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Abstract: Steffensen-type methods with memory were originally designed to solve nonlinear
equations without the use of additional functional evaluations per computing step. In this paper,
a variant of Steffensen’s method is proposed which is derivative-free and with memory. In fact, using
an acceleration technique via interpolation polynomials of appropriate degrees, the computational
efficiency index of this scheme is improved. It is discussed that the new scheme is quite fast and
has a high efficiency index. Finally, numerical investigations are brought forward to uphold the
theoretical discussions.

Keywords: iterative methods; Steffensen’s method; R-order; with memory; computational efficiency

1. Introduction

One of the commonly encountered topics in computational mathematics is to tackle solving
a nonlinear algebraic equation. The equation can be presented as in the scalar case f (x) = 0, or more
complicated as a system of nonlinear algebraic equations. The procedure of finding the solutions (if it
exists) cannot be done analytically. In some cases, the analytic techniques only give the real result
while its complex zeros should be found and reported. As such, numerical techniques are a viable
choice for solving such nonlinear problems. Each of the existing computational procedures has their
own domain of validity with some pros and cons [1,2].

Two classes of methods with the use of derivatives and without the use of derivatives are known to
be useful depending on the application dealing with [3]. In the derivative-involved methods, a larger
attraction basin along with a simple coding effort for higher dimensional problems is at hand which,
in derivative-free methods, the area of choosing the initial approximations is smaller and extending to
higher dimensional problems is via the application of a divided difference operator matrix, which is
basically a dense matrix. However, the ease in not computing the derivative and, subsequently,
the Jacobians, make the application of derivative-free methods more practical in several problems [4–7].

Here, an attempt is made at developing a computational method which is not only efficient in
terms of the computational efficiency index, but also in terms of larger domains for the choice of the
initial guesses/approximations for starting the proposed numerical method.

The Steffensen’s method [8] for solving nonlinear scalar equations has quadratic convergence for
simple zeros and given by: 

xk+1 = xk −
f (xk)

f
[xk, wk]

,

wk = xk + β f (xk), β ∈ R\{0}, k ≥ 0,

(1)
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where the two-point divided difference is defined by:

f [xk, wk] =
f (xk)− f (wx)

xk − wk
,

This scheme needs two function evaluations per cycle. Scheme (1) shows an excellent tool for
constructing efficient iterative methods for nonlinear equations. This is because it is derivative-free
with a free parameter. This parameter can, first of all, enlarge the attraction basins of Equation (1)
or any of its subsequent methods and, second, can directly affect the improvement of the R-order of
convergence and the efficiency index.

Recalling that Kung and Traub conjectured that the iterative method without memory based on m
functions evaluation per iteration attain the optimal convergence of order 2m−1 [9,10].

The term “with memory” means that the values of the function associated with the computed
approximations of the roots are used in subsequent iterations. This is unlike the term “without memory”
in which the method only uses the current values to find the next estimate. As such, in a method with
memory, the calculated results up to the desired numbers of iterations should be stored and then called
to proceed.

Before proceeding the given idea to improve the speed of convergence, efficiency index, and the
attraction basins, we provide a short literature by reviewing some of the existing methods with
accelerated convergence order. Traub [11] proposed the following two-point method with memory of
order 2.414: 

xk+1 = xk −
f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]
,

(2)

where zk−1 = xk−1 + βk−1 f (xk−1), and β0 = −sign( f ′(x0)) or − 1
f [x0, x0 + f (x0)]

. This is one of the

pioneering and fundamental methods with memory for solving nonlinear equations.

Džunić in [12] suggested an effective bi-parametric iterative method with memory of
1
2

(
3 +
√

17
)

R-order of convergence as follows:
wk = xk + βk f (xk),

βk = −
1

N′2(xk)
, ζk = −

N′′3 (wk)

2N′3(wk)
, k ≥ 1,

xk+1 = xk −
f (xk)

f [xk, wk] + ζk f (wk)
k ≥ 0.

(3)

Moreover, Džunić and Petković [13] derived the following cubically convergent Steffensen-like
method with memory: 

xk+1 = xk −
f (xk)

f [xk, xk + βk f (xk)]
,

βk =
−1

f [xk, zk−1]+ f [xk, xk−1]+ f [xk−1, zk−1]
,

(4)

where zk−1 = xk−1 + βk−1 f (xk−1) depending on the second-order Newton interpolation polynomial.
Various Steffensen-type methods are proposed in [14–17].
In fact, it is possible to improve the performance of the aforementioned method by considering

several more sub-steps and improve the computational efficiency index via multi-step iterative
methods. However, this procedure is more computational burdensome. Thus, the motivation here
is to know that is it possible to improve the performance of numerical methods in terms of the
computational efficiency index, basins of attraction, and the rate of convergence without adding more
sub-steps and propose a numerical method as a one-step solver.
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Hence, the aim of this paper is to design a one-step method with memory which is quite
fast and has an improved efficiency index, based on the modification of the one-step method of
Steffensen (Equation (1)) and increase the convergence order to 3.90057 without any additional
functional evaluations.

The rest of this paper is ordered as follows: In Section 2, we develop the one-point Steffensen-type
iterative scheme (Equation (1)) with memory which was proposed by [18]. We present the main
goal in Section 3 by approximating the acceleration parameters involved in our contributed scheme
by Newton’s interpolating polynomial and, thus, improve the convergence R-order. The numerical
reports are suggested in Section 4 to confirm the theoretical results. Some discussions are given in
Section 5.

2. An Iterative Method

The following iterative method without memory was proposed by [18]: wk = xk − β f (xk),

xk+1 = xk −
f (xk)

f [xk, wk]

(
1 + ζ

f (wk)

f [xk, wk]

)
, ζ ∈ R,

(5)

with the following error equation to improve the performance of (1) in terms of having more
free parameters:

ek+1 = −
(
−1 + β f ′(α)

)
(c2 − ζ)e2

k + O
(

e3
k

)
, (6)

where ci =
1
i!

f (i)(α)
f ′(α) . Using the error Equation (6), to derive Steffensen-type iterative methods with

memory, we calculate the following parameters: β = βk, ζ = ζk, by the formula: βk =
1

f ′(xα)
,

ζk = c2,
(7)

for k = 1, 2, 3, · · · , while f ′(xα), c2 are approximations to f (α) and c2, respectively; where α is a simple
zero of f (x). In fact, Equation (7) shows a way to minimize the asymptotic error constant of Equation (6)
by making this coefficient closer and closer to zero when the iterative method is converging to the
true solution.

The initial estimates β0 and ζ0 must be chosen before starting the process of iterations. We state
the Newton’s interpolating polynomial of fourth and fifth-degree passing through the saved points
as follows: {

N4(t) = N4(t; xk, wk−1, xk−1, wk−2, xk−2),
N5(t) = N5(t; wk, xk, wk−1, xk−1, wk−2, xk−2).

(8)

Recalling that N(t) is an interpolation polynomial for a given set of data points also known as the
Newton’s divided differences interpolation polynomial because the coefficients of the polynomial are
calculated using Newton’s divided differences method. For instance, here the set of data points for
N4(t) are {{xk, f (xk)}, {wk−1, f (wk−1)}, {xk−1, f (xk−1)}, {wk−2, f (wk−2)} , {xk−2, f (xk−2)}}.

Now, using some modification on Equation (5) we present the following scheme:
wk = xk − βk f (xk),

βk =
1

N′4(xk)
, ζk =

N′′5 (wk)

2N′5(wk)
, k ≥ 2,

xk+1 = xk −
f (xk)

f [xk, wk]

(
1 + ζk

f (wk)

f [xk, wk]

)
, k ≥ 0.

(9)
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Noting that the accelerator parameters βk, ζk are getting updated and then used in the iterative
method right after the second iterations, viz, k ≥ 2. This means that the third line of Equation (9) is
imposed at the beginning and after that the computed values are stored and used in the subsequent
iterates. For k = 1, the degree of Newton interpolation polynomials would be two and three. However,
for k ≥ 2, interpolations of degrees four and five as given in Equation (8) can be used to increase the
convergence order.

Additionally speaking, this acceleration of convergence would be attained without the use any
more functional evaluations as well as imposing more steps. Thus, the proposed scheme with memory
(Equation (9)) can be attractive for solving nonlinear equations.

3. Convergence Analysis

In this section, we show the convergence criteria of Equation (9) using Taylor’s series expansion
and several extensive symbolic computations.

Theorem 1. Let the function f (x) be sufficiently differentiable in a neighborhood of its simple zero α. If an initial
approximation x0 is necessarily close to α. Then, R-order of convergence for the one-step method (Equation (9))
with memory is 3.90057.

Proof. The proof is done using the definition of the error equation as the difference between the
k-estimate and the exact zero along with symbolic computations. Let the sequence {xk} and {wk}
have convergence orders r and p, respectively. Namely,

ek+1 ∼ er
k, (10)

and:
ew,k ∼ ep

k , (11)

Therefore, using Equations (10) and (11), we have:

ek+1 ∼ er
k ∼ er2

k−1 ∼ er3

k−2, (12)

and:
ew,k ∼ ep

k ∼ (er
k−1)

p ∼ epr2

k−2. (13)

The associated error equations to the accelerating parameters βk and ζk for Equation (9) can now
be written as follows:

ew,k ∼ (−1 + βk f ′(α))ek , (14)

and:
ek+1 ∼ −(−1 + βk f ′(α))(c2 − ζk)e2

k . (15)

On the other hand, by using a symbolic language and extensive computations one can find the
following error terms for the involved terms existing in the fundamental error Equation (6):

−1 + βk f ′(α) ∼ c5ek−2ek−1ew,k−1ew,k−2, (16)

c2 − ζk ∼ c6ek−2ek−1ew,k−1ew,k−2 (17)

Combining Equations (14)–(17), we get that:

ew,k ∼ er2+pr+r+p+1
k−2 , (18)

ek+1 ∼ e2(r2+pr+r+p+1)
k−2 . (19)
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We now compare the left and right hand side of Equations (12)–(19) and Equations (13)–(18),
respectively. Thus, we have the following nonlinear system of equations in order to find the final
R-orders: {

r2 p−
(
r2 + pr + r + p + 1

)
= 0,

r3 − 2
(
r2 + pr + r + p + 1

)
= 0.

(20)

The positive real solution of (20) is r = 3.90057 and p = 1.9502. Therefore, the convergence
R-order for Equation (9) is 3.90057. �

Since improving the convergence R-order is useless if the whole computational method is
expensive, basically researcher judge on a new scheme based upon its computational efficiency
index which is a tool in order to provide a trade-off between the whole computational cost and the
attained R-order. Assuming the cost of calculating each functional evaluation is one, we can use the
definition of efficiency index as EI = p1/θ , θ is the whole computational cost [19].

The computational efficiency index of Equation (9) is 3.90057
1
2 ≈ 1.97499 ≈ 2, which is clearly

higher than efficiency index 2
1
2 ≈ 1.4142 of Newton’s and Steffensen’s methods, 3.56155

1
2 ≈ 1.8872 of

(3) 31/2 ≈ 1.73205 of Equation (4).
However, this improved computational efficiency is reported by ignoring the number of

multiplication and division per computing cycle. By imposing a slight weight for such calculations
one may once again obtain the improved computational efficiency of (9) in contrast to the existing
schemes of the same type.

4. Numerical Computations

In this section, we compare the convergence performance of Equation (9), with three well-known
iterative methods for solving four test problems numerically carried out in Mathematica 11.1. [20].

We denote Equations (1), (3), (5) and (9) with SM, DZ, PM, M4, respectively. We compare the
our method with different methods, using β0 = 0.1 and ζ0 = 0.1. Here, the computational order of
convergence (coc) has been computed by the following formula [21]:

coc =
ln|( f (xk)/ f (xk−1)|

ln|( f (xk−1)/ f (xk−2)|
(21)

Recalling that using a complex initial approximation, one is able to find the complex roots of the
nonlinear equations using (9).

Experiment 1. Let us consider the following nonlinear test function:

f1(x) = (x− 2 tan(x))
(
x3 − 8

)
, (22)

where α = 2 and x0 = 1.7.

Experiment 2. We take into account the following nonlinear test function:

f2(x) = (x− 1)
(

x10 + x3 + 1
)

sin(x), (23)

where α = 1 and x0 = 0.7.

Experiment 3. We consider the following test problem now:

f3(x) = −x3

2 + 2 tan−1(x) + 1, (24)

where α ≈ 1.8467200 and x0 = 4.
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Experiment 4. The last test problem is taken into consideration as follows:

f4(x) = tan−1(exp(x + 2) + 1) + tanh(exp(−x cos(x)))− sin(πx), (25)

where α ≈ −3.6323572··· and x0 = −4.1.

Tables 1–4 show that the proposed Equation (9) is of order 3.90057 and it is obviously believed to
be of more advantageous than the other methods listed due to its fast speed and better accuracy.

For better comparisons, we present absolute residual errors | f (x)|, for each test function which
are displayed in Tables 1–4. Additionally, we compute the computational order of convergence.
Noting that we have used multiple precision arithmetic considering 2000 significant digits to observe
and the asymptotic error constant and the coc as obviously as possible.

The results obtained by our proposed Equation (M4) are efficient and show better performance
than other existing methods.

A significant challenge of executing high-order nonlinear solvers is in finding initial approximation
to start the iterations when high accuracy calculating is needed.

Table 1. Result of comparisons for the function f1.

Methods |f1(x3)| |f1(x4)| |f1(x5)| |f1(x6)| coc

SM 4.1583 3.0743 1.4436 0.25430 2.00
DZ 0.13132 2.0026× 10−7 1.0181× 10−27 7.1731× 10−99 3.57
PM 1.8921× 10−6 4.5864× 10−24 1.0569× 10−88 7.5269× 10−318 3.55
M4 9.1741× 10−6 3.3242× 10−26 4.4181× 10−103 1.1147× 10−404 3.92

Table 2. Result of comparisons for the function f2.

Methods |f2(x5)| |f2(x6)| |f2(x7)| |f2(x8)| coc

SM − − − − −
DZ 0.14774 0.0016019. 1.3204× 10−10 1.5335× 10−35 3.56
PM 2.1191× 10−10 8.0792× 10−35 1.9037× 10−121 3.7062× 10−430 3.56
M4 5.9738× 10−15 4.1615× 10−57 1.7309× 10−220 1.8231× 10−857 3.90

Table 3. Result of comparisons for the function f3.

Methods |f3(x3)| |f3(x4)| |f3(x5)| |f3(x6)| coc

SM 0.042162 0.00012627 1.1589× 10−9 9.7638× 10−20 2.00
DZ 1.0219× 10−11 4.4086× 10−44 1.6412× 10−157 1.5347× 10−562 3.57
PM 7.9792× 10−8 3.712× 10−30 4.9556× 10−108 2.9954× 10−386 3.57
M4 4.4718× 10−6 2.9187× 10−25 4.7057× 10−101 1.0495× 10−395 3.89

To discuss further, mostly based on interval mathematics, one can find a close enough guess to
start the process. There are some other ways to determine the real initial approximation to start the
process. An idea of finding such initial guesses given in [22] is based on the useful commands in
Mathematica 11.1 NDSolve [] for the nonlinear function on the interval D = [a, b].

Following this the following piece of Mathematica code could give a list of initial approximations
in the working interval for Experiment 4:
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initialPoints = Sort[Flatten[Take[zeros,Length[zeros],1]]] 

To check the position of the zero and the graph of the function, we can use the following code 
to obtain Figure 1. 

Length[initialPoints] 
Plot[f[x],{x,a,b}, Epilog->{PointSize[Medium], Red, Point[zeros]},PlotRange->All,  PerformanceGoal-
>“Quality”, PlotStyle->{Thick, Blue}] 

Table 4. Result of comparisons for the function 𝑓 . 

Methods |𝒇𝟒(𝒙𝟑)| |𝒇𝟒(𝒙𝟒)| |𝒇𝟒(𝒙𝟓)| |𝒇𝟒(𝒙𝟔)| coc 
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Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red. 

As a harder test problem, for the nonlinear function 𝑔(𝑥) = 2𝑥 + 0.5 sin(20𝜋 𝑥) − 𝑥 , we can 
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014, −0.162392, −0.0935912, −0.0535277,6.73675 10 , 0.0533287, 0.0941576,0.160021, 0.188066, 0.269075, 0.279428,   1.76552, 1.78616, 1.8588, 1.89339, 1.95294, 2.,2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot of the function in this case is brought forward 
in Figure 2. 

We observe that the two self-accelerating parameters 𝛽  and 𝜁  have to be selected before the 
iterative procedure is started. That is, they are calculated by using information existing from the 
present and previous iterations (see, e.g., [23]). The initial estimates 𝛽  and 𝜁  should be preserved 
as precise small positive values. We use 𝛽 = 𝜁 = 0.1 whenever required. 

To check the position of the zero and the graph of the function, we can use the following code to
obtain Figure 1.
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Figure 1. The plot of the nonlinear function in Experiment 4 along with its roots colored in red.

As a harder test problem, for the nonlinear function g(x) = 2x + 0.5 sin(20π x) − x2, we can
simply find a list of estimates as initial guesses using the above piece of codes as follows: {−0.185014,
−0.162392, −0.0935912, −0.0535277, 6.73675 × 10−9, 0.0533287, 0.0941576, 0.160021, 0.188066, 0.269075,
0.279428, 1.76552, 1.78616, 1.8588, 1.89339,1.95294, 2., 2.04692, 2.10748, 2.13979, 2.2228, 2.22471}. The plot
of the function in this case is brought forward in Figure 2.

We observe that the two self-accelerating parameters β0 and ζ0 have to be selected before the
iterative procedure is started. That is, they are calculated by using information existing from the
present and previous iterations (see, e.g., [23]). The initial estimates β0 and ζ0 should be preserved as
precise small positive values. We use β0 = ζ0 = 0.1 whenever required.
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After a number of iterates, the (nonzero) free parameters start converging to a particular value
which makes the coefficient of Equation (6) zero as well as make the numerical scheme to converge
with high R-order.Mathematics 2019, 7, x FOR PEER REVIEW 8 of 9 
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5. Ending Comments

In this paper, we have constructed a one-step method with memory to solve nonlinear
equations. By using two self-accelerator parameters our scheme equipped with Newton’s interpolation
polynomial without any additional functional calculation possesses the high computational efficiency
index 1.97499, which is higher than many of the existing methods.

The efficacy of our scheme is confirmed by some of numerical examples. The results in Tables 1–4
shows that our method (Equation (M4)) is valuable to find an adequate estimate of the exact solution
of nonlinear equations.
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