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Abstract: In this paper, we study those fuzzy metrics M on X, in the George and Veeramani’s sense,
such that

∧
t>0 M(x, y, t) > 0. The continuous extension M0 of M to X2 × [0,+∞[ is called extended

fuzzy metric. We prove that M0 generates a metrizable topology on X, which can be described in a
similar way to a classical metric. M0 can be used for simplifying or improving questions concerning
M; in particular, we expose the interest of this kind of fuzzy metrics to obtain generalizations of fixed
point theorems given in fuzzy metric spaces.
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1. Introduction

In 1975, Kramosil and Michalek introduced in [1] a notion of fuzzy metric space. Later, George and
Veeramani in [2] strengthened some conditions on this concept. According to [2], a fuzzy metric space
is an ordered triple (X, M, ∗) such that X is a (non-empty) set, ∗ is a continuous t-norm and M is a
fuzzy set on X× X× ]0,+∞[ satisfying the following conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;
(GV2) M(x, y, t) = 1 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t);
(GV4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);
(GV5) Mx,y : ]0,+∞[→ ]0, 1] is continuous, where Mx,y(t) = M(x, y, t).

In such a case, we will say that (M, ∗), or simply M, is a fuzzy metric on X.
George and Veeramani studied some aspects of the above concept in [2]. In particular, they proved

that every fuzzy metric M on X generates a topology τM on X. It has as a base the family of open
sets given by {BM(x, r, t) : x ∈ X, 0 < r < 1, t > 0}, where BM(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}
for all x ∈ X, r ∈ ]0, 1[ and t > 0. Then, different authors have contributed to study the topological
properties of fuzzy metric spaces. For instance, in [3,4], it was proved that the class of topological
spaces which are fuzzy metrizable coincides with the class of metrizable spaces.

A significant characteristic of a fuzzy metric is that it contains in its definition a parameter
t. Related to it, we focus our attention in two facts about M. First, axiom (GV1) demands that
M (x, y, t) > 0 for all x, y ∈ X and t > 0, which is in accordance with classical metrics that do not take
the value +∞. Second, axiom (GV5) requires that Mx,y : ]0,+∞[ → ]0, 1] be a continuous function,
where Mx,y (t) = M (x, y, t). These two facts suggest the introduction of a new notion of fuzzy metric
in the next.
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Recall that a fuzzy metric M is called stationary [5] if it does not depend on t (in this case, we can
write, simply, M (x, y)). Obviously, stationary fuzzy metrics are the closest to classical ones. In fact,
if M is a stationary fuzzy metric for the Lukasievicz t-norm, then d = 1−M is a metric on X, and τM
agrees with τd (the topology generated by d on X). It is clear that the expression of a stationary fuzzy
metric M on X can be regarded as a fuzzy set M0 on X2 × [0,+∞[ given by M0 (x, y, t) = M (x, y)
satisfying the two facts aforementioned, which are M0 (x, y, t) > 0 and M0

x,y : [0,+∞[ → ]0, 1] is
continuous for x, y ∈ X and t ≥ 0.

The above paragraph suggests to consider fuzzy sets M0 : X2 × [0,+∞[ → ]0, 1] satisfying all
axioms of a fuzzy metric, but currently for t ≥ 0. The term (X, M0, ∗) will be called extended fuzzy
metric space (see Definition 1). The aim of this paper is the study of these spaces. The topics in which
we will focus our attention will be: topology, completeness and contractivity with applications to fixed
point theory.

First, we are interested in the relationship between fuzzy metrics and extended fuzzy metrics.
Theorem 1 shows that every extended fuzzy metric M0 is a natural extension of those fuzzy metrics,
called extendable, which satisfy that

∧
t>0 M (x, y, t) > 0, and vice versa. The natural extension is

M0 (x, y, 0) =
∧

t>0 M (x, y, t), for all x, y ∈ X. It is now a natural process to adapt the concepts of
fuzzy metrics to extended fuzzy metrics. In particular, we introduce and generalize the concept of
open ball BM0 (x, r, t) (see Section 3) and then we prove that the family {BM0 (x, r, 0) : x ∈ X, r ∈ ]0, 1[}
is a base for a topology τM0 on X finer than τM, which is called the topology generated by M0.
This result is obtained after observing that (NM, ∗) is a stationary fuzzy metric on X, where NM (x, y) =∧

t>0 M (x, y, t) for all x, y,∈ X. Then, it is easy to conclude (Proposition 3) that τM0 = τNM and hence
τM0 is metrizable. Furthermore, we pointed out that a sequence {xn} converges to x0 in τM0 if and
only if limn M0 (xn, x0, 0) = 1. From the topological point of view (see Remark 3), the class of extended
fuzzy metrics (X, M0, ∗) are so close to metrics that topological results related to M0 can be established
as a simple extension of classical concepts to the fuzzy setting, only by modifying the notation (which
is left to the reader). Moreover, after proving that M0 : X2 × [0,+∞[ → ]0, 1] is continuous (see
Proposition 4), we characterize those extendable fuzzy metrics in which τM = τM0 . Such spaces are
the so called s-fuzzy metrics. In addition, this characterization motivates a study in the relationship
between τM0 -convergence and s-convergence.

With respect to completeness, although there are many concepts of Cauchy sequence in the
literature (see [6]), we only pay attention to the original concept of Cauchy sequence given by H.
Sherwood in PM-spaces [7]. It was adapted later by George and Veeramani to the fuzzy metric context.
According to [2], a sequence {xn} in a fuzzy metric space (X, M, ∗) is said to be M-Cauchy, or simply
Cauchy, if for each ε ∈ ]0, 1[ and each t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for
all n, m ≥ n0 or, equivalently, limn,m M(xn, xm, t) = 1 for all t > 0. As usual, X is said to be complete
if every Cauchy sequence in X is convergent with respect to τM. In such a case, M is also said to
be complete. Then, an adaptation to the extended context of both aforementioned concepts is given.
Furthermore, we provide some properties and observations on M0-Cauchyness and M0-completeness.

The last topic approached is contractivity, which plays a crucial role in fixed point theory. It should
be expected that, in fuzzy metrics with strong properties, one should be able to weaken the usual
contractive conditions in order to ensure the existence of fixed points, for a larger class of contractive
mappings. Indeed, this is so. First, we notice that the condition itself of being M extendable is used
explicitly (Theorem 3.3 [8]), or, in a concealed or relaxed way, in order to obtain fixed point theorems
(see Theorem 3.2 of [9] or Theorem 2.4 of [10]). We here go further and we will give a notion of
ψ-0-contractive mapping (Definition 7), that is, contractivity assumed only at t = 0. Then, we prove
that there are ψ-0-contractive mappings in (X, M0, ∗) which are not ψ-contractive in (X, M, ∗). Then,
mimicking arguments in the literature, one can give fixed point theorems for extendable fuzzy metrics
in a more general version. It is the case of Theorem 4. The reader can find in this example a method for
obtaining more general results in fixed point theory, but for extendable fuzzy metrics. Several examples
illustrate the theory through the paper.



Mathematics 2019, 7, 303 3 of 14

The structure of the paper is as follows. In Section 2, we introduce and study the concept of
extended fuzzy metric. Section 3 is devoted to establish a topology from an extended fuzzy metric and
to characterize convergent sequences in it. Section 4 approaches the relationship between s-convergence
and τM0-convergence. Section 5 studies Cauchyness and completeness in extended fuzzy metrics.
Section 6 is dedicated to contractivity and fixed point theorems.

2. Extended Fuzzy Metrics

We begin this section introducing the announced concept of extended fuzzy metric space.

Definition 1. The term (X, M0, ∗) is called an extended fuzzy metric space if X is a (non-empty) set, ∗ is
a continuous t-norm and M0 is a fuzzy set on X2 × [0,+∞[ satisfying the following conditions, for each
x, y, z ∈ X and t, s ≥ 0

(EFM1) M0(x, y, t) > 0;
(EFM2) M0(x, y, t) = 1 if and only if x = y;
(EFM3) M0(x, y, t) = M0(y, x, t);
(EFM4) M0(x, y, t) ∗M0(y, z, s) ≤ M0(x, z, t + s);
(EFM5) M0

x,y : [0,+∞[→ ]0, 1] is continuous, where M0
x,y(t) = M0(x, y, t).

It is also said that (M0, ∗), or simply M0, is an extended fuzzy metric on X. If ? is a continuous
t-norm satisfying ? ≤ ∗, then (M0, ?) is also an extended fuzzy metric on X.

Remark 1. Recently, in [11], it was introduced the concept of extended fuzzy b-metric space, with the aim of
generalizing the notion of fuzzy b-metric space. Both notions generalize the concept of fuzzy metric by means of
relaxing the triangle inequality. Nevertheless, the goal of introducing Definition 1 is to “extend” in the concept
of fuzzy metric, given by George and Veeramani, the domain of definition of the t parameter to [0,+∞[. Thus,
extended fuzzy b-metrics are not related to the new concept introduced above.

After introducing this new concept, we present some examples of it.

Example 1.

(a) If M is a stationary fuzzy metric on X, then M0(x, y, t) = M(x, y) for all x, y ∈ X and t ≥ 0 is obviously
an extended fuzzy metric on X, for the same t-norm. Since, again, t does not play any role in the definition
of M0, we also say that M0 is stationary. Furthermore, since, in this case, the expression of M can be
regarded itself as an extended fuzzy metric on X, we will not distinguish between M and M0, if confusion
is not possible.

(b) Let X be ]0,+∞[ and define the fuzzy set M0 on X2 × [0,+∞[ given by M0(x, y, t) = min{x,y}+t
max{x,y}+t . Then,

M0 is an extended fuzzy metric on X, for the product t-norm.
(c) Let (X, d) be a metric space and φ : [0,+∞[→ ]0, 1] a non-decreasing continuous function with φ(0) > 0.

Then, (X, M0
φ, ∗) is an extended fuzzy metric, where ∗ is the product t-norm and M0

φ(x, y, t) = φ(t)
φ(t)+d(x,y) ,

for all x, y ∈ X and t ≥ 0.

The following theorem shows the relationship between fuzzy metrics and extended fuzzy metrics
that one can observe in the last example.

Theorem 1. Let M be a fuzzy set on X2 × ]0,+∞[, and denote by M0 its extension to X2 × [0,+∞[ given
by M0(x, y, t) = M(x, y, t) for all x, y ∈ X, t > 0, and M0(x, y, 0) =

∧
t>0 M(x, y, t). Then, (X, M0, ∗) is

an extended fuzzy metric space if and only if (X, M, ∗) is a fuzzy metric space satisfying for each x, y ∈ X the
condition

∧
t>0 M(x, y, t) > 0.

Proof. Suppose that (M0, ∗) is an extended fuzzy metric on X. Then, clearly, (M, ∗) is a fuzzy metric
on X. Now, we will see that

∧
t>0 M(x, y, t) > 0 for all x, y ∈ X.
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Take x, y ∈ X. Since Mx,y is not decreasing on ]0,+∞[ and M0
x,y is continuous at t = 0, then

∧
t>0

M(x, y, t) = lim
t→0

M(x, y, t) = lim
t→0

M0
x,y(t) = M0

x,y(0) = M0(x, y, 0) > 0.

Conversely, let (X, M, ∗) be a fuzzy metric space satisfying
∧

t>0 M(x, y, t) > 0 for each x, y ∈ X.
Attending to the hypothesis and by construction of M0, we have that (EFM1) and (EFM3) are fulfilled.
We will show the rest of the axioms.

(EFM2) Suppose M0(x, y, t) = 1 for some t > 0. Then, M(x, y, t) = 1 and so x = y. If M0(x, y, 0) =
1, then

∧
t>0 M(x, y, t) = 1 and thus M(x, y, t) = 1 for all t > 0, and so x = y. Obviously, if x = y,

then M0(x, y, t) = 1 for all t ≥ 0.
(EFM4) Let x, y, z ∈ X. We will distinguish three possibilities on t, s ≥ 0.

1. If t, s > 0, then (EFM4) is fulfilled since M is a fuzzy metric.
2. Suppose t > 0 and s = 0 (the case t = 0 and s > 0 is analogous). Then, for ε ∈ ]0, t[, we have that

M0(x, z, t + 0) = M0(x, z, t) = M(x, z, t) ≥ M(x, y, t− ε) ∗M(y, z, ε).

Then, taking limits as ε tends to 0 in the last inequality, we obtain

M0 (x, z, t + 0) ≥ lim
ε→0

(M (x, y, t− ε) ∗M (y, z, ε)) =

=

(
lim
ε→0

M(x, y, t− ε)

)
∗
(

lim
ε→0

M(y, z, ε)

)
=

= M(x, y, t) ∗
(∧

ε>0
M(y, z, ε)

)
= M0(x, y, t) ∗M0(y, z, 0).

3. Suppose t = s = 0. Then, we have that

M0(x, z, 0 + 0) = M0(x, z, 0) =
∧
t>0

M(x, z, t) = lim
t→0

M(x, z, t) ≥

≥ lim
t→0

(M (x, y, t/2) ∗M (y, z, t/2)) =
(

lim
t→0

M(x, y, t/2)
)
∗
(

lim
t→0

M(y, z, t/2)
)
=

=

(∧
t>0

M(x, y, t)

)
∗
(∧

t>0
M(y, z, t)

)
= M0(x, y, 0) ∗M0(y, z, 0).

(EFM5) Since Mx,y is continuous on ]0,+∞[, and ]0,+∞[ is open in [0,+∞[, with the usual
topology of R restricted to [0,+∞[, then M0

x,y is continuous at each point of ]0,+∞[ for each x, y ∈ X.
For t = 0, we have that

lim
t→0

M0(x, y, t) = lim
t→0

M(x, y, t) =
∧
t>0

M(x, y, t) = M0(x, y, 0),

and so M0
x,y is continuous at t = 0.

Hence, (X, M0, ∗) is an extended fuzzy metric space.

An immediate consequence of the preceding result is that, given an extended fuzzy metric
space (X, M0, ∗), then M0

x,y : [0,+∞[ → ]0, 1] is a non-decreasing continuous function satisfying
M0

x,y(0) =
∧

t>0 M0(x, y, t), for all x, y ∈ X. Furthermore, we can deduce the following result proved
by Gregori et al. in [8].
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Proposition 1. Let (X, M, ∗) be a fuzzy metric space. Define

NM(x, y) =
∧
t>0

M(x, y, t).

Then, (NM, ∗) is a stationary fuzzy metric on X if and only if
∧

t>0 M(x, y, t) > 0 for all x, y ∈ X.

Theorem 1 motivates the introduction of the following definition.

Definition 2. Let (X, M, ∗) be a fuzzy metric space. M is called extendable if for each x, y ∈ X the condition∧
t>0 M(x, y, t) > 0 is satisfied. In such a case, we will say that M0 is the (fuzzy metric) extension of M,

and that M is the restriction of M0.

From now on, by NM, we are referring to the stationary fuzzy metric defined in Proposition 1,
whenever (X, M, ∗) is an extendable fuzzy metric space. Thus, by the aforementioned proposition,
we have that M is extendable if and only if (NM, ∗) is a stationary fuzzy metric on X. In addition,
by Theorem 1, we have that M is extendable if and only if (X, M0, ∗) is an extended fuzzy metric space,
where M0 is given by

M0(x, y, t) =

NM(x, y), t = 0,

M(x, y, t), t > 0.

We continue our study providing an example of a non-extendable fuzzy metric. First, recall that,
given a metric space (X, d), if we define a function Md on X× X× ]0,+∞[ as follows

Md(x, y, t) =
t

t + d(x, y)
,

then (X, Md,∧) is a fuzzy metric space (see [2]) and Md is called the standard fuzzy metric induced by d.
Furthermore, the topology τMd coincides with the topology τ (d) on X deduced from d.

Now, we are able to present the announced example of a non-extendable fuzzy metric.

Example 2. Let (X, d) be a metric space where X has at least two points. Then, the standard fuzzy metric
(X, Md,∧) is not extendable. Indeed, given x, y ∈ X such that x 6= y, then d(x, y) 6= 0 and so

∧
t>0

Md(x, y, t) = lim
t→0

t
t + d(x, y)

= 0.

Remark 2. In the following, we will associate to an extendable fuzzy metric M the extended fuzzy metric M0 and
the stationary fuzzy metric NM, defined above. Then, it is satisfied M0(x, y, 0) =

∧
t>0 M(x, y, t) = NM(x, y)

for all x, y ∈ X. In an analogous way, we will associate M and NM to an extended fuzzy metric M0.
Notice that, due to the continuity of the real function M0

x,y on [0,+∞[, whenever M0 is an extended fuzzy
metric, then the extension M0 of an extendable fuzzy metric M, is unique.

3. Topology Deduced from an Extended Fuzzy Metric

In this section, we justify that we can define a topology from an extended fuzzy metric. We proceed
in a similar way as in the fuzzy metric case. Thus, we begin defining a ball, both open and closed.

Let (X, M0, ∗) be an extended fuzzy metric space. For x ∈ X, r ∈ ]0, 1[ and t ≥ 0, by analogy with
fuzzy metric spaces, we define the open ball of center x, radius r and parameter t as

BM0(x, r, t) =
{

y ∈ X : M0(x, y, t) > 1− r
}

.
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In an analogous way, the closed ball is

BM0 [x, r, t] =
{

y ∈ X : M0(x, y, t) ≥ 1− r
}

.

Clearly, for t > 0, we have that BM0(x, y, t) = BM(x, y, t) and BM0 [x, y, t] = BM [x, y, t].
In addition, BM0(x, y, 0) = BNM (x, y) and BM0 [x, y, 0] = BNM [x, y].

Notice that, for all x ∈ X, t > 0, r ∈ ]0, 1[, we have that BM0(x, r, 0) ⊂ BM(x, r, t) and
BM0 [x, r, 0] ⊂ BM [x, r, t].

Let (X, M0, ∗) be an extended fuzzy metric space. It is well known that the family{
BNM (x, r) : x ∈ X, r ∈ ]0, 1[

}
is a base of the topology τNM on X deduced from the stationary fuzzy

metric NM. Thus, the family given by {BM0(x, r, 0) : x ∈ X, r ∈ ]0, 1[} is a base for the topology τNM on
X, which will be denoted τM0 , and it will be called deduced from M0. Clearly, the open balls BM0(x, y, 0)
are τM0 -open and the closed balls are τM0 -closed. Obviously, τM0 is metrizable.

Moreover, since for all x ∈ X, r ∈ ]0, 1[, t > 0 we have that BM0(x, r, 0) ⊆ BM(x, r, t), then it is
obvious that τM0 � τM. Consequently, the open balls BM(x, r, t) (for t > 0) are τM0-open, and the
closed balls BM [x, r, t] (for t > 0) are τM0 -closed.

Now, we focus on convergence of sequences in τM0 . Recall that George and Veeramani
characterized τM-convergent sequences with the following result (see [2]).

Proposition 2. Let (X, M, ∗) be a fuzzy metric space. A sequence {xn} in X τM-converges to x ∈ X if and
only if limn M(xn, x, t) = 1, for all t > 0.

On account of the above considerations, we provide the next characterization for the extended
fuzzy metric case.

Proposition 3. Let (X, M0, ∗) be an extended fuzzy metric space. A sequence {xn} in X τM0 -converges to x0

if and only if limn M0 (xn, x0, 0) = 1.

Proof. Since τNM = τM0 , then a sequence {xn} in X τM0-converges to x0 ∈ X if and only if {xn}
τNM -converges to x0. By Proposition 2, we have that {xn} τNM -converges to x0 if and only if
limn NM(xn, x0) = 1. Therefore, {xn} τM0-converges to x0 ∈ X if and only if limn M0(xn, x0, 0) =

limn NM(xn, x0) = 1, as we claimed.

Remark 3. On account of the exposed in this section, one can observe the similarity between extended
fuzzy metrics and classical metrics, from the topological point of view. Indeed, in an extended fuzzy metric,
the parameter t does not play any role in the topological concepts. Nevertheless, such parameter remains being
essential in different “metric” concepts for extendable fuzzy metrics, as we will see in the rest of the paper.

4. Relationship between τM0 -Convergence and s-Convergence in Extendable Fuzzy Metrics

In this section, we compare τM0 -convergent sequences with s-convergent ones, a stronger concept
of convergence introduced in [8]. Such comparison is framed in the class of extendable fuzzy metrics.
Recall that a sequence {xn} in a fuzzy metric space (X, M, ∗) is called s-convergent to x0 ∈ X if
limn M(xn, x0, 1/n) = 1. This concept of convergence motivated the authors in [8] to introduce a new
class of fuzzy metrics, the so-called s-fuzzy metrics. Following [8], a fuzzy metric M on X is called
s-fuzzy metric if every τM-convergent sequence is s-convergent.

In order to fulfil the aforementioned main goal of this section, we begin showing the next proposition.

Proposition 4. Let (X, M0, ∗) be an extended fuzzy metric space. Then, M0 is continuous with respect to the
product topology, where X is endowed with τM0 and [0,+∞[ with the usual topology of R restricted to it.
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Proof. Let {(xn, yn, tn)} be a sequence in X2 × [0, ∞[ which converges to (x, y, t) ∈ [0, ∞[ with respect
to the product topology, where X is endowed with τM0 and [0,+∞[ with the usual topology of R
restricted to it.

We will prove that limn M0(xn, yn, tn) = M0(x, y, t) (i.e., {(xn, yn, tn)} converges to M0(x, y, t) in
the usual topology of R). To this end, we will distinguish two cases:

1. Suppose that t > 0. Without loss of generality, we can suppose that tn > 0 for all n ∈ N.

Following Proposition 1 of [12], if we consider the restriction M of the extended fuzzy metric M0,
then M is continuous on X2 × ]0,+∞[ with respect to the product topology, where X is endowed
with τM. Therefore,

lim
n

M0(xn, yn, tn) = lim
n

M(xn, yn, tn) = M(x, y, t) = M0(x, y, t),

and so M0 is continuous at (x, y, t).
2. Suppose now that t = 0.

Let {(xn, yn, tn)} be a sequence that converges to (x, y, 0) ∈ X2 × {0}. It follows that, for every
n ∈ N,

M0 (xn, yn, tn) ≥ M0 (xn, x, 0) ∗M0 (x, y, tn) ∗M0 (y, yn, 0) ,

and
M0 (x, y, tn) ≥ M0 (x, xn, 0) ∗M0 (xn, yn, tn) ∗M0 (yn, y, 0) .

If we take limits on both equations and we use Proposition 3, we obtain the following expressions:

lim
n

M0 (xn, yn, tn) ≥ lim
n

M0 (x, y, tn) ,

and

lim
n

M0 (x, y, tn) ≥ lim
n

M0 (xn, yn, tn) .

Now, by continuity of the function M0
x,y, we have that limn M0 (x, y, tn) = M0 (x, y, 0). We deduce

that limn M0 (xn, yn, tn) = M0 (x, y, 0) and so M0 is continuous at (x, y, 0).

Hence, M0 is continuous at each point of X2 × {0}.

The previous result is useful to prove the following proposition.

Proposition 5. Let M be an extendable fuzzy metric on X. If {xn} is τM0-convergent to x0,
then limn M(xn, x0, 1/n) = 1.

Proof. Let {xn} be a τM0-convergent sequence in X. Then, limn M(xn, x0, 1/n) =

limn M0(xn, x0, 1/n) = M0(x0, x0, 0) = 1, since M0 is continuous and the sequence {(xn, x0, 1/n)}
converges to (x0, x0, 0) in the product topology.

The following example proves that the converse of the last proposition is false in general.

Example 3. (see Example 4.3 of [8]). Consider the extendable fuzzy metric space (X, M, ∗), where X = ]0, 1],
∗ is the Lukasievicz t-norm, and M is given by

M(x, y, t) =

1− 1
2 d(x, y)t, 0 ≤ t ≤ 1,

1− 1
2 d(x, y), t > 1,
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where d is the usual metric of R. The sequence {xn}, where xn = 1/2− 1/nn for all n ≥ 2, is τM-convergent
to 1/2 since τM is the usual topology of R restricted to ]0, 1]. Moreover, limn M(xn, 1/2, 1/n) =

limn

(
1− 1

2

(
1

nn

)1/n
)
= 1 and so {xn} is s-convergent. Now,

NM(x, y) =
∧
t>0

M(x, y, t) =

1, if x = y,

1
2 , if x 6= y.

Therefore, limn M0(xn, 1/2, 0) = limn NM(xn, 1/2) = 1/2 and so {xn} is not τM0 -convergent.

On account of the above example, an interesting question is to characterize those extendable fuzzy
metric spaces in which s-convergent sequences are τM0 -convergent. We approach this problem in the
rest of the section. To such goal, we begin expressing Theorem 4.2 of [8] in our context.

Theorem 2. Let M be an extendable fuzzy metric on X. Then, τM = τM0 if and only if M is an s-fuzzy metric.

Thus, an immediate corollary of the previous theorem is the following one.

Corollary 1. Let M be an extendable fuzzy metric on X. If M is an s-fuzzy metric, then every s-convergent
sequence is τM0 -convergent.

Even more, the next theorem shows that the converse of the preceding corollary is also true.

Theorem 3. Let M be an extendable fuzzy metric on X. If every s-convergent sequence is τM0 -convergent, then
M is an s-metric.

Proof. Let M be an extendable fuzzy metric on X.
Suppose that M is not an s-fuzzy metric. Then, there exists a τM-convergent sequence {xn}

to some x0 ∈ X, which is not s-convergent (to x0) in (X, M). We will construct an s-convergent
subsequence {xnk} of {xn}, which is not τM0-convergent. To construct such subsequence, we are
focused on two facts:

First, since {xn} is τM-convergent, then, for each ε ∈]0, 1[ and each t > 0, we can find n0 ∈ N such
that M(xn, x0, t) > 1− ε whenever n ≥ n0.

Moreover, {xn} is not s-convergent and so it is not τM0-convergent. Then, by Proposition 3,
we have that there exists ε0 ∈]0, 1[ such that, for each k ∈ N, we can find nk > k such that
M0(xnk , x0, 0) ≤ 1− ε0.

Fix k = 2. On the one hand, if we consider ε = t = 1
2 , then there exists n′2 ∈ N such that

M(xn, x0, 1
2 ) > 1− 1

2 whenever n ≥ n′2. On the other hand, given n′2 ∈ N, we can find n2 > n′2 such
that M0(xn2 , x0, 0) ≤ 1− ε0.

From this element xn2 , we construct inductively on k ∈ N the announced subsequence of {xn}
as follows.

Take k ∈ N. As before, there exists n′k ∈ N, with n′k ≥ nk−1, such that M(xn, x0, 1
k ) > 1− 1

k
whenever n ≥ n′k. Furthermore, given n′k ∈ N, we can find nk > n′k such that M0(xnk , x0, 0) ≤ 1− ε0.

Therefore, the constructed subsequence {xnk} satisfies the following properties:

M(xnk , x0, 1/k) > 1− 1/k,

and
M0(xnk , x0, 0) ≤ 1− ε0,
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for each k ∈ N. Thus, taking limits in the above two inequalities, we have that

lim
k

M(xnk , x0, 1/k) = 1,

and
lim

k
M0(xnk , x0, 0) ≤ 1− ε0.

Thus, {xnk} is an s-convergent sequence that is not τM0 -convergent and the proof is concluded.

As a consequence of Corollary 1 and Theorem 3, we can state the following result,
which characterize s-fuzzy metrics whenever consider an extendable fuzzy metric.

Corollary 2. Let M be an extendable fuzzy metric on X. Then, M is an s-metric if and only if every s-convergent
sequence is τM0 -convergent.

5. Cauchyness and Completeness

This section is dedicated to study the completeness of extended fuzzy metric spaces. To this goal,
we begin introducing a concept of Cauchy sequence in such spaces.

Definition 3. Let (X, M0, ∗) be an extended fuzzy metric space. A sequence {xn} in X is called M0-Cauchy
if, given ε ∈ ]0, 1[, we can find nε ∈ N such that M0(xn, xm, 0) > 1− ε for all n, m ≥ nε. Then, {xn} is
M0-Cauchy if and only if limm,n M0(xm, xn, 0) = 1.

Remark 4. From now on, we will say that a sequence is M0-convergent instead of τM0 -convergent in order to
simplify the notation.

An immediate relationship between M0-convergent sequences and M0-Cauchy ones is next.

Proposition 6. Let (X, M0, ∗) be an extended fuzzy metric space. Every M0-convergent sequence is M0-Cauchy.

Proof. Suppose {xn} is M0-convergent to x0. The conclusion follows from the inequality
M0(xm, xn, 0) ≥ M0(xm, x0, 0) ∗M0(x0, xn, 0).

The M0-Cauchy’s concept is according to the idea of Cauchy sequence in [2], since it can be
expressed as limm,n M0(xm, xn, t) = 1 for all t ≥ 0. Clearly, every M0-Cauchy sequence is M-Cauchy,
and the converse is false, in general, as the following example shows.

Example 4. Consider the extendable fuzzy metric space (X, M, ∗), where X = ]0,+∞[, ∗ is the product
t-norm and M is given by

M(x, y, t) =
min{x, y}+ t
max{x, y}+ t

for each x, y ∈ X and t > 0.
The sequence {xn}, where xn = 1

n for each n ∈ N, is M-Cauchy. Indeed, for each t > 0, we have that

lim
n,m

M(xn, xm, t) =
min{1/n, 1/m}+ t
max{1/n, 1/m}+ t

= 1.

Nevertheless, {xn} is not M0-Cauchy. Indeed, observe that

M0(x, y, 0) =
∧
t>0

M(x, y, t) =
∧
t>0

min{x, y}+ t
max{x, y}+ t

=
min{x, y}
max{x, y} ,

for each x, y ∈ X.
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Then, if {xn} is M0-Cauchy, we will have that

lim
n,m

M0(xn, xm, 0) = lim
n,m

min{1/n, 1/m}
max{1/n, 1/m} = 1.

Now, if we consider m = 2n, then

lim
n,m

min{1/n, 1/m}
max{1/n, 1/m} = lim

n
=

1/2n
1/n

=
1
2

,

a contradiction.

We continue introducing the following notion of completeness in a natural way.

Definition 4. An extended fuzzy metric space (X, M0, ∗) is called complete if every M0-Cauchy sequence is
M0-convergent. It is also said that M0 is complete, and, if confusion does not arise, that X is M0-complete.

An immediate property of the above definition is the next one.

Proposition 7. (X, M0, ∗) is complete if and only if (X, NM, ∗) is complete.

Proof. The sequence {xn} is M0-Cauchy if and only if it is NM-Cauchy. Then, the conclusion follows
from the fact that τM0 = τNM .

The next proposition shows the relationship between M0-completeness and M-completeness,
when we consider an extendable s-fuzzy metric.

Proposition 8. Let M be an extendable s-fuzzy metric on X. If (X, M, ∗) is complete, then (X, M0, ∗)
is complete.

Proof. Let (X, M, ∗) be a complete extendable s-fuzzy metric space and let {xn} be an M0-Cauchy
sequence in X. Then, {xn} is M-Cauchy and thus {xn} is τM-convergent in X, since M is complete.
Now, by Theorem 2, we conclude that {xn} is M0-convergent.

The converse of the last proposition is false, in general, as it is shown in the following example.

Example 5. Let (X, M, ∗) be the extendable s-fuzzy metric space, where X = ]0,+∞[, M(x, y, t) =
min{x,y}+t
max{x,y}+t and ∗ is the t-norm product (see [8]).

We notice that τM is the usual topology of R restricted to ]0,+∞[. Furthermore, τM0 = τM since M is an
s-fuzzy metric.

On the one hand, we have that (X, NM, ∗) is complete (see [13,14]), where NM is given by

NM(x, y) = M0(x, y, 0) =
min {x, y}
max {x, y} .

We conclude, by Proposition 7, that (X, M0, ∗) is complete.
On the other hand, (X, M, ∗) is not complete, since {1/n} is an M-Cauchy sequence in X, but it does not

converge for τM.

To finish this section, we provide an example, which shows that, for every metrizable topological
space, we can find a compatible non-stationary extended fuzzy metric which is an s-fuzzy metric.
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Example 6. Let (X, τ) be a metrizable topological space. Suppose that d is a compatible metric on X, i.e.,
τ(d) = τ. Consider the extendable fuzzy metric Mφ(x, y, t) = φ(t)

φ(t)+d(x,y) of Example 1 (c). It is not hard to
check that τMφ

= τ.
If {xn} is τMφ

-convergent to x0, then

lim
n

Mφ(xn, x0, 1/n) = lim
n

φ(1/n)
φ(1/n) + d(xn, x0)

=
φ(0)
φ(0)

= 1.

Then, Mφ is an extendable s-fuzzy metric on X, and thus, by Theorem 2, τM0
φ
= τMφ

.

6. Contractivity and Fixed Point Theorems

In this section, we show how it is possible to give a more general version of fixed point theorems
in extendable fuzzy metrics M by means of a weaker contractive condition (see Remark 5) on the
extended fuzzy metric M0. We begin recalling a notion of contractive mapping introduced by Mihet
in [15]. It was adapted by Gregori and Miñana in [16] to the George and Veeramani context as follows.

Definition 5. Let Ψ be the class of all mappings ψ : ]0, 1]→ ]0, 1] such that ψ is continuous, non-decreasing
and ψ(t) > t for all t ∈ ]0, 1[. Let ψ ∈ Ψ. A mapping f : X → X is called fuzzy ψ-contractive mapping if:

M( f (x), f (y), t) ≥ ψ(M(x, y, t)) for all x, y ∈ X and t > 0. (1)

According to the above definition and extending the classical concept of a contractive sequence,
then a sequence {xn} in X is called (fuzzy) ψ-contractive sequence if it satisfies

M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)) for all n ∈ N and t > 0. (2)

An immediate consequence of the previous notion is the next proposition, whose proof is
straightforward.

Proposition 9. Let (X, M, ∗) be a fuzzy metric space. If f : X → X is ψ-contractive, then, for each x0 ∈ X,
the sequence of iterates {xn} where x1 = f (x0), . . . , xn = f (xn−1), for n = 2, 3, · · · , is ψ-contractive.

We recall the concept of contractivity given by Gregori and Sapena in [17].

Definition 6. Let (X, M, ∗) be a fuzzy metric space. A mapping f : X → X is called fuzzy contractive if there
exists k ∈ ]0, 1[ such that

1
M( f (x), f (y), t)

− 1 ≤ k
(

1
M(x, y, t)

− 1
)

for each x, y ∈ X and t > 0. (k is called the contractive constant of f .)

Mihet observed in [15] that a fuzzy contractive mapping is a fuzzy ψ-contractive one for ψ(s) =
s

s+k(1−s) for each s ∈ ]0, 1].
As we have proceeded throughout the paper, we will adapt the notion of fuzzy ψ-contractive

mapping to extended fuzzy metrics.

Definition 7. Let (X, M, ∗) be an extendable fuzzy metric space. A mapping f : X → X is called fuzzy
ψ-M0-contractive if Equation (1) is satisfied for all t ≥ 0. Particularly, f is called fuzzy ψ-0-contractive if
Equation (1) is satisfied for t = 0.
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Remark 5. Due to the continuity of M0
x,y for all x, y ∈ X, it is clear that f is ψ-M0-contractive if and only if f

is ψ-contractive. Nevertheless, the next example shows that the fuzzy ψ-0-contractive condition is weaker than
the fuzzy ψ-M0-contractive one.

Example 7. Consider X = R endowed with the usual metric d. Define the fuzzy set M on X2 × ]0,+∞[

as follows:

M(x, y, t) =
1 + α(t)d(x, y)

1 + d(x, y)
,

where α : [0,+∞[→ [0,+∞[ is given by α(t) = t
1+t for all t ≥ 0. Then, one can verify that (X, M, ∗) is an

extendable fuzzy metric space for the Lukasievicz t-norm. We will see that f : R→ R given by f (x) = x/2,
for x ∈ R is fuzzy ψ-0-contractive.

Let x, y ∈ X. Then,

1
M( f (x), f (y), 0)

− 1 =

(
1

1 + 1/2|x− y|

)−1
− 1 =

|x− y|
2

=
1
2
(1 + |x− y| − 1) =

=
1
2

((
1

1 + |x− y|

)−1
− 1

)
=

1
2

(
1

M(x, y, 0)
− 1
)

.

Then, attending to the above comment, f is fuzzy ψ-0-contractive, for ψ(s) = s
s+k(1−s) for each s ∈]0, 1].

Now, we will see that f is not fuzzy contractive. Indeed, if we take t = 1, then, for x, y ∈ R, we have

1
M( f (x), f (y), 1)

− 1 =

(
1 + 1

2 ·
1
2 |x− y|

1 + 1
2 |x− y|

)−1

− 1 =
|x− y|

4 + |x− y| .

On the other hand,

k
(

1
M(x, y, 1)

− 1
)
= k

(1 + 1
2 |x− y|

1 + |x− y|

)−1

− 1

 = k
(
|x− y|

2 + |x− y|

)
.

In this case, the inequality

1
M( f (x), f (y), 1)

− 1 ≤ k
(

1
M(x, y, 1)

− 1
)

is not possible for k ∈ [0, 1[. Indeed, for a fixed y ∈ R, if x tends to +∞, then we obtain 1 ≤ k, a contradiction.

According to Definition 7, we introduce the notion of fuzzy ψ-0-contractive sequence.

Definition 8. Let (X, M, ∗) be an extendable fuzzy metric space. A sequence {xn} of X is called fuzzy
ψ-0-contractive if there exists ψ ∈ Ψ such that

M0(xn+1, xn+2, 0) ≥ ψ(M0(xn, xn+1, 0)) for all n ∈ N.

The sequence of iterates constructed from a fuzzy ψ-0-contractive mapping satisfies the following
stronger property.

Proposition 10. Let (X, M, ∗) be an extendable fuzzy metric space, and let f : X → X be a fuzzy
ψ-0-contractive mapping. Consider, for x0 ∈ X, the sequence {xn} of iterates x1 = f (x0), xn = f (xn−1),
n = 2, 3, . . .. Then,

M0(xn+1, xm+1, 0) ≥ ψ(M0(xn, xm, 0)
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for every n, m ∈ N.

Proof. It follows from the definition of fuzzy ψ-0-contractive function.

Mimicking the proof of Lemma 3.2 in [18] and using the preceding proposition, we obtain the
following result.

Proposition 11. Let (X, M0, ∗) be an extended fuzzy metric space and let f : X → X be a fuzzy
ψ-0-contractive mapping. Then, for each x0 ∈ X, the sequence of iterates {xn} is M0-Cauchy.

As a consequence of the above result and following the arguments of [18], for instance,
Corollary 3.9 of [18] admits the following more general version (see Remark 5).

Theorem 4. Let (X, M, ∗) be an extendable complete fuzzy metric space. Then, every fuzzy ψ-0-contractive
mapping f : X → X admits a unique fixed point.

7. Conclusions

In 1975, Kramosil and Michalek introduced a notion of fuzzy metric space in [1]. Then, it was
slightly modified by George and Veeramani in [2]. Both notions share many properties. Indeed,
they are topologically equivalent to classical metric spaces. Nevertheless, there exist metric properties
for which the concept given by Kramosil and Michalek, and the one due to George and Veeramani
differ. For instance, fuzzy metric spaces in the sense of Kramosil and Michalek are completable (as
they are metric spaces), whereas the ones introduced by George and Veeramani do not.

A topic in which both notions of fuzzy metric aforementioned differ significantly with classical
metrics is in fixed point theory. Indeed, the usual proofs of fixed point results in metric spaces do not
work, in general, in fuzzy metric spaces. The inconvenience is due to the t-parameter and its relevance
in the triangle inequality defined in a fuzzy metric space. In the last few years, several authors have
contributed to the study of such topic, adapting classical fixed point theorems to the fuzzy context
(see, for instance, [9,10,18–21]). The most of them must demand an extra condition on the fuzzy metric
to get fixed point. Extended fuzzy metrics, introduced and studied in this paper, provide a notion
that allows us to avoid the aforesaid inconvenience of the t-parameter. As it has been justified in
Section 6, the significance of extended fuzzy metric spaces comes from the fact that, on them, we can
relax the contractive condition and obtain a fixed point, without requiring any extra condition on the
extended fuzzy metric space (see Theorem 4). Thus, extended fuzzy metric spaces can be considered
as a prominent framework in the fuzzy metric context to the study of fixed point theory.
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