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Abstract: Mass vaccination campaigns play major roles in the war against epidemics. Such prevention
strategies cannot always reach their goals significantly without the help of media and awareness
campaigns used to prevent contacts between susceptible and infected people. Feelings of fear,
infodemics, and misconception could lead to some fluctuations of such policies. In addition to the
vaccination strategy, the movement restriction approach is essential because of the factor of mobility
or travel. However, anti-epidemic border measures may also be disturbed if some infected travelers
manage to escape and infiltrate into a safer region. In this paper, we aim to study infection dynamics
related to the spatial spread of an epidemic in interconnected regions in the presence of random
perturbations caused by the three above-mentioned reasons. Therefore, we devise a stochastic
multi-region epidemic model in which contacts between susceptible and infected populations,
vaccination-based and movement restriction optimal control approaches are all assumed to be
unpredictable, and then, we discuss the effectiveness of such policies. In order to reach our goal,
we employ a stochastic maximum principle version for noised systems, state and prove the sufficient
and necessary conditions of optimality, and finally provide the numerical results obtained using a
stochastic progressive-regressive schemes method.

Keywords: multi-region epidemic model; stochastic model; media coverage; infodemics;
misconception; vaccination; stochastic optimal control; stochastic multi-points boundary
value problems

1. Introduction

Media plays a tremendous role in mounting awareness among susceptible populations in an
attempt to reduce their contact with infection. In fact, it has the potential of generating a psychological
impact on the social conduct, as explained in [1–3]. Then, many modelers of epidemics saw it was also
important to introduce and discuss the effect of awareness through media in the outbreaks of diseases;
see studies in [4–8].

On the other hand, in times of recently serious epidemic outbreaks, infodemics or epidemics of
rumors may appear very quickly in the virtual world. Because of contradictory views and unreliable
and misleading information diffused by some Internet users, people become confused and fearful.
In such circumstances, the role of media is essential, and journalists with scientists are obliged to report
and exhibit concrete and convincing proof = about the nature of the epidemic and should explain the
reasons for control interventions led by health authorities [9]. Here, we try to focus on rumors that
can prevent a large portion of the population from being informed about the necessity of following an
urgent anti-epidemic measure, namely vaccination.
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Recently, multi-region epidemic models as in [10,11] have been interested in the study of the
spatial spread of some epidemics using metapopulation-like differential equations. Other papers as
in [12–21] chose to model the same phenomenon, namely the regional spread of epidemics, using
the framework of difference equations. All these last references treated dynamics of epidemics in the
presence of a so-called travel-blocking control strategy. In fact, the mobility factor is very important in
such considered systems, and then, it is important to discuss the effectiveness of movement restrictions
between regions; otherwise, a vaccination control policy alone would not seem sufficient, especially
when we talk about an infection spreading in or around a large geographical territory. In order to
discuss other missing considerations on this subject, we try to propose here a stochastic version of those
epidemic modeling approaches based on a susceptible-infected-removed (SIR) multi-region stochastic
model that describes the spatial-temporal spread of an epidemic in the presence of optimal vaccination
and movement restriction strategies under perturbations. In the analysis of the optimization of these
control interventions, we focus in this paper on providing existence results of the sought controls
in a proposition and theorem of sufficient and necessary conditions, and thereafter, we discuss the
numerical results.

In the last decade, many applied mathematicians have been interested in the study of infection
dynamics under perturbations based on stochastic compartmental models; see for example [22–37].
The main idea here is that contacts between susceptible and infected populations are unpredictable.
As an example, media coverage alone could lead to random spread of an epidemic because some
susceptible individuals would avoid meeting infected people at any time once they receive alerts.
We investigate in this case the stochastic dynamics of infection when it occurs in regions that are
neighbors and interconnected by any kind of anthropological movement. The model is devised here
for the study of the spread of an epidemic in a domain Ω and that has the form of a stochastic control
differential state equation written at a time t as

ẋΩ(t) = f (t, xΩ(t), uΩ(t)) + g(t, xΩ(t), uΩ(t))
dWΩ(t)

dt

with t ∈ [0, T].
In the following sections, we define our stochastic multi-region SIR model and apply thereafter

a stochastic maximum principle for characterizing the sought optimal control functions and that is
associated with the mass vaccination strategy and movement restriction policies.

2. Model Description and Definitions

Presentation of the Stochastic Model without Control

First of all and based on the assumptions of the deterministic modeling approach proposed
in [10,11], we assume that there are p geographical regions denoted Ωj (domains) of the domain

studied. Ω =

p⋃
j = 1

Ωj. Let NΩj(t) be the population of domain Ωj at time t, presenting the

number of individuals who are physically present in Ωj, both residents and travelers, and let the host
population of Ωj be grouped into three epidemiological compartments. Let SΩj(t), IΩj(t), and RΩj(t)
be the number of individuals in the susceptible, infective, and removed compartments of Ωj at time
t, respectively.

The stochastic disease transmission in a given domain Ωj at time t is modeled using a perturbed
standard incidence, which we present by:

p

∑
k=1

ρjk(t)
IΩk (t)
NΩj(t)

SΩj(t)
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where the stochastic disease transmission coefficient ρjk(t) is the stochastic proportion of adequate
contacts in domain Ωj between a susceptible from Ωj (j = 1, ..., p) and an infective from another
domain Ωk at a time t, and which we define by:

ρjk(t) = β jk + σj
dWΩj(t)

dt

where β jk > 0 is the equivalent disease transmission coefficient to ρjk, but in the deterministic case,
which had been defined also as the proportion of adequate contacts in the study cases of [10,11], σj
(j = 1, ..., p) are real constants and represent the intensities of fluctuations caused by media, and
{WΩj(t)}t∈[0,T] is an independent random variable composed of continuous white noises independent
of Ft ∈ F and that is a standard Brownian motion supposed to be caused in this part without control,
by media coverage diffused in region Ωj.

When there is no control introduced yet in Ωj, the stochastic multi-regional continuous-time SIR
model associated with Ωj is presented as follows:

ṠΩj(t) = −
p

∑
k=1

ρjk(t)
IΩk (t)
NΩj(t)

SΩj(t) +
(

NΩj(t)− SΩj(t)
)

dj (1)

İΩj(t) =
p

∑
k=1

ρjk(t)
IΩk (t)
NΩj(t)

SΩj(t)− γj I
Ωj(t)− dj I

Ωj(t) (2)

ṘΩj(t) = γj I
Ωj(t)− djR

Ωj(t) (3)

where dj is the birth and death rate and γj is the recovery rate. The biological background requires
that all parameters be non-negative.

NΩj(t) = SΩj(t) + IΩj(t) + RΩj(t) is the population size corresponding to domain Ωj at time t.
The population size remains constant for all t ∈ [0, T]; in fact:

ṄΩj(t) = ṠΩj(t) + İΩj(t) + ṘΩj(t) = 0

Therefore, as a function of the deterministic proportion of adequate contacts β jk and the
continuous Wiener process WΩj(t), the stochastic system (6) becomes the Itô multi-region stochastic
differential equations (SDEs) model:

ṠΩj (t) = −
p

∑
k=1

β jk
IΩk (t)
NΩj (t)

SΩj (t) +
(

NΩj (t)− SΩj (t)
)

dj

−σj

p

∑
k=1

IΩk (t)
NΩj (t)

SΩj (t)
dWΩj (t)

dt
(4)

İΩj (t) =
p

∑
k=1

β jk
IΩk (t)
NΩj (t)

SΩj (t)− γj IΩj (t)− dj IΩj (t)

+σj

p

∑
k=1

IΩk (t)
NΩj (t)

SΩj (t)
dWΩj (t)

dt
(5)

ṘΩj (t) = γj IΩj (t)− djRΩj (t) (6)

3. The Model with Vaccination

3.1. Presentation of the Control Model

In this section, we introduce a function θΩj(t) as a perturbation of the control variable denoted by
uΩj(t) and that characterizes the effectiveness of vaccination in the above-mentioned model (4)–(6) as
in [11]. This perturbation with disturbances can be caused by infodemics and rumors and also ideas
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from feelings of fear and misconception. Then, for a given domain Ωj targeted by vaccination, the
model is given by the following equations:

ṠΩj (t) = −
p

∑
k=1

ρjk(t)
IΩk (t)
NΩj (t)

SΩj (t) +
(

NΩj (t)− SΩj (t)
)

dj

−θΩj (t)SΩj (t) (7)

İΩj (t) =
p

∑
k=1

ρjk(t)
IΩk (t)
NΩj (t)

SΩj (t)− γj IΩj (t)− dj IΩj (t) (8)

ṘΩj (t) = γj IΩj (t)− djRΩj (t) + θΩj (t)SΩj (t) (9)

with:

θΩj(t) = uΩj(t) + δj
dWΩj(t)

dt
.

Thus, in a more general form, it refers to the stochastic control equation written at a time t as

ẋΩ(t) = f (t, xΩ(t), uΩ(t)) + g(t, xΩ(t), uΩ(t))
dWΩ(t)

dt

where at time t and for j = 1, ..., p:

xΩ(t) = xΩj(t) =

SΩj(t)
IΩj(t)
RΩj(t)


uΩ(t) = uΩj(t),

f (t, xΩ(t), uΩ(t))

=


−

p

∑
k=1

β jk
IΩk (t)
NΩj(t)

SΩj(t) +
(

NΩj(t)− SΩj(t)
)

dj − uΩj(t)SΩj(t)

p

∑
k=1

β jk
IΩk (t)
NΩj(t)

SΩj(t)− γj I
Ωj(t)− dj I

Ωj(t)

γj I
Ωj(t)− djR

Ωj(t) + uΩj(t)SΩj(t)


and:

g(t, xΩ(t), uΩ(t)) =


−
(

σj

p

∑
k=1

IΩk (t)
NΩj(t)

SΩj(t) + δjS
Ωj(t)

)
σj

p

∑
k=1

IΩk (t)
NΩj(t)

SΩj(t)

δjS
Ωj(t)



Our goal is to try to minimize the population of the infected group and the cost of vaccination,
while maximizing the number of removed people in all regions. Our control functions take values

between u
Ωj
min and u

Ωj
max, where uΩk

min, uΩk
max ∈ [0, 1] , ∀k = 1, ..., p.
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3.2. A Stochastic Optimal Control Approach

3.2.1. Optimal Control Characterization and Necessary Conditions

We devise in this paper an optimal control approach that aims to minimize the number of the
infected people and maximize the ones in the removed category for all regions, while minimizing the
cost of vaccination.

The effort expended in preventing the epidemic in each region Ωj is proportional to uΩj , i.e.,
achieving a higher value of control uΩj means that more money, equipment, personnel, and resources
must be brought to Ωj. This implies that the cost of vaccination in region Ωj, lets say a function C(uΩj),
may not be linear; that is, doubling uΩj may require more than double the expenditure [38].

Then, we are interested in minimizing the functional

J(uΩj) = E

(∫ T

0
f0(t, xΩj(t), uΩj(t))dt

)
with:

f0(t, xΩj (t), uΩj (t)) =

(
αI

j IΩj (t)− αR
j RΩj (t) +

Aj

2
(uΩj (t))2

)
where Aj > 0, αI

j > 0, αR
j > 0 are the weight constants of control, the infected, and the removed in

region Ωj, respectively.
In [11], the authors studied the special case of the minimization problem of the cost functional J

when there were no perturbations.
Here, our goal is to minimize the number of infected people and minimize the systemic costs

attempting to increase the number of removed people in each Ωj. In other words, we are seeking an
optimal control uΩj∗ such that:

J(uΩj∗) = min{J(uΩj)/uΩj ∈ Uj}

where Uj is the control set defined by:

Uj([0, T]) = {uΩj(t) Ft-progressively measurable|uΩj
min ≤ uΩj(t) ≤ u

Ωj
max, t ∈ [0, T]}

Let us define the Hamiltonian function H by:

H(xΩ, uΩ, µΩ, νΩ) = f0(xΩ, uΩ) + 〈 f (xΩ, uΩ), µΩ〉

+tr
[
νΩT

g(xΩ, uΩ)
]

At time t ∈ [0, T] and for j = 1, ..., p, it can be rewritten as:

H(xΩj(t), uΩj(t), µΩj(t), νΩj(t)) = f0(xΩj(t), uΩj(t)) + 〈 f (xΩj(t), uΩj(t)), µΩj(t)〉

+
3

∑
l=1

glT
(xΩj(t), uΩj(t))νΩl

j(t)

Here, .T means the transposition, while in a domain Ω, (µ(t), ν(t))) is a pair of adjoint variables
satisfying the following adjoint BSDE (backward stochastic differential equation):

dµΩ(t) = −[ f T
x (t, xΩ(t), uΩ(t))µΩ(t) + ∑3

l=1 glT

xΩ(t, xΩ(t), uΩ(t))νΩl
(t)

+ f0xΩ (t, xΩ(t), uΩ(t))]dt + νΩ(t)dWΩ(t),
µΩ(T) = 0.

(10)
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Using a stochastic version of Pontryagin’s maximum principle [39], we characterize the optimal
control u in the following theorem to find its analytical formulation.

Theorem 1. (Stochastic maximum principle and characterization of uΩ∗)
If there exists an optimal pair (xΩ∗, uΩ∗) and a pair of processes (µ(t), ν(t)) satisfying (27), then

for j = 1, ..., p, we have:

H(xΩj∗(t), uΩj∗(t), µΩj(t), νΩj(t)) = min
uΩj∈U

H(xΩj(t), uΩj∗(t), µΩj(t), νΩj(t)).

Moreover, we obtain the bounded stochastic control:

uΩj∗ = min(max(u
Ωj
min,−

(µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj∗

Aj
), u

Ωj
max),

the solution of the FBSDEs (forward-backward stochastic differential equations):

dxΩj(t) = f (t, xΩj(t), uΩj(t))dt + g(t, xΩj(t), uΩj(t))dWΩj(t)

dµΩj(t) = −[ f T
xΩj

(t, xΩj(t), uΩj(t))µΩj(t) + ∑3
l=1 glT

xΩj
(t, xΩj(t), uΩj(t))νΩl

j(t)

+ f0
x

Ωj
(t, xΩj(t), uΩj(t))]dt + νΩj(t)dWΩj(t),

xΩj(0) = (S
Ωj
0 , I

Ωj
0 , R

Ωj
0 )

µΩj(T) = 0.

(11)

Proof. Since our control uΩj is bounded, we then prove the previous theorem by using the
following Lagrangian:

L(xΩj(t), uΩj(t), µΩj(t), νΩj(t), ω1(t), ω2(t))

= αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
(uΩj(t))2 + µ

ΩT
j (t) f (t, xΩj(t), uΩj(t))

+
3

∑
l=1

glT
(xΩj(t), uΩj(t))νΩl

j(t) + ω1(t)(u
Ωj
max − uΩj(t)) + ω2(t)(uΩj(t)− u

Ωj
min)

where ω1, ω2 ≥ 0, verifying at uΩj = uΩj∗ the two conditions:

ω1(u
Ωj
max − uΩj∗) = 0 and ω2(uΩj∗ − u

Ωj
min) = 0.

Owing to the condition of minimization, we define by:

L(xΩj∗(t), uΩj∗(t), µΩj(t), νΩj(t), ω1(t), ω2(t)) = min
uΩj∈Uj

L(xΩj(t), uΩj(t), µΩj(t), νΩj(t), ω1(t), ω2(t)).

We differentiate the Lagrangian with respect to uΩj on the set:

{t|uΩj
min ≤ uΩj(t) ≤ u

Ωj
max}

to obtain the optimality equation

dL
duΩj

(xΩj(t), uΩj(t), µΩj(t), νΩj(t), ω1(t), ω2(t))|uΩj

= uΩj∗ = Aju
Ωj(t) + (µ

Ωj
3 (t)− µ

Ωj
1 (t))SΩj −ω1(t) + ω2(t) = 0.
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Furthermore, we find uΩj∗(t) = −
(µ

Ωj
3 (t)− µ

Ωj
1 (t))SΩj −ω1 + ω2

Aj
.

- If u
Ωj
min < uΩj∗(t) < u

Ωj
max, then w1(t) = w2(t) = 0; therefore:

uΩj∗(t) = −
(µ

Ωj
3 (t)− µ

Ωj
1 (t))SΩj

Aj
.

- If uΩj∗(t) = u
Ωj
min, then w1(t) = 0;, therefore, u

Ωj
min = −

(µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj + w2(t)

Aj
, implying that

w2(t) = −((µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj + Aju

Ωj
min).

Due to w2(t) ≥ 0 and Aj > 0, we obtain uΩj∗(t) ≤ −
(µ

Ωj
3 (t)− µ

Ωj
1 (t))SΩj

Aj

- If uΩj∗(t) = u
Ωj
max, then w2(t) = 0; thus, u

Ωj
max = −

(µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj − w1(t)

Aj
implying that

w1(t) = (µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj + Aju

Ωj
max.

In view of w1(t) ≥ 0 and Aj > 0, we get uΩj∗(t) ≥ −
(µ

Ωj
3 (t)− µ

Ωj
1 (t))SΩj

Aj
.

Using these standard optimality arguments, we characterize the control uΩj∗(t) by

uΩj∗(t) =


− (µ

Ωj
3 (t)−µ

Ωj
1 (t))SΩj

Aj
i f u

Ωj
min < − (µ

Ωj
3 (t)−µ

Ωj
1 (t))SΩj

Aj
< u

Ωj
max

u
Ωj
min i f − (µ

Ωj
3 (t)−µ

Ωj
1 (t))SΩj

Aj
≤ u

Ωj
min

u
Ωj
max i f − (µ

Ωj
3 (t)−µ

Ωj
1 (t))SΩj

Aj
≥ u

Ωj
max

or by a more reduced form, we can rewrite uΩj∗(t) = min(max(u
Ωj
min,−

(µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj∗

Aj
), u

Ωj
max)).

3.2.2. Existence of Solutions and Sufficient Conditions

Note that f : [0, T]×R3 ×Uj → R3, g : [0, T]×R3 ×Uj → R3 ⊗R3 and f0 : [0, T]×R3 ×Uj → R

are measurable such that f (t, x, .) : Uj → R3 and f0(t, x, .) : Uj → R3 are continuous, f , g, and f0

are bounded, and there exists a constant K > 0 such that for all t ∈ [0, T] and for all xΩj , x̂Ωj ∈ R3,
the following properties are checked [40,41]:

| f (t, xΩj(t), uΩj(t))− f (t, x̂Ωj(t), uΩj(t))|+ ||g(t, xΩj(t), uΩj)− g(t, x̂Ωj(t), uΩj)|| ≤ K|xΩj − x̂Ωj |
(12)

In fact, if we suppose xΩj = (SΩj , IΩj , RΩj), x̂Ωj = (ŜΩj , ÎΩj , R̂Ωj) ∈ Γ ⊂ R3 with Γ =

]a1, a2[×]b1, b2[×]c1, c2[ (ai=1,2, bi=1,2 and ci=1,2 are positive constants). In order to prove (12), we
can take constants
K11 = δj + σj

pb2
a1+b1+c1

,
K21 = σj

pa2
a1+b1+c1

,
K31 = δj
and K1 = max(K11, K21, K31) to obtain:

||g(t, xΩj(t), uΩj(t))− g(t, x̂Ωj(t), uΩj(t))|| ≤ K1|xΩj − x̂Ωj |

while taking also

K2 = u
Ωj
max + (b2 + c2)dj + ∑

p
k=1 β jk

b2
a1+b1+c1

,

K3 = dj + γj + ∑
p
k=1 β jk

a2
a1+b1+c1
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and K4 = u
Ωj
max + dj + b2γj,

Thus, using the maximum norm, we have
| f1(t, xΩj(t), uΩj(t))− f1(t, x̂Ωj(t), uΩj(t))| ≤ K2|xΩj − x̂Ωj |,
| f2(t, xΩj(t), uΩj(t))− f2(t, x̂Ωj(t), uΩj(t))| ≤ K3|xΩj − x̂Ωj |,
and | f3(t, xΩj(t), uΩj(t))− f3(t, xΩj(t), uΩj(t))| ≤ K4|xΩj − x̂Ωj |

with f1, f2, and f3, the right-hand sides of differential equations in (24), (25), and (26). Thus,
by setting f = ( f1, f2, f3), the property (12) is checked by considering
K = K1 + max(K2, K3, K4),

and we should also have:

| f0(t, xΩj(t), uΩj(t))− f0(t, x̂Ωj(t), uΩj(t))| ≤ K|xΩj − x̂Ωj |. (13)

which can easily be checked for the particular integrand supposed here.

Proposition 1. The optimal control problem identified by the objective functional J and linked to the state
system (24)–(26) that satisfies the properties (12) and (13) admits an optimal control pair.

Proof. At first, a backward stochastic differential equation (BSDE) with a terminal condition is
introduced:

dY(t) = − f0(t, xΩj(t), uΩj(t))dt + Z(t)dWΩj(t), t ∈ [0, T]
Y(T) = 0 given;

(14)

where:

f0(t, xΩj(t), uΩj) = αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
(uΩj(t))2

Note that under the previous observations, (12) and (13), for (x
Ωj
0 , uΩj) ∈ R3 ×U, the backward

stochastic differential Equation (14) becomes linear. Therefore, the state system admits a unique strong

solution [39] that is written in the following form xΩj(.) ≡ xΩj(.; x
Ωj
0 , uΩj).

Moreover, for a given (xΩj(.), uΩj), the backward stochastic differential equation (14) admits a

unique adapted solution (Y(.), Z(.)) ≡ (Y(.; x
Ωj
0 , uΩj), Z(.; x

Ωj
0 , uΩj)), which depends on (x

Ωj
0 , uΩj)

through (xΩj(.), uΩj).
Notice that for t ∈ [0, T], the process Y(t), the solution of (14) has the general form:

Y(t) = Y(T) +
∫ T

t
f0(t, xΩj(t), uΩj(t))dt−

∫ T

t
Z(t)dWΩj(t), (15)

Denote that Ft is the natural filtration of the Brownian motion W(t). Here, Y(t) is
(Ft)t≥0-adapted [39], implying that:

Y(t) = E[Y(t)|Ft], t ∈ [0, T]. (16)

Thus,

Y(0) = J(uΩj) = E[
∫ T

0
(αI

j IΩj(t)− αR
j RΩj(t) +

Aj

2
(uΩj(t))2)dt] (17)

Now, the objective functional J can be rewritten as:

J(uΩj) = Y(0; x
Ωj
0 , uΩj) (18)
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Considering the new formulation of the objective function (18), a forward backward stochastic
differential equations (FBSDE) system is introduced:

dxΩj(t) = ( f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t))dt + g(t, xΩj(t), uΩj(t))dWΩj(t),

dY(t) = −(αI
j IΩj(t)− αR

j RΩj(t) +
Aj
2 (uΩj(t))2)dt + Z(t)dWΩj(t),

xΩj(0) = x
Ωj
0 , Y(T) = 0 given.

(19)

In the following, we will use an appropriate approach in order to use a parabolic formulation and
to establish the existence result.

In fact, if (xΩj , Y, Z) is an adapted solution of (19), then there exists an appropriate function θ

such that the following relationship is verified [42]:

Y(t) = θ(t, xΩj(t), uΩj(t)), t ∈ [0, T] a.s.P , (20)

where the undetermined function θ is assumed to be of C1,2,0([0, T]× R3 ×Uj).
The control uΩj is sought to minimize the cost functional Y(0) = J(uΩj). From (19), we have:

dY(t) = −(αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
(uΩj(t))2)dt + Z(t)dWΩj(t).

To apply Ito’s formula to θ(t, xΩj(t), uΩj(t)), start by using Taylor’s polynomial:

dθ(t, xΩj(t), uΩj(t)) = θt(t, xΩj(t), uΩj(t))dt + θ
xΩj (t, xΩj(t), uΩj(t))dxΩj

+
1
2

θ
xΩj xΩj (t, xΩj(t), uΩj(t))(dxΩj)2,

and recall that:

dxΩj(t) = ( f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t))dt + g(t, xΩj(t), uΩj(t))dWΩj(t).

Replacing the formulation of dxΩj(t) in dθ(t):

dθ(t, xΩj(t), uΩj(t)) = θt(t, xΩj(t), uΩj(t))dt + θ
xΩj (t, xΩj(t), uΩj(t))[ f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t)]dt

+ θ
xΩj (t, xΩj(t), uΩj(t))g(t, xΩj(t), uΩj(t))dWΩj(t)

+
1
2

θ
xΩj xΩj (t, xΩj(t), uΩj(t))[(( f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t))dt)2

+ (g(t, xΩj(t), uΩj(t))dWΩj(t))2 + 2g(t, xΩj(t), uΩj(t))( f̂ (t, xΩj(t))

+ f1(xΩj(t))uΩj(t))dtdWΩj(t)],

and using Itô’s multiplication, to obtain the final formulation of dθ(t):

dθ(t, xΩj(t), uΩj(t)) = [θt(t, xΩj(t), uΩj(t)) +
1
2

θ
xΩj xΩj (t, xΩj(t), uΩj(t))g2(t, xΩj(t), uΩj(t))

+ θ
xΩj (t, xΩj(t), uΩj(t))( f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t))]dt

+ θ
xΩj (t, xΩj(t), uΩj(t))g(t, xΩj(t), uΩj(t))dWΩj(t).
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According to (19), by equating the corresponding drift terms dY(t) and dθ(t), the following
parabolic PDE is obtained:

dθ(t, xΩj(t), uΩj(t)) = [θt(t, xΩj(t), uΩj(t)) +
1
2

θ
xΩj xΩj (t, xΩj(t), uΩj(t))g2(t, xΩj(t), uΩj(t))

+ θ
xΩj (t, xΩj(t), uΩj(t))( f̂ (t, xΩj(t)) + f1(xΩj(t))uΩj(t)]dt

+ θ
xΩj (t, xΩj(t), uΩj(t))g(t, xΩj(t), uΩj(t))dWΩj(t).

= −(αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
(uΩj(t))2)dt + Z(t)dWΩj(t).

Substitute Z(t) = θ
xΩj (t, xΩj(t), uΩj(t))g(t, xΩj(t), uΩj(t)) into the above parabolic PDE to obtain:

0 = θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj ( f̂ + f1uΩj) + αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
(uΩj(t))2

= θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t) + f1θ
xΩj u

Ωj +
Aj

2
(uΩj(t))2

= θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t)

+ f1θ
xΩj u

Ωj +
Aj

2
(uΩj(t))2 +

1
2Aj
| f1θ

xΩj |
2 − 1

2Aj
| f1θ

xΩj |
2

= θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t)

− 1
2Aj
| f1θ

xΩj |
2 +

Aj

2
[uΩj

2
+
| f1θ

xΩj |2

A2
j

+
2 f1θ

xΩj u
Ωj

Aj
]

= θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t) +
Aj

2
[uΩj +

f1θ
xΩj

Aj
]2 − 1

2Aj
| f1θ

xΩj |
2.

By rearranging terms, the above equation can be written in the form of a backward parabolic PDE
with a terminal condition on θ:

θt +
1
2 θ

xΩj xΩj g2 + θ
xΩj f̂ + αI

j IΩj(t)− αR
j RΩj(t)− 1

2Aj
| f T

1 θ
xΩj |2 +

Aj
2 [uΩj +

f T
1 θ

x
Ωj

Aj
]2 = 0

θ(T, xΩj(T)) = 0, xΩj ∈ R3.
(21)

Using a standard maximum principle for parabolic partial differential equations (PPDE) [43],
the smallest θ solution should be the one of the following PPDE problem:

θt +
1
2 θ

xΩj xΩj g2 + θ
xΩj f̂ + αI

j IΩj(t)− αR
j RΩj(t)− 1

2Aj
| f T

1 θ
xΩj |2 = 0

θ(T, xΩj(T)) = 0, xΩj ∈ R3.
(22)

For the resolution of (22), results from Ladyzenskaja et al. [43] show that there exists a unique
classical solution for comparable types of parabolic partial differential equations. The discussion of the
solvability of this type of quasi-linear parabolic PDE in the presence of a quadratic gradient term can
be found in [44]. Thus, there exists a unique classical solution to this equation. In this case, the control
uΩj is sought in order to minimize the objective function J such that:

min
uΩj∈Uj

J(uΩj) = J(uΩj
∗
),

Thus:
min

uΩj∈Uj

θ(0; xΩj(0), uΩj) = θ(0; xΩj(0), uΩj
∗
),
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Then, use (15), (20), and (21) to obtain:∫ T

0
f0(t, xΩj(t), uΩj(t))dt = θ(0, xΩj(0))− θ(T, xΩj(T)) +

∫ T

0
Z(t)dWΩj(t)

+ θt +
1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t)

− 1
2Aj
| f T

1 θ
xΩj |

2 +
Aj

2
[uΩj +

f T
1 θ

xΩj

Aj
]2.

Therefore,

J(uΩj) = θ(0, xΩj(0))−E{θ(T, xΩj(T))}

+ E
∫ T

0
θt +

1
2

θ
xΩj xΩj g2 + θ

xΩj f̂ + αI
j IΩj(t)− αR

j RΩj(t)

− 1
2Aj
| f T

1 θ
xΩj |

2 +
Aj

2
[uΩj +

f T
1 θ

xΩj

Aj
]2dt

= θ(0, xΩj(0), uΩj) +
Aj

2
E
∫ T

0
[uΩj +

f T
1 θ

xΩj

Aj
]2dt

≥ θ(0, xΩj(0), uΩj
∗
) = J(uΩj

∗
).

Consequently, it is finally concluded that uΩj
∗
= − f T

1 θ
xΩj is an optimal control.

3.2.3. Numerical Results

In this part, we suppose we have three interconnected regions, and we investigate numerically
using the stochastic progressive-regressive schemes method presented in [45] the effectiveness of the
optimal control approach presented above. In our simulations, we note that:

- We study three regions, denoted by Ω1, Ω2, and Ω3 and that are all assumed to be infected.
- β jk are replaced by βk just to avoid more complications in the program code. In other words, we

assume that the probability to be infected does not depend on the source location of susceptibility,
but on the source location of infectivity only, namely Ωk. More explicitly, β11 = β21 = β31; they are
represented by β1, β12 = β22 = β32; they are represented by β2 and, finally, β13 = β23 = β33 = β3;
and they are represented by β3.

- The unit of the parameters dj, γj and β jk is days−1 ∀ fixed j and mobile k.

- ∀i ti+1 = ti + h, ∆Wi →
√

hN(0, 1) with h the time step.
- The coefficients in diffusions δj, ς jk, and σj are assumed to be all equal to 0.125. Larger values

can be considered; however, they only increase the level of stochasticity, and this is not very
interesting here.

Figure 1 depicts the dynamics of SΩj , IΩj , and RΩj , j = 1, 2, 3 in the absence and presence of
optimal controls uΩ1∗, uΩ2∗, and uΩ3∗. As we can observe in the upper part of this figure and because
of a strong immunity of a fraction of the population, there is a natural recovery from the infection and
that causes an increase of the number of RΩj in all three regions, but without exceeding the number of
40,000 people.

In the same part, we can also see that the number of infected people, namely IΩj ∀j, exceeds
70,000 people, and this proves the necessity of an urgent control measure to fight against the epidemic.
In the lower part of this figure, we reach our goal that is summarized in maximizing the number of
removed people while minimizing the number of infected people, and we can observe that the number
of removed individuals has reached now a number that is near 90,000 people in all regions, while the
number of infected people tended to zero values after 30, 40, and 48 days in regions Ω1, Ω2, and Ω3,
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respectively. We note that the optimal controls uΩj∗, ∀j take the same values along the optimal control
strategy period and that are all equal to one, and they tend to zero at the final time T. This is also the
reason behind our avoidance of exhibiting simulations of the three optimal controls separately.
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Figure 1. (Top) SΩj IΩj RΩj , j = 1, 2, 3 stochastic dynamics without controls. (Bottom) SΩ1 IΩ1 RΩ1

stochastic dynamics in the presence of all optimal controls uΩ1∗, uΩ2∗, and uΩ3∗. SΩ1
0 =90,000, IΩ1

0 =

1200, SΩ2
0 = 89,000, IΩ2

2 = 1100, SΩ3
0 = 88,000, IΩ3

0 = 1000, R
Ωj
0 = 0 ∀ j = 1, 2, 3, d1 = 0.06, γ1 = 0.04,

β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1.

In Figure 2, we deduce that when we follow the optimal vaccination control strategy in the two
regions Ω2 and Ω3, the number RΩj , j = 2, 3 exceeded 100,000 individuals in the first five days, but
decreased after towards values around 80,000 people, which represents an important value also, but
they were smaller values than the ones obtained in the case treated in the first figure. In addition,
the number IΩj , j = 2, 3 decreased to values around 2000 people, which shows also the effectiveness
of the followed vaccination control strategy, but they were larger values than the ones obtained in
the previous case. In parallel, despite the cancellation of vaccination in region Ω1, we can see that
the number of removed people approached values around 50,000, which shows an increase by 10,000
people compared to the case when controls were not introduced in all regions, and this proves some
influence of the optimal control policy followed in other regions in a region that is not yet controlled
directly. We note also here that the optimal controls uΩj∗, j = 2, 3 take the same values along the
optimal control strategy period, which were all equal to one with some perturbations after 5 days, and
they tended to zero at the final time T.
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Figure 2. SΩj IΩj RΩj , j = 1, 2, 3 stochastic dynamics in the absence of optimal control uΩ1∗ and the
presence of optimal controls uΩ2∗ and uΩ3∗. Same parameters and initial conditions as in the first figure.

In Figure 3, we study the dynamics of SΩj , IΩj , and RΩj , j = 1, 2, 3 when we introduce an optimal
vaccination control in region Ω1 only, and we can deduce some negative impact of the two regions
Ω2 and Ω3 on the first region due to the absence of a control strategy in them. In fact, as they were at
higher risk of infection than region Ω1, the optimal control uΩ1∗ seemed not sufficient for eradicating
infection, as shown in first figure when controls were introduced in all regions, but this can at least
increase the number of removed people in this region to an important value that exceeds 90,000
individuals. We note that the optimal control uΩ1∗ takes one as the maximal value.
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Figure 3. SΩj IΩj RΩj , j = 1, 2, 3 stochastic dynamics in the absence of optimal controls uΩ2∗ and uΩ3∗

and the presence of optimal control uΩ1∗ only. SΩ1
0 = 90,000, IΩ1

0 = 1200, SΩ2
0 = 89,000, IΩ2

2 = 1100,

SΩ3
0 = 88,000, IΩ3

0 = 1000, R
Ωj
0 = 0 ∀ j = 1, 2, 3, d1 = 0.06, γ1 = 0.04, β1 = 0.5, d2 = 0.05, γ2 = 0.03,

β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1.

4. The Model with Vaccination Plus Movement Restriction

4.1. Presentation of the Control Model

Let I = {1, ..., p} and IH ⊂ I be the set of indices of regions at high-risk and then having the
ability to spread the epidemic to other regions. Here, we study the case when a given region Ωj is
under vaccination control uΩj and at the same time under the threat of infection coming from other
regions. For this, we add to the vaccination strategy another control denoted as vjΩk to characterize the
effectiveness of movement restriction operations, in order to prevent the infected of regions Ωk, k ∈ IH
coming to the controlled region Ωj, where:{

vjΩk 6= 0 ∀k ∈ IH k 6= j
vjΩk = 0 elsewhere

(23)
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Then, the model (24)–(26) in the controlled region Ωj is rewritten as follows:

ṠΩj (t) = −
p

∑
k=1

ϑjk(t)
IΩk (t)
NΩj (t)

SΩj (t) +
(

NΩj (t)− SΩj (t)
)

dj

−θΩj (t)SΩj (t) (24)

İΩj (t) =
p

∑
k=1

ϑjk(t)
IΩk (t)
NΩj (t)

SΩj (t)− γj IΩj (t)− dj IΩj (t) (25)

ṘΩj (t) = γj IΩj (t)− djRΩj (t) + θΩj (t)SΩj (t) (26)

with the vaccination control defined as:

θΩj(t) = uΩj(t) + δj
dWΩj(t)

dt
.

and the function ϑjk(t) defined as:

ϑjk(t) =
(

1− vjΩk
)

β jk + (1− ς jk)σj
dWΩj(t)

dt

where σj and ς jk, k ∈ IH , (j = 1, ..., p) are real constants and representing the intensities of fluctuations
caused by media and escapes of infected people through borders between Ωk and Ωj, respectively.

4.2. A Stochastic Optimal Control Approach

Now, the problem (Section 3.2.1) is changed in this part to

J(uΩj , vjΩ) = ∑
k∈IH

E

(∫ T

0

(
αI

j IΩj(t)− αR
j RΩj(t) +

Aj

2
(uΩj(t))2 +

Bj

2
(vjΩk (t))2

)
dt
)

where Bj > 0 is

the weight constant of the new control, while uΩj ∈ Uj and vjΩ =
(
vjΩk

)
k∈IH

belong to the control set

V IH
j defined as:

V IH
j ([0, T]) = {vjΩ(t) Ft-progressively measurable|vΩj

min ≤ vjΩk (t) ≤ v
Ωj
max, k ∈ IH , t ∈ [0, T]}

The Hamiltonian in this case is defined as:

H = ∑
k∈IH

(
αI

j IΩj(t)− αR
j RΩj(t) +

Aj

2
(uΩj(t))2 +

Bj

2
(vjΩk (t))2 + µ

ΩT
j (t) f (t, xΩj(t), uΩj(t), vjΩk (t))

+
3

∑
l=1

glT
(xΩj(t), uΩj(t), vjΩk (t))νΩl

j(t)

)

where the state function f is defined as:
f (t, xΩ(t), uΩ(t), vjΩ(t))

=


−

p

∑
k=1

(
1− vjΩk

)
β jk

IΩk (t)
NΩj(t)

SΩj(t) +
(

NΩj(t)− SΩj(t)
)

dj − uΩj(t)SΩj(t)

p

∑
k=1

(
1− vjΩk

)
β jk

IΩk (t)
NΩj(t)

SΩj(t)− γj I
Ωj(t)− dj I

Ωj(t)

γj I
Ωj(t)− djR

Ωj(t) + uΩj(t)SΩj(t)
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and the diffusion matrix g is defined as:

g(t, xΩ(t), uΩ(t), vjΩ(t)) =


−
(

σj

p

∑
k=1

(1− ς jk)
IΩk (t)
NΩj(t)

SΩj(t) + δjS
Ωj(t)

)
σj

p

∑
k=1

(1− ς jk)
IΩk (t)
NΩj(t)

SΩj(t)

δjS
Ωj(t)


while in a domain Ω, (µ(t), ν(t))) is a pair of adjoint variables satisfying the following adjoint BSDE
(backward stochastic differential equation):

dµΩ(t) = −[ f T
x (t, xΩ(t), uΩ(t), vjΩ(t))µΩ(t) + ∑3

l=1 glT

xΩ(t, xΩ(t), uΩ(t), vjΩ(t))νΩl
(t)

+ f0xΩ (t, xΩ(t), uΩ(t), vjΩ(t))]dt + νΩ(t)dWΩ(t),
µΩ(T) = 0.

(27)

4.2.1. Optimal Control Characterization and Necessary Conditions

Using the stochastic Pontryagin’s maximum principle as done for the first control strategy, we
obtain the following optimal control characterization and necessary conditions:

Theorem 2. If there exists an optimal pair (xΩ∗, uΩ∗, vjΩ∗) and a pair of processes (µ(t), ν(t)) satisfying (27),
then for j = 1, ..., p, k ∈ IH , we have:

H(t, xΩj∗(t), uΩj∗(t), vjΩk∗(t), µΩj(t), νΩj(t))

= min
(uΩj ,vjΩk (t))∈Uj×V IH

j

H(t, xΩj(t), uΩj∗(t), vjΩk∗(t), µΩj(t), νΩj(t)).

Moreover, we obtain the bounded stochastic control:

uΩj∗ = min(max(u
Ωj
min,−

(µ
Ωj
3 (t)− µ

Ωj
1 (t))SΩj∗

Aj
), u

Ωj
max),

vjΩk∗ = min(max(v
Ωj
min,−

(µ
Ωj
1 (t)− µ

Ωj
2 (t))β jk IΩk∗SΩj∗

Bj
), v

Ωj
max),

and solutions of the FBSDEs (forward-backward stochastic differential equations):

dxΩj (t) = f (t, xΩj (t), uΩj (t), vjΩk (t))dt + g(t, xΩj (t), uΩj (t), vjΩk (t))dWΩj (t)

dµΩj (t) = −[ f T
xΩj

(t, xΩj (t), uΩj (t), vjΩk (t))µΩj (t) + ∑3
l=1 glT

xΩj
(t, xΩj (t), uΩj (t), vjΩk (t))νΩl

j (t)

+ f0
x

Ωj
(t, xΩj (t), uΩj (t), vjΩk (t))]dt + νΩj (t)dWΩj (t),

xΩj (0) = (S
Ωj
0 , I

Ωj
0 , R

Ωj
0 )

µΩj (T) = 0.

(28)

4.2.2. Numerical Results

In this part, we show the importance of following an optimal control strategy that is based on
movement restrictions along with the presence of the vaccination policy discussed previously. For
this, we take the example of preventing the epidemic from arriving at the region Ω1 through infected
travelers who come from other regions. This means we restrict movements of infected people coming
from Ω2 and Ω3 either using v1Ω2∗ and/or v1Ω3∗, respectively. Figure 4 presents the simulations of
IΩj and RΩj , j = 1, 2, 3 in the presence of all optimal controls uΩ1∗, uΩ2∗, and uΩ3∗, and we can see
that when we restrict movement of individuals coming from region Ω2 and aiming to enter Ω1, we
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can reach smaller values of infected people after only 15 days in all regions; at the same time, we
deduce that the level of the number of removed people is approximately the same as in the absence of
movement restrictions. We note that the optimal controls uΩj∗, j = 2, 3 along with the optimal control
v1Ω2∗ take the same values along the optimal control strategy period, which are all equal to one, and
they tend to zero at the final time T.
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Figure 4. (Red and green curves) IΩj and RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ1∗, uΩ2∗

and uΩ3∗. (Black curves) IΩj and RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ1∗, uΩ2∗ and
uΩ3∗ plus v1Ω2∗. SΩ1

0 = 90,000, IΩ1
0 = 1200, SΩ2

0 = 89,000, IΩ2
2 = 1100, SΩ3

0 = 88,000, IΩ3
0 = 1000,

R
Ωj
0 = 0 ∀ j = 1, 2, 3, d1 = 0.06, γ1 = 0.04, β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02,

β3 = 0.1.

In Figure 5, we can better see the importance of movement restrictions, especially when we
prevent also individuals coming from region Ω3, which is at highest risk of infection. In fact, when we
add the optimal control v1Ω2∗ to v1Ω3∗, we can reach better results as in the previous case since the
number of infected people has decreased more and the number of removed people has increased more
in all regions compared to the case when optimal controls uΩ1∗, uΩ2∗, and uΩ3∗ are followed alone. We
note also here that the optimal controls uΩj∗, j = 2, 3 along with the optimal controls v1Ωk∗, k = 2, 3
take the same values along the optimal control strategy period, which are all equal to one, and they
tend to zero at the final time T.
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Figure 5. (Red and green curves) IΩj and RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ1∗, uΩ2∗

and uΩ3∗. (Black curves) IΩj and RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ1∗, uΩ2∗ and
uΩ3∗ plus v1Ω2∗. SΩ1

0 = 90,000, IΩ1
0 = 1200, SΩ2

0 = 89,000, IΩ2
2 = 1100, SΩ3

0 = 88,000, IΩ3
0 = 1000,

R
Ωj
0 = 0 ∀ j = 1, 2, 3, d1 = 0.06, γ1 = 0.04, β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02,

β3 = 0.1.

5. Discussion

In this section, we provide other simulations to compare between the results of the optimal control
strategy proposed in Section 3 and the other one treated in Section 4, as well as the case when there
was no control yet as defined in Section 1. We also discuss the effect of severity controls weight Aj and
Bj and the initial conditions of infection on the optimal values of controls and states.

In Figure 6, we treat the case when there is no vaccination in region Ω1, and we compare it with
the case when there is no control policy in all regions and with the case treated in Figure 1. From this
figure, we can deduce that even in the absence of vaccination in the first region, there is an advantage
of movement restrictions represented by optimal controls v1Ωk∗, k = 2, 3, applied between region Ω1

and other regions, in decreasing the number of infected people and increasing the number of removed
people. This figure also shows the importance of vaccination when it is followed in all regions, and
that can be strengthened more if we add v1Ωk∗, k = 2, 3, as concluded in the previous figure. We note
also here that the optimal controls uΩj∗, j = 1, 2, 3 along with the optimal controls v1Ωk∗, k = 2, 3
take the same values along the optimal control strategy period, which are all equal to one, with some
perturbations after five days, and they tend to zero at the final time T.
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Figure 6. (Blue curves) IΩj and RΩj , j = 1, 2, 3 dynamics without controls. (Red and green curves)
IΩj and RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ1∗, uΩ2∗ and uΩ3∗. (Black curves) IΩj and
RΩj , j = 1, 2, 3 dynamics with optimal controls uΩ2∗ and uΩ3∗ plus v1Ω2∗. SΩ1

0 = 90,000, IΩ1
0 = 1200,

SΩ2
0 = 89,000, IΩ2

2 = 1100, SΩ3
0 = 88,000, IΩ3

0 = 1000, R
Ωj
0 = 0 ∀ j = 1, 2, 3, d1 = 0.06, γ1 = 0.04,

β1 = 0.5, d2 = 0.05, γ2 = 0.03, β2 = 0.4, d3 = 0.04, γ3 = 0.02, β3 = 0.1.

As in Figure 7, we present the simulation of the function IΩ1 when there is no control, and we
compare it with the case with the control for different values of severity controls weights, namely
Aj and Bj associated with uΩj∗ and vjΩk∗, respectively, as noted previously. We observe that after
introducing the five optimal controls uΩj∗, j = 1, 2, 3, v1Ω2∗, and v1Ω3∗, the number of infected people
has decreased towards the value of 400 individuals when Aj = 1, referring to the previous cases
for obtaining uΩj∗, but with Bj = 1020 now. This number can be decreased earlier, as we can see
below in the left-hand side part of this figure when we take Aj = 104. Defined as the denominator
in the characterization of vjΩk∗, the value Bj = 1020 here implies a reduction of the optimal controls’
values, v1Ω2∗ and v1Ω3∗, and the movement restriction is recommended for the first 22 and 25 days
only. However, when we give a less important value to Bj, 108 for example, we can observe that a long
period of this strategy minimized the function IΩ1 more significantly, and it can be minimized and
even earlier than this when we take Aj = Bj = 104, as seen below in the right-hand side of the figure.
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Figure 7. IΩ1 and optimal controls uΩj∗, j = 1, 2, 3, v1Ω2∗ and v1Ω3∗ for different values of Aj and Bj.

As the last Figure 8, we are interested in doing the same as in the previous figure, but in the case

of less important values for initial conditions I
Ωj
0 , j = 1, 2, 3 and smaller values for optimal controls

uΩj∗, j = 1, 2, 3, v1Ω2∗, and v1Ω3∗. From this figure, we observe that when there is no control, the
function IΩ1 does not increase to larger values as observed in the first figures, and then, we understand
that we will not need to vaccinate everyone and close all borders for all times of the control strategy
period. As predicted, we observe that when we add the value 1020 to both denominators Aj and Bj,
implying an important reduction of all optimal controls, the number of infected people in Ω1 decreased
to very small values after 20 days only, and this can be done more effectively when vaccination is
prolonged, as we can observe in the right-hand side of the figure, when we add 1010 to Aj.
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Figure 8. IΩ1 and optimal controls uΩj∗, j = 1, 2, 3, v1Ω2∗, and v1Ω3∗ for different values of Aj and Bj

and less important initial condition of infection.

6. Conclusions

In this paper, we have proposed a stochastic model for the study of infection dynamics when an
epidemic emerges in regions that are connected by any kind of anthropological movement, considering
perturbations that are due to media, infodemics, and escapes. We have also suggested two optimal
control approaches related to vaccination and movement restriction policies based on a stochastic
version of Pontryagin’s maximum principle.
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Nomenclature

All symbols used in this paper are presented in the following nomenclature.

t time
T time horizon
Ω a large domain or region
xΩ Rn random state vector associated with Ω
uΩ Rm random control vector associated with Ω
(Θ,F ,P) probability space
WΩ vector-valued Wiener process associated with Ω all over (Θ,F ,P)
f Rn vector-valued nonlinear function
g matrix-valued nonlinear diffusion
Ωj a region, an area, or subdomain of Ω (1 ≤ j ≤ p)
SΩj number of susceptibles in Ωj
IΩj number of infectives in Ωj
RΩj number of removed in Ωj
ρjk stochastic proportion of adequate contacts in Ωj between a susceptible from Ωj and an infective from Ωk

βjk deterministic proportion of adequate contacts in Ωj between a susceptible from Ωj and an infective from Ωk

σj intensities of fluctuations caused by media
dj birth and death rate
γj recovery rate
NΩj population size corresponding to Ωj
uΩj vaccination control introduced in Ωj
θΩj perturbation of control function uΩj associated with Ωj

u
Ωj

min minimal bound of uΩj (t)

u
Ωj
max maximal bound of uΩj (t)

J objective function
f0 current gain function
αI

j weight parameter associated with the number of infectives in Ωj

αR
j weight parameter associated with the number of removed in Ωj

Aj vaccination control severity weight in Ωj
Bj movement restriction control severity weight in Ωj
Uj vaccination control set
µΩ adjoint state variable associated with xΩ

νΩ adjoint matrix diffusion associated with g
IH set of indices of regions at a high-risk of infection
V IH

j movement restriction control set

vjΩk movement restriction control introduced in Ωj to prevent infection from Ωk
ϑjk perturbation of control function vjΩk associated to Ωj
ς jk intensities of fluctuations caused by escapes

v
Ωj

min minimal bound of vjΩk (t)

v
Ωj
max maximal bound of vjΩk (t)
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