
mathematics

Article

Spreading Speed in A Nonmonotone Equation with
Dispersal and Delay

Xi-Lan Liu 1 and Shuxia Pan 2,*
1 School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shannxi,

China; doclanliu@163.com
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
* Correspondence: shxpan@yeah.net

Received: 27 February 2019; Accepted: 18 March 2019; Published: 21 March 2019
����������
�������

Abstract: This paper is concerned with the estimation of spreading speed of a nonmonotone equation,
which involves time delay and nonlocal dispersal. Due to the time delay, this equation does not
generate monotone semiflows when the positive initial value is given. By constructing an auxiliary
monotone equation, we obtain the spreading speed when the initial value admits nonempty compact
support. Moreover, by passing to a limit function, we confirm the existence of traveling wave
solutions if the wave speed equals to the spreading speed, which states the minimal wave speed of
traveling wave solutions and improves the known results.
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1. Introduction

Spreading speed is a threshold formulating the long time behavior of functions with spatial and
temporal variables, which was proposed by Aronson and Weinberger [1]. When the spatial variable is
x ∈ R, its definition is given as follows.

Definition 1. Let u(x, t) be nonnegative for x ∈ R, t > 0. Then c′ is called the spreading speed of u(x, t) when

lim
t→∞

sup
|x|>(c′+ε)t

u(x, t) = 0, lim inf
t→∞

inf
|x|<(c′−ε)t

u(x, t) > 0

for any given ε ∈ (0, c′).

Here we give the definition that both directions have the same spreading speed, and different
directions may have different spreading speeds due to diverse reasons including spatial advection
and so on. Let u(x, t) denote the population density in population dynamics, then such a threshold
characterizes the invasion speed of invaders or spreading speed of pathogene [2], and the above
two limit states the observed phenomena if an observer were moved at a fixed speed [3]. In some
evolutionary systems, it has been proven that the threshold may also be the minimal wave speed of
traveling wave solutions. Since [1], there have established some important results of these thresholds
of monotone semiflows, see a survey paper by Zhao [4] for monotone semiflows, Bao et al. [5] and
references cited therein for dispersal models. When the nonmonotone condition is concerned, a few
results were also given, see, for example, Wu and Liu [6], Zhang and Ma [7] for a dispersal model,
Ducrot [8] and Pan [9] for predator-prey type systems.
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In this paper, we study the following nonmonotone equation
∂u(x, t)

∂t
= d[J ∗ u](x, t) + ru(x, t)[1− u(x, t)− au(x, t− τ)],

u(x, s) = φ(x, s), s ∈ [−τ, 0],
(1)

in which x ∈ R, t > 0, u ∈ R, d, a, τ are positive constants, φ(x, s) is a uniform continuous and bounded
positive function, [J ∗ u](x, t) means

[J ∗ u](x, t) =
∫
R

J(x− y)[u(y, t)− u(x, t)]dy,

where J is the probability kernel function satisfying the following assumptions:

(J) J is nonnegative and continuous; there exists λ′ > 0 such that
∫
R J(y)eλydy < ∞ for any |λ| < λ′,∫

R J(y)dy = 1, J(y) = J(−y), y ∈ R.

The above model admits nonlocal dispersal and time delays [10,11], and it does not generate
monotone semiflows when the positive solution is concerned. We shall focus on the long term behavior
of u(x, t) defined by (1) when the initial value satisfies

(I1) φ(x, s) is uniformly continuous and bounded for x ∈ R, s ∈ [−τ, 0], and φ(x, 0) is a nonnegative
function with nonempty support;

(I2) φ(x, 0) has nonempty compact support.

If (I1) and (I2) hold in population dynamics, then the initial habitat size is finite and it may
describe the invasion process in many natural phenomena [2]. To estimate the invasion speed is the
main purpose of this paper.

In this paper, we shall construct a proper auxiliary equation and estimate the spreading speed of
u(x, t), which is motivated by Lin [12] for a delayed reaction-diffusion equation and depends on the
conclusions in Jin and Zhao [13] for a monotone dispersal model. The spreading speed in this paper
equals the minimal wave speed of traveling wave solutions in Li et al. [14] when the kernel function
J has nonempty compact support. By passing to a limit function, we also present the existence of
traveling wave solutions when the wave speed is the spreading speed, during which (J) holds. That
is, even for minimal wave speed, we improve the known conclusions from the viewpoint of kernel
function since a kernel function satisfying (J) may have unbounded support.

2. Preliminaries

We first recall the following initial value problem{
∂u(x,t)

∂t = d[J ∗ u](x, t) + ru(x, t) [1− u(x, t)/K] , x ∈ R, t > 0,

u(x, 0) = χ(x), x ∈ R,
(2)

where J satisfies (J), d > 0, K > 0 and r > 0 are constants, and χ(x) is uniformly continuous and
bounded. By [13], we have the following comparison principle of (2).

Lemma 1. Under the above assumptions, (2) has a solution defined for all x ∈ R, t > 0. If w(x, 0) is uniformly
continuous and bounded for x ∈ R, and w(x, t) satisfies{

∂w(x,t)
∂t ≥ (≤)d[J ∗ w](x, t) + rw(x, t) [1− w(x, t)/K] , x ∈ R, t > 0,

w(x, 0) ≥ (≤)χ(x), x ∈ R,

then w(x, t) ≥ (≤)u(x, t) holds for all x ∈ R, t > 0.
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For λ > 0, define

c∗ = inf
λ>0

d
[∫

R J(y)eλydy− 1
]
+ r

λ
.

Then c∗ > 0 holds. Moreover, it also admits the following property [13].

Lemma 2. Assume that χ(x) > 0. Then for any c < c∗, we have

lim inf
t→∞

inf
|x|<ct

u(x, t) = lim sup
t→∞

sup
|x|<ct

u(x, t) = K.

Further suppose that χ(x) has nonempty compact support, then limt→∞ sup|x|>ct u(x, t) = 0 for any c > c∗.

Moreover, from Pan [15] (Section 5), we have the following result.

Lemma 3. Assume that a ∈ [0, 1). If c > c∗, then

∂u(x, t)
∂t

= d[J ∗ u](x, t) + ru(x, t)[1− u(x, t)− au(x, t− τ)]

has a traveling wave solution defined by

u(x, t) = ψc(ξ), ξ = x + ct ∈ R

and so
cψ′c(ξ) = d

∫
R

J(y)[ψc(ξ − y)− ψc(ξ)]dy + rψc(ξ)[1− ψc(ξ)− aψc(ξ − cτ)], (3)

which also satisfies

lim
ξ→−∞

ψc(ξ) = 0, lim
ξ→∞

ψc(ξ) =
1

1 + a
. (4)

and 0 < ψc(ξ) < 1, ξ ∈ R. Moreover, for any c ∈ (c∗, c∗ + 1], {ψc(ξ)}c∈(c∗ ,c∗+1] is equicontinuous in ξ ∈ R.

3. Main Results

We now show the main conclusion of this paper.

Theorem 1. Assume that u(x, t) is defined by (1). If (I1) holds, then for any fixed c < c∗, we have
lim inft→∞ inf|x|<ct u(x, t) > 0. If (I1) and (I2) are true, then limt→∞ sup|x|>ct u(x, t) = 0 for any given
c > c∗. Moreover, if a ∈ [0, 1), then (3) with c = c∗ admits a positive solution satisfying (4).

Before proving Theorem 1, we make the following remark.

Remark 1. If (I1) and (I2) are true, then c∗ is the spreading speed of u(x, t) defined by (1). Moreover,
our result holds for any given τ > 0, a > 0. This is different from that in Lin [12], which studied the
case of a ∈ [0, 1) for a delayed reaction-diffusion equation.

In the space X of uniformly continuous and bounded functions, we see that d[J ∗ u](x) : X → X is
a bounded linear operator, so it is a sector operator. Thus, it generates an analytic positive semigroup
T(t) : X → X, t > 0. By the positivity of T(t), we have the following comparison principle.

Lemma 4. Assume that u(x, t) or u(t) ∈ X satisfies

u(t) ≥ (≤)T(t− θ)u(θ) +
∫ t

θ
T(t− s) [ru(s)(1− u(s)] , t ≥ 0,
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in which θ ∈ [0, t) if t > 0. Then u(x, t) ≥ (≤)u(x, t), where u(x, t) is defined by (2).

By Martin and Smith [16], the mild solution of (1) is defined by

u(t) = T(t− θ)u(θ) +
∫ t

θ
T(t− s) [ru(s)(1− u(s)− au(s− τ))] ds, t > 0, (5)

where θ ∈ [0, t), u(·) ∈ X. Moreover, from the quasipositivity of ru(x, t)[1− u(x, t)− au(x, t− τ)], we
also have the following conclusion [16].

Lemma 5. (1) admits a mild solution u(x, t) defined by (5) for all x ∈ R, t > 0. It is a classical solution
satisfying (1) if t > τ and

0 < u(x, t) ≤ max

{
1, sup

x∈R
φ(x, 0)

}
:= M, x ∈ R, t > 0.

When φ(x, 0) > 0 for some x ∈ R, we have u(x, t) > 0, x ∈ R, t > 0. Moreover, if t > τ + 1, then u(x, t) is
uniformly continuous in x ∈ R.

Lemma 6. If (I1) is true and c ∈ (0, c∗) is fixed, then

lim inf
t→∞

inf
|x|<ct

u(x, t) > 0.

Proof. Since it involves long time behavior, it suffices to consider t ≥ 2τ + 2 such that we can
investigate the differential equation, and u(x, t) is uniformly continuous in both x, t. Let ε > 0 be
a constant such that

inf
λ>0

d
[∫

R J(y)eλydy− 1
]
+ r(1− 4ε)

λ
> c.

If au(x, t− τ) < ε, then

∂u(x, t)
∂t

≥ d[J ∗ u](x, t) + ru(x, t)[1− ε− u(x, t)].

When au(x, t− τ) ≥ ε (and so a > 0), from the uniform continuity, we have δ > 0 such that

au(y, t− τ) >
ε

4
, |x− y| < 2δ. (6)

Consider the initial value problem
∂v(x, t)

∂t
= d[J ∗ v](x, t) + rv(x, t) [1− aM− v(x, t)] ,

v(x, 0) = v(x),
(7)

where the continuous function v(x) satisfies

(v1) v(x) = ε
4a , |x| ≤ δ;

(v2) v(x) = 0, |x| ≥ 2δ;
(v3) if x ∈ [δ, 2δ] (x ∈ [−2δ,−δ]), then v(x) is decreasing (increasing).

By Lemma 4, we have v(x, t) > 0, x ∈ R, t > 0. Let ε = inft∈[0,τ] v(0, t), then ε > 0. It should be noted
that ε is fixed for all x, t such that au(x, t− τ) ≥ ε, t > 2 + 2τ. Since

∂u(x, t)
∂t

≥ d[J ∗ u](x, t) + ru(x, t) [1− aM− u(x, t)] ,
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then (6) indicates u(x, t) > ε and

au(x, t− τ) ≤ aM <
aM

ε
u(x, t) := ku(x, t),

in which k is also independent on x, t satisfying au(x, t− τ) ≥ ε, t > 2 + 2τ due to the selection of ε.
Summarizing what we have done, we obtain

∂u(x, t)
∂t

≥ d[J ∗ u](x, t) + ru(x, t) [1− ε− (1 + k) u(x, t)] , x ∈ R, t > 2τ + 1

and
u(x, 2τ + 1) > 0, x ∈ R.

Due to Lemmas 1 and 2, we have

lim inf
t→∞

inf
|x|<c′′t

u(x, t) ≥ 1− ε

1 + k
> 0,

where c′′ is defined by

inf
λ>0

d
[∫

R J(y)eλydy− 1
]
+ r(1− 2ε)

λ
,

which completes the proof.

Lemma 7. If (I2) is true, then lim supt→∞ sup|x|>ct u(x, t) = 0, c > c∗.

Proof. Since u(x, t) ≥ 0 for all x ∈ R, t > 0, we have

u(t) ≤ T(t− θ)u(θ) +
∫ t

θ
T(t− s) [ru(s)(1− u(s))] ds

for all 0 ≤ θ < t, then the conclusion is clear by Lemmas 2 and 4. The proof is complete.

Lemma 8. If c = c∗ and a ∈ [0, 1), then (3) has a positive solution satisfying (4).

Proof. We prove the result by the idea in Brown and Carr [17] for the existence and Lin and
Ruan [18] for the limit behavior. Let {cm}m∈N be a strictly decreasing sequence satisfying cm <

c∗ + 1, limm→∞ cm = c∗. Then for each m ∈ N, (3) with c = cm admits a solution ψcm(ξ) satisfying

lim
ξ→−∞

ψcm(ξ) = 0, lim
ξ→∞

ψcm(ξ) =
1

1 + a
.

Since a traveling wave solution is invariant in the sense of phase shift (that is, if ψcm(ξ) is a solution of
(3) with c = cm, then for any fixed e ∈ R, ψcm(ξ + e) also satisfies (3) with c = cm), we assume that

ψcm(0) =
1− a

4
, ψcm(ξ) <

1− a
4

, ξ < 0

after making proper phase shift. By Lemma 3, {ψcm(ξ)}m∈N is equicontinuous. In particular, ψcm(ξ)

also satisfies

ψcm(ξ) =
1

cm

∫ ξ

−∞
e

d(s−ξ)
cm {d (J ∗ ψcm) (s) + rψcm(s)[1− ψcm(s)− aψcm(s− cmτ)]} ds

with (J ∗ ψcm) (s) =
∫

J(y)ψcm(s − y)dy. In particular, any bounded solution of the above integral
equation also satisfies (3) with c = cm.
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Using Ascoli-Arzela lemma, {ψcm(ξ)}m∈N has a subsequence, still denoted by {ψcm(ξ)}m∈N,
and there exists a uniform continuous function ψc∗(ξ) such that

lim
m→∞

ψcm(ξ) = ψc∗(ξ) ∈ [0, 1],

which is uniform in ξ on any compact subset of R, and the convergence is also pointwise in ξ ∈ R.
Letting m→ +∞ and utilizing the dominated convergence theorem, we see that ψc∗(ξ) satisfies

ψc∗(ξ) =
1
c∗

∫ ξ

−∞
e

d(s−ξ)
c∗ {d (J ∗ ψc∗) (s) + rψc∗(s)[1− ψc∗(s)− aψc∗(s− c∗τ)]} ds, (8)

which implies the existence of positive solution of (3) with c = c∗. In particular, they also satisfy

ψc∗(0) =
1− a

4
, ψc∗(ξ) ≤

1− a
4

, ξ < 0.

Moreover, from the above integral equation, we see that ψc∗(ξ) is uniformly continuous.
By the definition of traveling wave solutions, u(x, t) = ψc∗(x + c∗t) satisfies

∂u(x, t)
∂t

= d[J ∗ u](x, t) + ru(x, t)[1− u(x, t)− au(x, t− τ)], x ∈ R, t > 0,

u(x, s) = ψc∗(x + c∗s), x ∈ R, s ∈ [−τ, 0].

So, we have 
∂u(x, t)

∂t
≥ d[J ∗ u](x, t) + ru(x, t)[1− a− u(x, t)],

u(x, 0) = ψc∗(x)

for x ∈ R, t > 0. From Lemma 2, we obtain

lim inf
t→∞

u(0, t) = lim inf
t→∞

ψc∗(c∗t) = lim inf
ξ→∞

ψc∗(ξ) ≥ 1− a

and
lim sup

ξ→∞
ψc∗(ξ) ≤ 1.

By the dominated convergence theorem in (8), we have

1− lim sup
ξ→∞

ψc∗(ξ)− a lim inf
ξ→∞

ψc∗(ξ) ≥ 0

and
1− lim inf

ξ→∞
ψc∗(ξ)− a lim sup

ξ→∞
ψc∗(ξ) ≤ 0

from the monotonicity. Therefore, we obtain

lim inf
ξ→∞

ψc∗(ξ) = lim sup
ξ→∞

ψc∗(ξ) =
1

1 + a
.

If lim supξ→−∞ ψc∗(ξ) > 0, then the definition of lim sup and the uniform continuity imply that
there exist {ξm}m∈N, σ > 0 and ρ > 0 such that

(p1) ξm → −∞, m→ ∞,
(p2) ψc∗(ξm) > σ/2,
(p3) ψc∗(ξm + x) > σ/2, |x| < ρ.
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Also consider

∂w(x, t)
∂t

= d[J ∗ w](x, t) + rw(x, t)[1− a− w(x, t)], x ∈ R, t > 0

with the initial value satisfying

(w1) w(x, 0) = w(−x, 0), x ∈ R;
(w2) w(x, 0) = 0, |x| ≥ ρ;
(w3) w(x, 0) = σ/2, x ∈ [−ρ/2, ρ/2];
(w4) w(x, 0) is decreasing and continuous for x ∈ [ρ/2, ρ].

Then there exists T > 0 such that

w(0, t) >
1− a

2
, t ≥ T

by Lemmas 1 and 2. Since

∂u(x, t)
∂t

≥ d[J ∗ u](x, t) + ru(x, t)[1− a− u(x, t)], x ∈ R, t > 0,

we obtain
u(ξm, c∗T) >

1− a
2

by the property of {ξm}m∈N. According to the definition of traveling wave solutions, we see that

lim sup
ξ→−∞

ψc∗(ξ) >
1− a

2
,

and a contradiction occurs. The proof is complete.

4. Conclusion Remarks

Nonmonotone condition may lead to plentiful dynamical behavior in dynamical systems, such as
the chaos in simple logistic type difference equations [19]. The nonmonotonicity may have originated
from time delay in reaction-diffusion equations, see their complex dynamics by Wu [20]. When the
spatial propagation of nonmonotone models is concerned, much attention has been paid to the study
of traveling wave solutions, see several recent papers [21,22] and references cited therein. Besides the
traveling wave solutions, the entire solutions of some nonmonotone models were also studied [23–26].

In the study of traveling wave solutions and entire solutions, some admissible speed parameters
may be larger/smaller than a threshold. The threshold may also be characterized by asymptotic
spreading, and is called the spreading speed. For monotone systems, we have mentioned some
important works. In this paper, we obtained a threshold of asymptotic spreading for nonmonotone
Equation (1), which is also the minimal wave speed in known results. For the existence of traveling
wave solutions, we further presented a result under weaker conditions than that in [14].

However, the propagation dynamics of different evolutionary models is more complex than that
we have mentioned, which can be formulated by traveling wave solutions, asymptotic spreading and
entire solutions. For example, if the initial value does not have compact support, can we characterize
the asymptotic spreading of (1) by a constant like that in this paper? Under some conditions, we
conjecture that the solution may expand in a finite speed, which likes the stability of traveling wave
solutions of monotone dispersal models [27,28]. With different conditions, very likely special initial
values lead to non-constant speed of spatial expansion, which is similar to that of the Fisher equation
in Hamel and Roques [29]. We shall further investigate these questions in the future.
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