing efficient iterative methods for nonlinear equations. This is because it is derivative-free
with a free parameter. This parameter can, first of all, enlarge the attraction basins of Equation (1)
or any of its subsequent methods and, second, can directly affect the improvement of the R-order of
convergence and the efficiency index.

Recalling that Kung and Traub conjectured that the iterative method without memory based on m
functions evaluation per iteration attain the optimal convergence of order 2m−1 [9,10].

The term “with memory” means that the values of the function associated with the computed
approximations of the roots are used in subsequent iterations. This is unlike the term “without memory”
in which the method only uses the current values to find the next estimate. As such, in a method with
memory, the calculated results up to the desired numbers of iterations should be stored and then called
to proceed.

Before proceeding the given idea to improve the speed of convergence, efficiency index, and the
attraction basins, we provide a short literature by reviewing some of the existing methods with
accelerated convergence order. Traub [11] proposed the following two-point method with memory of
order 2.414:

xk+1 = xk −
f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]
,

(2)

where zk−1 = xk−1 + βk−1 f (xk−1), and β0 = −sign(f ′(x0)) or − 1
f [x0, x0 + f (x0)]

. This is one of the

pioneering and fundamental methods with memory for solving nonlinear equations.

Džunić in [12] suggested an effective bi-parametric iterative method with memory of
1
2

(
3 +
√

17
)

R-order of convergence as follows:
wk = xk + βk f (xk),

βk = −
1

N′2(xk)
, ζk = −

N′′3 (wk)

2N′3(wk)
, k ≥ 1,

xk+1 = xk −
f (xk)

f [xk, wk] + ζk f (wk)
k ≥ 0.

(3)

Moreover, Džunić and Petković [13] derived the following cubically convergent Steffensen-like
method with memory:

xk+1 = xk −
f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]+ f [xk, xk−1]+ f [xk−1, zk−1]
,

(4)

where zk−1 = xk−1 + βk−1 f (xk−1) depending on the second-order Newton interpolation polynomial.
Various Steffensen-type methods are proposed in [14–17].
In fact, it is possible to improve the performance of the aforementioned method by considering

several more sub-steps and improve the computational efficiency index via multi-step iterative
methods. However, this procedure is more computational burdensome. Thus, the motivation here
is to know that is it possible to improve the performance of numerical methods in terms of the
computational efficiency index, basins of attraction, and the rate of convergence without adding more
sub-steps and propose a numerical method as a one-step solver.

Mathematics 2019, 7, 306 3 of 9

Hence, the aim of this paper is to design a one-step method with memory which is quite
fast and has an improved efficiency index, based on the modification of the one-step method of
Steffensen (Equation (1)) and increase the convergence order to 3.90057 without any additional
functional evaluations.

The rest of this paper is ordered as follows: In Section 2, we develop the one-point Steffensen-type
iterative scheme (Equation (1)) with memory which was proposed by [18]. We present the main
goal in Section 3 by approximating the acceleration parameters involved in our contributed scheme
by Newton’s interpolating polynomial and, thus, improve the convergence R-order. The numerical
reports are suggested in Section 4 to confirm the theoretical results. Some discussions are given in
Section 5.

2. An Iterative Method

The following iterative method without memory was proposed by [18]: wk = xk − β f (xk),

xk+1 = xk −
f (xk)

f [xk, wk]

(
1 + ζ

f (wk)

f [xk, wk]

)
, ζ ∈ R,

(5)

with the following error equation to improve the performance of (1) in terms of having more
free parameters:

ek+1 = −
(
−1 + β f ′(α)

)
(c2 − ζ)e2

k + O
(

e3
k

)
, (6)

where ci =
1
i!

f (i)(α)
f ′(α) . Using the error Equation (6), to derive Steffensen-type iterative methods with

memory, we calculate the following parameters: β = βk, ζ = ζk, by the formula: βk =
1

f ′(xα)
,

ζk = c2,
(7)

for k = 1, 2, 3, · · · , while f ′(xα), c2 are approximations to f (α) and c2, respectively; where α is a simple
zero of f (x). In fact, Equation (7) shows a way to minimize the asymptotic error constant of Equation (6)
by making this coefficient closer and closer to zero when the iterative method is converging to the
true solution.

The initial estimates β0 and ζ0 must be chosen before starting the process of iterations. We state
the Newton’s interpolating polynomial of fourth and fifth-degree passing through the saved points
as follows: {

N4(t) = N4(t; xk, wk−1, xk−1, wk−2, xk−2),
N5(t) = N5(t; wk, xk, wk−1, xk−1, wk−2, xk−2).

(8)

Recalling that N(t) is an interpolation polynomial for a given set of data points also known as the
Newton’s divided differences interpolation polynomial because the coefficients of the polynomial are
calculated using Newton’s divided differences method. For instance, here the set of data points for
N4(t) are {{xk, f (xk)}, {wk−1, f (wk−1)}, {xk−1, f (xk−1)}, {wk−2, f (wk−2)} , {xk−2, f (xk−2)}}.

Now, using some modification on Equation (5) we present the following scheme:
wk = xk − βk f (xk),

βk =
1

N′4(xk)
, ζk =

N′′5 (wk)

2N′5(wk)
, k ≥ 2,

xk+1 = xk −
f (xk)

f [xk, wk]

(
1 + ζk

f (wk)

f [xk, wk]

)
, k ≥ 0.

(9)

Mathematics 2019, 7, 306 4 of 9

Noting that the accelerator parameters βk, ζk are getting updated and then used in the iterative
method right after the second iterations, viz, k ≥ 2. This means that the third line of Equation (9) is
imposed at the beginning and after that the computed values are stored and used in the subsequent
iterates. For k = 1, the degree of Newton interpolation polynomials would be two and three. However,
for k ≥ 2, interpolations of degrees four and five as given in Equation (8) can be used to increase the
convergence order.

Additionally speaking, this acceleration of convergence would be attained without the use any
more functional evaluations as well as imposing more steps. Thus, the proposed scheme with memory
(Equation (9)) can be attractive for solving nonlinear equations.

3. Convergence Analysis

In this section, we show the convergence criteria of Equation (9) using Taylor’s series expansion
and several extensive symbolic computations.

Theorem 1. Let the function f (x) be sufficiently differentiable in a neighborhood of its simple zero α. If an initial
approximation x0 is necessarily close to α. Then, R-order of convergence for the one-step method (Equation (9))
with memory is 3.90057.

Proof. The proof is done using the definition of the error equation as the difference between the
k-estimate and the exact zero along with symbolic computations. Let the sequence {xk} and {wk}
have convergence orders r and p, respectively. Namely,

ek+1 ∼ er
k, (10)

and:
ew,k ∼ ep

k , (11)

Therefore, using Equations (10) and (11), we have:

ek+1 ∼ er
k ∼ er2

k−1 ∼ er3

k−2, (12)

and:
ew,k ∼ ep

k ∼ (er
k−1)

p ∼ epr2

k−2. (13)

The associated error equations to the accelerating parameters βk and ζk for Equation (9) can now
be written as follows:

ew,k ∼ (−1 + βk f ′(α))ek , (14)

and:
ek+1 ∼ −(−1 + βk f ′(α))(c2 − ζk)e2

k . (15)

On the other hand, by using a symbolic language and extensive computations one can find the
following error terms for the involved terms existing in the fundamental error Equation (6):

−1 + βk f ′(α) ∼ c5ek−2ek−1ew,k−1ew,k−2, (16)

c2 − ζk ∼ c6ek−2ek−1ew,k−1ew,k−2 (17)

Combining Equations (14)–(17), we get that:

ew,k ∼ er2+pr+r+p+1
k−2 , (18)

ek+1 ∼ e2(r2+pr+r+p+1)
k−2 . (19)

Mathematics 2019, 7, 306 5 of 9

We now compare the left and right hand side of Equations (12)–(19) and Equations (13)–(18),
respectively. Thus, we have the following nonlinear system of equations in order to find the final
R-orders: {

r2 p−
(
r2 + pr + r + p + 1

)
= 0,

r3 − 2
(
r2 + pr + r + p + 1

)
= 0.

(20)

The positive real solution of (20) is r = 3.90057 and p = 1.9502. Therefore, the convergence
R-order for Equation (9) is 3.90057. �

Since improving the convergence R-order is useless if the whole computational method is
expensive, basically researcher judge on a new scheme based upon its computational efficiency
index which is a tool in order to provide a trade-off between the whole computational cost and the
attained R-order. Assuming the cost of calculating each functional evaluation is one, we can use the
definition of efficiency index as EI = p1/θ , θ is the whole computational cost [19].

The computational efficiency index of Equation (9) is 3.90057
1
2 ≈ 1.97499 ≈ 2, which is clearly

higher than efficiency index 2
1
2 ≈ 1.4142 of Newton’s and Steffensen’s methods, 3.56155

1
2 ≈ 1.8872 of

(3) 31/2 ≈ 1.73205 of Equation (4).
However, this improved computational efficiency is reported by ignoring the number of

multiplication and division per computing cycle. By imposing a slight weight for such calculations
one may once again obtain the improved computational efficiency of (9) in contrast to the existing
schemes of the same type.

4. Numerical Computations

In this section, we compare the convergence performance of Equation (9), with three well-known
iterative methods for solving four test problems numerically carried out in Mathematica 11.1. [20].

We denote Equations (1), (3), (5) and (9) with SM, DZ, PM, M4, respectively. We compare the
our method with different methods, using β0 = 0.1 and ζ0 = 0.1. Here, the computational order of
convergence (coc) has been computed by the following formula [21]:

coc =
ln|(f (xk)/ f (xk−1)|

ln|(f (xk−1)/ f (xk−2)|
(21)

Recalling that using a complex initial approximation, one is able to find the complex roots of the
nonlinear equations using (9).

Experiment 1. Let us consider the following nonlinear test function:

f1(x) = (x− 2 tan(x))
(
x3 − 8

)
, (22)

where α = 2 and x0 = 1.7.

Experiment 2. We take into account the following nonlinear test function:

f2(x) = (x− 1)
(

x10 + x3 + 1
)

sin(x), (23)

where α = 1 and x0 = 0.7.

Experiment 3. We consider the following test problem now:

f3(x) = −x3

2 + 2 tan−1(x) + 1, (24)

where α ≈ 1.8467200 and x0 = 4.

Mathematics 2019, 7, 306 6 of 9

Experiment 4. The last test problem is taken into consideration as follows:

f4(x) = tan−1(exp(x + 2) + 1) + tanh(exp(−x cos(x)))− sin(πx), (25)

where α ≈ −3.6323572··· and x0 = −4.1.

Tables 1–4 show that the proposed Equation (9) is of order 3.90057 and it is obviously believed to
be of more advantageous than the other methods listed due to its fast speed and better accuracy.

For better comparisons, we present absolute residual errors | f (x)|, for each test function which
are displayed in Tables 1–4. Additionally, we compute the computational order of convergence.
Noting that we have used multiple precision arithmetic considering 2000 significant digits to observe
and the asymptotic error constant and the coc as obviously as possible.

The results obtained by our proposed Equation (M4) are efficient and show better performance
than other existing methods.

A significant challenge of executing high-order nonlinear solvers is in finding initial approximation
to start the iterations when high accuracy calculating is needed.

Table 1. Result of comparisons for the function f1.

Methods |f1(x3)| |f1(x4)| |f1(x5)| |f1(x6)| coc

SM 4.1583 3.0743 1.4436 0.25430 2.00
DZ 0.13132 2.0026× 10−7 1.0181× 10−27 7.1731× 10−99 3.57
PM 1.8921× 10−6 4.5864× 10−24 1.0569× 10−88 7.5269× 10−318 3.55
M4 9.1741× 10−6 3.3242× 10−26 4.4181× 10−103 1.1147× 10−404 3.92

Table 2. Result of comparisons for the function f2.

Methods |f2(x5)| |f2(x6)| |f2(x7)| |f2(x8)| coc

SM − − − − −
DZ 0.14774 0.0016019. 1.3204× 10−10 1.5335× 10−35 3.56
PM 2.1191× 10−10 8.0792× 10−35 1.9037× 10−121 3.7062× 10−430 3.56
M4 5.9738× 10−15 4.1615× 10−57 1.7309× 10−220 1.8231× 10−857 3.90

Table 3. Result of comparisons for the function f3.

Methods |f3(x3)| |f3(x4)| |f3(x5)| |f3(x6)| coc

SM 0.042162 0.00012627 1.1589× 10−9 9.7638× 10−20 2.00
DZ 1.0219× 10−11 4.4086× 10−44 1.6412× 10−157 1.5347× 10−562 3.57
PM 7.9792× 10−8 3.712× 10−30 4.9556× 10−108 2.9954× 10−386 3.57
M4 4.4718× 10−6 2.9187× 10−25 4.7057× 10−101 1.0495× 10−395 3.89

To discuss further, mostly based on interval mathematics, one can find a close enough guess to
start the process. There are some other ways to determine the real initial approximation to start the
process. An idea of finding such initial guesses given in [22] is based on the useful commands in
Mathematica 11.1 NDSolve [] for the nonlinear function on the interval D = [a, b].

Following this the following piece of Mathematica code could give a list of initial approximations
in the working interval for Experiment 4:

Mathematics 2019, 7, 306 7 of 9Mathematics 2019, 7, x FOR PEER REVIEW 7 of 9

ClearAll[“Global`*”]

(*Defining the nonlinear function.*)
f[x_]:=ArcTan[Exp[x+2]+1]+Tanh[Exp[−x Cos[x]]]−Sin[Pi x];

(*Defining the interval.*)
a=−4.; b=4.;

(*Find the list of initial estimates.*)
Zeros = Quiet@Reap[soln=y[x]/.First[NDSolve[{y’[x]
==Evaluate[D[f[x],x]],y[b]==(f[b])},y[x],{x,a,b},
Method->{“EventLocator”,”Event”->y[x], “EventAction”:>Sow[{x,y[x]}]}]]][[2,1]];
initialPoints = Sort[Flatten[Take[zeros,Length[zeros],1]]]

To check the position of the zero and the graph of the function, we can use the following code
to obtain Figure 1.

Length[initialPoints]
Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},PlotRange->All, PerformanceGoal-
>“Quality”, PlotStyle->{Thick, Blue}]

Table 4. Result of comparisons for the function 𝑓 .

Methods |𝒇𝟒(𝒙𝟑)| |𝒇𝟒(𝒙𝟒)| |𝒇𝟒(𝒙𝟓)| |𝒇𝟒(𝒙𝟔)| coc
SM 0.00001166 3.7123 10 3.7616 10 3.8622 10 2.00
DZ 1.6 10 6.9981 10 1.0583 10 7.0664 10 3.57
PM 3.0531 10 3.2196 10 3.7357 10 6.5771 10 3.56
M4 2.5268 10 1.5972 10 2.8738 10 1.6018 10 3.90

Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function 𝑔(𝑥) = 2𝑥 + 0.5 sin(20𝜋 𝑥) − 𝑥 , we can
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014, −0.162392, −0.0935912, −0.0535277,6.73675 10 , 0.0533287, 0.0941576,0.160021, 0.188066, 0.269075, 0.279428, 1.76552, 1.78616, 1.8588, 1.89339, 1.95294, 2.,2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot of the function in this case is brought forward
in Figure 2.

We observe that the two self-accelerating parameters 𝛽 and 𝜁 have to be selected before the
iterative procedure is started. That is, they are calculated by using information existing from the
present and previous iterations (see, e.g., [23]). The initial estimates 𝛽 and 𝜁 should be preserved
as precise small positive values. We use 𝛽 = 𝜁 = 0.1 whenever required.

To check the position of the zero and the graph of the function, we can use the following code to
obtain Figure 1.

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 9

ClearAll[“Global`*”]

(*Defining the nonlinear function.*)
f[x_]:=ArcTan[Exp[x+2]+1]+Tanh[Exp[−x Cos[x]]]−Sin[Pi x];

(*Defining the interval.*)
a=−4.; b=4.;

(*Find the list of initial estimates.*)
Zeros = Quiet@Reap[soln=y[x]/.First[NDSolve[{y’[x]
==Evaluate[D[f[x],x]],y[b]==(f[b])},y[x],{x,a,b},
Method->{“EventLocator”,”Event”->y[x], “EventAction”:>Sow[{x,y[x]}]}]]][[2,1]];
initialPoints = Sort[Flatten[Take[zeros,Length[zeros],1]]]

To check the position of the zero and the graph of the function, we can use the following code
to obtain Figure 1.

Length[initialPoints]
Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},PlotRange->All, PerformanceGoal-
>“Quality”, PlotStyle->{Thick, Blue}]

Table 4. Result of comparisons for the function 𝑓 .

Methods |𝒇𝟒(𝒙𝟑)| |𝒇𝟒(𝒙𝟒)| |𝒇𝟒(𝒙𝟓)| |𝒇𝟒(𝒙𝟔)| coc
SM 0.00001166 3.7123 10 3.7616 10 3.8622 10 2.00
DZ 1.6 10 6.9981 10 1.0583 10 7.0664 10 3.57
PM 3.0531 10 3.2196 10 3.7357 10 6.5771 10 3.56
M4 2.5268 10 1.5972 10 2.8738 10 1.6018 10 3.90

Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function 𝑔(𝑥) = 2𝑥 + 0.5 sin(20𝜋 𝑥) − 𝑥 , we can
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014, −0.162392, −0.0935912, −0.0535277,6.73675 10 , 0.0533287, 0.0941576,0.160021, 0.188066, 0.269075, 0.279428, 1.76552, 1.78616, 1.8588, 1.89339, 1.95294, 2.,2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot of the function in this case is brought forward
in Figure 2.

We observe that the two self-accelerating parameters 𝛽 and 𝜁 have to be selected before the
iterative procedure is started. That is, they are calculated by using information existing from the
present and previous iterations (see, e.g., [23]). The initial estimates 𝛽 and 𝜁 should be preserved
as precise small positive values. We use 𝛽 = 𝜁 = 0.1 whenever required.

Table 4. Result of comparisons for the function f4.

Methods |f4(x3)| |f4(x4)| |f4(x5)| |f4(x6)| coc

SM 0.00001166 3.7123× 10−10 3.7616× 10−19 3.8622× 10−37 2.00
DZ 1.6× 10−13 6.9981× 10−47 1.0583× 10−164 7.0664× 10−585 3.57
PM 3.0531× 10−11 3.2196× 10−38 3.7357× 10−134 6.5771× 10−476 3.56
M4 2.5268× 10−13 1.5972× 10−49 2.8738× 10−191 1.6018× 10−744 3.90

Mathematics 2019, 7, x FOR PEER REVIEW 7 of 9

(*Find the list of initial estimates.*)

Zeros = Quiet@Reap[soln=y[x]/.First[NDSolve[{y’[x]

==Evaluate[D[f[x],x]],y[b]==(f[b])},y[x],{x,a,b},

Method->{“EventLocator”,”Event”->y[x], “EventAction”:>Sow[{x,y[x]}]}]]][[2,1]] ;

initialPoints = Sort[Flatten[Take[zeros,Length[zeros],1]]]

To check the position of the zero and the graph of the function, we can use the following code

to obtain Figure 1.

Length[initialPoints]

Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},PlotRange->All, PerformanceGoal-

>“Quality”, PlotStyle->{Thick, Blue}]

Table 4. Result of comparisons for the function 𝑓4.

Methods |𝑓4(𝑥3)| |𝑓4(𝑥4)| |𝑓4(𝑥5)| |𝑓4(𝑥6)| coc

SM 0.00001166 3.7123 × 10−10 3.7616 × 10−19 3.8622 × 10−37 2.00

DZ 1.6 × 10−13 6.9981 × 10−47 1.0583 × 10−164 7.0664 × 10−585 3.57

PM 3.0531 × 10−11 3.2196 × 10−38 3.7357 × 10−134 6.5771 × 10−476 3.56

M4 2.5268 × 10−13 1.5972 × 10−49 2.8738 × 10−191 1.6018 × 10−744 3.90

Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function 𝑔(𝑥) = 2𝑥 + 0.5 sin(20𝜋 𝑥) − 𝑥2, we can

simply find a list of estimates as initial guesses using the above piece of codes as follows:

{−0.185014,−0.162392,−0.0935912,−0.0535277,6.73675 × 10−9, 0.0533287, 0.0941576,

0.160021, 0.188066, 0.269075, 0.279428, 1.76552, 1.78616, 1.8588, 1.89339, 1.95294, 2.,

2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot of the function in this case is brought forward

in Figure 2.

We observe that the two self-accelerating parameters 𝛽0 and 𝜁0 have to be selected before the

iterative procedure is started. That is, they are calculated by using information existing from the

present and previous iterations (see, e.g., [23]). The initial estimates 𝛽0 and 𝜁0 should be preserved

as precise small positive values. We use 𝛽0 = 𝜁0 = 0.1 whenever required.

After a number of iterates, the (nonzero) free parameters start converging to a particular value

which makes the coefficient of Equation (6) zero as well as make the numerical scheme to converge

with high R-order.

Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function g(x) = 2x + 0.5 sin(20π x) − x2, we can
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014,
−0.162392, −0.0935912, −0.0535277, 6.73675 × 10−9, 0.0533287, 0.0941576, 0.160021, 0.188066, 0.269075,
0.279428, 1.76552, 1.78616, 1.8588, 1.89339,1.95294, 2., 2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot
of the function in this case is brought forward in Figure 2.

We observe that the two self-accelerating parameters β0 and ζ0 have to be selected before the
iterative procedure is started. That is, they are calculated by using information existing from the
present and previous iterations (see, e.g., [23]). The initial estimates β0 and ζ0 should be preserved as
precise small positive values. We use β0 = ζ0 = 0.1 whenever required.

Mathematics 2019, 7, 306 8 of 9

After a number of iterates, the (nonzero) free parameters start converging to a particular value
which makes the coefficient of Equation (6) zero as well as make the numerical scheme to converge
with high R-order.Mathematics 2019, 7, x FOR PEER REVIEW 8 of 9

Figure 2. The behavior of the function g and the position of its roots (the red dots show the location

of the zeros of the nonlinear functions).

5. Ending Comments

In this paper, we have constructed a one-step method with memory to solve nonlinear

equations. By using two self-accelerator parameters our scheme equipped with Newton’s

interpolation polynomial without any additional functional calculation possesses the high

computational efficiency index 1.97499, which is higher than many of the existing methods.

The efficacy of our scheme is confirmed by some of numerical examples. The results in Tables

1–4 shows that our method (Equation (M4)) is valuable to find an adequate estimate of the exact

solution of nonlinear equations.

Author Contributions: The authors contributed equally to this paper.

Funding: This research received no external funding.

Acknowledgment: The authors are thankful to two anonymous referees for careful reading and valuable

comments which improved the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Steffensen type methods for solving nonlinear

equations. J. Comput. Appl. Math. 2012, 236, 3058–3064.

2. Soleymani, F. Some optimal iterative methods and their with memory variants. J. Egypt. Math. Soc. 2013,

21, 133–141.

3. Praks, P.; Brkić, D. Choosing the optimal multi-point iterative method for the Colebrook Flow friction

equation. Processes 2018, 6, 130.

4. Zafar, F.; Cordero, A.; Torregrosa, J.R. An efficient family of optimal eighth-order multiple root finders.

Mathematics 2018, 6, 310.

5. Saeed, R.K.; Aziz, K.M. An iterative method with quartic convergence for solving nonlinear equations.

Appl. Math. Comput. 2008, 202, 435–440.

6. Saeed, R.K. Six order iterative method for solving nonlinear equations. World Appl. Sci. J. 2010, 11, 1393–

1397.

7. Torkashvand, V.; Lotfi, T.; Araghi, M.A.F. A new family of adaptive methods with memory for solving

nonlinear equations. Math. Sci. 2019, 1–20.

8. Noda, T. The Steffensen iteration method for systems of nonlinear equations. Proc. Jpn. Acad. 1987, 63,

186–189.

9. Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 1974,

21, 634–651.

10. Ahmad, F. Comment on: On the Kung-Traub conjecture for iterative methods for solving quadratic

equations. Algorithms 2016, 9, 30.

11. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.

Figure 2. The behavior of the function g and the position of its roots (the red dots show the location of
the zeros of the nonlinear functions).

5. Ending Comments

In this paper, we have constructed a one-step method with memory to solve nonlinear
equations. By using two self-accelerator parameters our scheme equipped with Newton’s interpolation
polynomial without any additional functional calculation possesses the high computational efficiency
index 1.97499, which is higher than many of the existing methods.

The efficacy of our scheme is confirmed by some of numerical examples. The results in Tables 1–4
shows that our method (Equation (M4)) is valuable to find an adequate estimate of the exact solution
of nonlinear equations.

Author Contributions: The authors contributed equally to this paper.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to two anonymous referees for careful reading and valuable
comments which improved the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Steffensen type methods for solving nonlinear
equations. J. Comput. Appl. Math. 2012, 236, 3058–3064. [CrossRef]

2. Soleymani, F. Some optimal iterative methods and their with memory variants. J. Egypt. Math. Soc. 2013,
21, 133–141. [CrossRef]

3. Praks, P.; Brkić, D. Choosing the optimal multi-point iterative method for the Colebrook Flow friction
equation. Processes 2018, 6, 130. [CrossRef]

4. Zafar, F.; Cordero, A.; Torregrosa, J.R. An efficient family of optimal eighth-order multiple root finders.
Mathematics 2018, 6, 310. [CrossRef]

5. Saeed, R.K.; Aziz, K.M. An iterative method with quartic convergence for solving nonlinear equations.
Appl. Math. Comput. 2008, 202, 435–440. [CrossRef]

6. Saeed, R.K. Six order iterative method for solving nonlinear equations. World Appl. Sci. J. 2010, 11, 1393–1397.
7. Torkashvand, V.; Lotfi, T.; Araghi, M.A.F. A new family of adaptive methods with memory for solving

nonlinear equations. Math. Sci. 2019, 1–20.
8. Noda, T. The Steffensen iteration method for systems of nonlinear equations. Proc. Jpn. Acad. 1987, 63, 186–189.
9. Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 1974,

21, 634–651. [CrossRef]

http://dx.doi.org/10.1016/j.cam.2010.08.043
http://dx.doi.org/10.1016/j.joems.2013.01.002
http://dx.doi.org/10.3390/pr6080130
http://dx.doi.org/10.3390/math6120310
http://dx.doi.org/10.1016/j.amc.2008.02.037
http://dx.doi.org/10.1145/321850.321860

Mathematics 2019, 7, 306 9 of 9

10. Ahmad, F. Comment on: On the Kung-Traub conjecture for iterative methods for solving quadratic equations.
Algorithms 2016, 9, 30. [CrossRef]

11. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
12. Džunić, J. On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms 2013,

63, 549–569. [CrossRef]
13. Džunić, J.; Petković, M.S. On generalized biparametric multipoint root finding methods with memory.

J. Comput. Appl. Math. 2014, 255, 362–375. [CrossRef]
14. Zheng, O.; Wang, J.; Zhang, P.L. A Steffensen-like method and its higher-order variants. Appl. Math. Comput.

2009, 214, 10–16. [CrossRef]
15. Lotfi, T.; Tavakoli, E. On a new efficient Steffensen-like iterative class by applying a suitable self-accelerator

parameter. Sci. World J. 2014, 2014, 769758. [CrossRef]
16. Zheng, O.P.; Zhao, L.; Ma, W. Variants of Steffensen-Secant method and applications. Appl. Math. Comput.

2010, 216, 3486–3496. [CrossRef]
17. Petković, M.S.; Ilić, S.; Džunić, J. Derivative free two-point methods with and without memory for solving

nonlinear equations. Appl. Math. Comput. 2010, 217, 1887–1895.
18. Khaksar Haghani, F. A modiffied Steffensen’s method with memory for nonlinear equations. Int. J. Math.

Model. Comput. 2015, 5, 41–48.
19. Howk, C.L.; Hueso, J.L.; Martinez, E.; Teruel, C. A class of efficient high-order iterative methods with

memory for nonlinear equations and their dynamics. Math. Meth. Appl. Sci. 2018, 1–20. [CrossRef]
20. Cliff, H.; Kelvin, M.; Michael, M. Hands-on Start to Wolfram Mathematica and Programming with the Wolfram

Language, 2nd ed.; Wolfram Media, Inc.: Champaign, IL, USA, 2016; ISBN 9781579550127.
21. Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence.

Appl. Math. Lett. 2000, 13, 87–93. [CrossRef]
22. Soleymani, F.; Shateyi, S. Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal.

2012, 2012, 318165. [CrossRef]
23. Zaka, M.U.; Kosari, S.; Soleymani, F.; Khaksar, F.H.; Al-Fhaid, A.S. A super-fast tri-parametric iterative

method with memory. Appl. Math. Comput. 2016, 289, 486–491.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/a9020030
http://dx.doi.org/10.1007/s11075-012-9641-3
http://dx.doi.org/10.1016/j.cam.2013.05.013
http://dx.doi.org/10.1016/j.amc.2009.03.053
http://dx.doi.org/10.1155/2014/769758
http://dx.doi.org/10.1016/j.amc.2010.04.058
http://dx.doi.org/10.1002/mma.4821
http://dx.doi.org/10.1016/S0893-9659(00)00100-2
http://dx.doi.org/10.1155/2012/318165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Iterative Method
	Convergence Analysis
	Numerical Computations
	Ending Comments
	References

