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Abstract: The semigroup properties of the Riemann–Liouville fractional integral have played a key
role in dealing with the existence of solutions to differential equations of fractional order. Based on
some results of some experts’, we know that the Riemann–Liouville variable order fractional integral
does not have semigroup property, thus the transform between the variable order fractional integral
and derivative is not clear. These judgments bring us extreme difficulties in considering the existence
of solutions of variable order fractional differential equations. In this work, we will introduce the
concept of approximate solution to an initial value problem for differential equations of variable order
involving the derivative argument on half-axis. Then, by our discussion and analysis, we investigate
the unique existence of approximate solution to this initial value problem for differential equation of
variable order involving the derivative argument on half-axis. Finally, we give examples to illustrate
our results.

Keywords: variable order fractional derivative; initial value problem; fractional differential equations;
piecewise constant functions; approximate solution

1. Introduction

In this paper, we will observe and study the unique existence of approximate solution to the
following initial value problem of variable order{

Dp(t)
0+ x(t) = f (t, x, Dq(t)

0+ x), 0 < t < +∞,

x(0) = 0,
(1)

where 0 < q(t) < p(t) < 1, f (t, x, Dq(t)
0+ x) are given real functions, and Dp(t)

0+ , Dq(t)
0+ denote derivatives

of variable order p(t) and q(t) defined by

Dp(t)
0+ x(t) =

d
dt

∫ t

0

(t− s)−p(t)

Γ(1− p(t))
x(s)ds, t > 0. (2)

Dq(t)
0+ x(t) =

d
dt

∫ t

0

(t− s)−q(t)

Γ(1− q(t))
x(s)ds, t > 0,

and 1
Γ(1−p(t))

∫ t
0 (t− s)−p(t)x(s)ds is integral of variable order 1− p(t) for function x(t), for details,

please refer to [1].
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The operators of variable order, which fall into a more complex category, are the derivatives
and integrals whose orders are the functions of certain variables. There are several definitions of
variable order fractional integrals and derivatives. The following are several definitions of variable
order fractional integrals and derivatives, which can be found in [2]. Let −∞ < a < b < ∞.

Definition 1. Let p : [a, b]→ (0,+∞), the left Riemann–Liouville fractional integral of order α(t) for function
x(t) are defined as the following two types

Iα(t)
a+ x(t) =

∫ t

a

(t− s)α(t)−1

Γ(α(t))
x(s)ds, t > a, (3)

Iα(t)
a+ x(t) =

∫ t

a

(t− s)α(s)−1

Γ(α(s))
x(s)ds, t > a. (4)

Definition 2. Let α : [a, b] → (n − 1, n] (n is a natural number), the left Riemann–Liouville fractional
derivative of order α(t) for function x(t) are defined as the following two types

Dα(t)
a+ x(t) =

(
d
dt

)n ∫ t

a

(t− s)n−α(t)−1

Γ(n− α(t))
x(s)ds, t > a, (5)

Dα(t)
a+ x(t) =

(
d
dt

)n ∫ t

a

(t− s)n−α(s)−1

Γ(n− α(s))
x(s)ds, t > a. (6)

Definition 3. Let α : [a, b]→ (n− 1, n](n is a natural number), the left Caputo fractional derivative of order
α(t) for function x(t) are defined as the following two types

CDα(t)
a+ x(t) =

∫ t

a

(t− s)n−α(t)−1

Γ(n− α(t))
x(n)(s)ds, t > a, (7)

CDα(t)
a+ x(t) =

∫ t

a

(t− s)n−α(s)−1

Γ(n− α(s))
x(n)(s)ds, t > a. (8)

The problems denoted by the operator of variable order are apparently more complicated than
the ones denoted by the operator of constant order. Recently, some authors have considered the
applications of derivatives of variable order in various sciences such as anomalous diffusion modeling,
mechanical applications, multi-fractional Gaussian noises. Among these, there have been many works
dealing with numerical methods for some class of variable order fractional differential equations,
for instance, [1–20].

We notice that, if the order p(t) is a constant function q, then the Riemann–Liouville variable
order fractional derivatives and integrals are the Riemann–Liouville fractional derivative and integral,
respectively [21]. We know there are some important properties as following. Let −∞ < b < ∞.

Lemma 1. [21] The Riemann–Liouville fractional integral defined for function x(t) ∈ L(0, b) exists almost
everywhere.

Lemma 2. [21] The equality Iγ
0+ Iδ

0+x(t) = Iδ
0+ Iγ

0+x(t) = Iγ+δ
0+ x(t), 0 < γ < 1, 0 < δ < 1 holds for

x ∈ L(0, b).

Lemma 2 is semigroup property for the Riemann–Liouville fractional integral, which is very
crucial in obtaining the following Lemmas 3–5. In other words, without Lemma 2, one could not have
Lemmas 3–5, for details, please refer to [21].

Lemma 3. [21] The equality Dγ
0+ Iγ

0+x(t) = x(t), 0 < γ < 1 holds for x ∈ L(0, b).
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Lemma 4. [21] Let 0 < α < 1, then the differential equation

Dα
0+x = 0, t > 0

has solution
x(t) = ctα−1, c ∈ R.

Lemma 5. [21] Let 0 < α < 1, x ∈ L(0, b), Dα
0+x ∈ L(0, b). Then the following equality holds

Iα
0+Dα

0+x(t) = x(t) + ctα−1, c ∈ R.

These properties play a very important role in considering the existence of the solutions of
differential equations for the Riemann–Liouville fractional derivative, for details, please refer to [22–26].
However, from [15–18], for general functions h(t), g(t), we notice that the semigroup property does
not hold, i.e., Ih(t)

a+ Ig(t)
a+ 6= Ih(t)+g(t)

a+ . Thus, it brings us extreme difficulties, that we cannot get these
properties like Lemmas 3–5 for the variable order fractional operators (integral and derivative). Without
these properties for variable order fractional derivative and integral, we can hardly consider the
existence of solutions of differential equations for variable order derivative by means of nonlinear
functional analysis (for instance, some fixed point theorems).

In [18], by means of Banach contraction principle, we considered the uniqueness result of solutions
to initial value problems of differential equations of variable order{

Dq(t)
0+ x(t) = f (t, x), 0 < t ≤ T,

x(0) = 0,
(9)

where 0 < T < +∞, Dq(t)
0+ denotes derivative of variable order defined by (2), and q : [0, T] → (0, 1]

is a piecewise constant function with partition P = {[0, T1], (T1, T2], (T2, T3], · · · , (TN∗−1, T]} (N∗ is a
given natural number) of the finite interval [0, T], i.e.,

q(t) =
N∗

∑
k=1

qk Ik(t), t ∈ [0, T],

where 0 < qk ≤ 1, k = 1, 2, · · · , N∗ are constants, and Ik is the indicator of the interval [Tk−1, Tk],
k = 1, 2, · · · , N∗(here T0 = 0, TN∗ = T), that is Ik = 1 for t ∈ [Tk−1, Tk], Ik = 0 for elsewhere.

In this paper, we will consider the existence of solutions to the problem (1) for variable orders
p(t), q(t) are not piecewise constants. Based on some analysis, we will introduce the concept of
approximate solution to the problem (1). Then, according to our discussion and analysis, we explore
the unique existence of the approximate solution of the problem (1).

This paper is organized as follows. In Section 2, we provide some facts to the variable order
integral and derivative through several examples. Also, we state some results which will play
a very important role in obtaining our main results. In Section 3, we set forth our main result.
Finally, two examples are given.

2. Some Preliminaries on Approximate Solution

In this section, we give some preliminaries on approximate solutions to the initial value problem (1).
First of all, we use an example to illustrate the claim: for general function p(t), q(t), the Riemann–Liouville
variable order fractional integral does not have the semigroup property.

Example 1. Let p(t) = t
6 + 1

3 , q(t) = t
4 + 1

4 , f (t) = 1, 0 ≤ t ≤ 3. Now, we calculate Ip(t)
0+ Iq(t)

0+ f (t)|t=1 and

Ip(t)+q(t)
0+ f (t)|t=1 which are defined in (3).
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For 1 ≤ t ≤ 3, we have

Ip(t)
0+ Iq(t)

0+ f (t) =
∫ t

0

(t− s)
t
6+

1
3−1

Γ( t
6 + 1

3 )

∫ s

0

(s− τ)
s
4+

1
4−1

Γ( s
4 + 1

4 )
dτds

=
∫ t

0

(t− s)
t
6−

2
3 s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds

=
∫ 1

0

(t− s)
t
6−

2
3 s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds +

∫ t

1

(t− s)
t
6−

2
3 s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds.

We set M1 = max1≤t≤3 | 1
Γ(p(t)) | and M2 = max1≤s≤3 | 1

Γ( 5
4+

s
4 )
|. For 1 ≤ t ≤ 3, it holds

|
∫ t

1

(t− s)
t
6−

2
3 s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds| = |

∫ t

1
3

t
6−

2
3 (

t− s
3

)
t
6−

2
3

s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds|

≤ M1M2

∫ t

1
3

1
2−

2
3 (

t− s
3

)
1
6−

2
3 sds

≤ M1M2

∫ t

1
3

1
3 (t− s)−

1
2 3ds

= 2× 3
4
3 M1M2(t− 1)

1
2 ,

hence, we have [ ∫ t

1

(t− s)
t
6−

2
3 s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds
]

t=1
= 0.

So, we get

Ip(t)
0+ Iq(t)

0+ f (t)|t=1 =
∫ 1

0

(1− s)−
1
2 s

1
4+

s
4

Γ( 1
2 )Γ(

5
4 + s

4 )
ds ≈ 1.063

and

Ip(t)+q(t)
0+ f (t)|t=1 =

∫ 1

0

(1− s)p(1)+q(1)−1

Γ(p(1) + q(1))
ds =

∫ 1

0
ds = 1.

Therefore,
Ip(t)
0+ Iq(t)

0+ f (t)|t=1 6= Ip(t)+q(t)
0+ f (t)|t=1.

Without the semigroup property of the Riemann–Liouville variable order fractional integral,
we can assure that the variable order fractional integration operator of non-constant continuous
functions p(t) for x(t) does not have the properties like Lemmas 3–5. Consequently, we cannot
transform differential equations of variable order into an integral equation.

Let L[x(t); s], L[Ip(t)
0+ x(t); s], L[Dp(t)

0+ x(t); s] denote the Laplace transforms of functions x(t),

Ip(t)
0+ x(t) and Dp(t)

0+ x(t). We have not found out the explicit connection between L[x(t); s] and

L[Ip(t)
0+ x(t); s], as a result, we have not found out the explicit connection between L[x(t); s] and

L[Dp(t)
0+ x(t); s].

Example 2. Let p(t) = 1√
t+1 , t ≥ 0. We consider the Laplace transforms of functions t(t ≥ 0) and Ip(t)

0+ t(t ≥
0) defined in (3). We can know that

L[t; s] =
∫ ∞

0
e−sttdt =

1
s2 , (10)
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L[I(t+1)−
1
2

0+ t; s] =
∫ ∞

0
e−st

∫ t

0

(t− τ)(t+1)−
1
2−1

Γ((t + 1)−
1
2 )

τdτdt

=
∫ ∞

0
e−st

∫ ∞

τ

(t− τ)(t+1)−
1
2−1

Γ((t + 1)−
1
2 )

τdtdτ

=
∫ ∞

0
e−s(τ+r)

∫ ∞

0

r(τ+r+1)−
1
2−1

Γ((τ + r + 1)−
1
2 )

τdrdτ

=
∫ ∞

0
e−sττ

∫ ∞

0
e−sr r(τ+r+1)−

1
2−1

Γ((τ + r + 1)−
1
2 )

drdτ. (11)

By (10) or (11), we do not get the explicit connection between L[t; s] and L[I(t+1)−
1
2

0+ t; s].
In view of this example, the definition of variable order fractional derivative and the connection

between the Laplace transforms of function x(t) and its derivative x′(t), we cannot obtain the Laplace
transform formula for variable order fractional derivatives (2). Based on these facts, we cannot get the
explicit expression of the solutions for the problem (1).

Throughout this paper, we assume that

(A1) Let p : [0,+∞) → (0, 1) and q : [0,+∞) → (0, 1) be continuous functions, q(t) < p(t) for all
t ∈ [0,+∞), and that p(t), q(t) satisfy

lim
t→+∞

p(t) = ρ1, lim
t→+∞

q(t) = ρ2, 0 < ρ1, ρ2 < 1. (12)

The following result is necessary in our next analysis of main result.

Lemma 6. Let condition (A1) hold. Then there exist positive constant T, natural number n∗ and intervals
[0, T1], (T1, T2], · · · , (Tn∗−1, T] (T,+∞)(n∗ ∈ N) and functions α : [0,+∞) → (0, 1) and β : [0,+∞) →
(0, 1) defined by

α(t) =
n∗

∑
k=1

pkIk(t) + ρ1IT(t), t ∈ [0,+∞), (13)

β(t) =
n∗

∑
k=1

qkIk(t) + ρ2IT(t), t ∈ [0,+∞), (14)

where pk, qk ∈ (0, 1), Ik(t) is the indicator of the interval [Tk−1, Tk] (k = 1, 2, · · · , n∗, here T0 = 0, Tn∗ = T),
i.e., Ik(t) = 1 for t ∈ [Tk−1, Tk], Ik(t) = 0 for t lying in elsewhere; IT(t) is the indicator of interval (T,+∞),
i.e., IT(t) = 1 for t ∈ (T,+∞), IT(t) = 0 for t lying in elsewhere, such that for arbitrary small ε > 0,

|p(t)− α(t)| < ε, |q(t)− β(t)| < ε, 0 ≤ t < +∞. (15)

Proof. By (12), for ∀ ε > 0, there exist T1, T2 > 0, such that

|p(t)− ρ1| < ε, t > T1; |p(t)− ρ2| < ε, t > T2.

Let T = max{T1, T2}, then, for ∀ ε > 0, we have that

|p(t)− ρ1| < ε, |p(t)− ρ2| < ε, t > T. (16)

We know that p : [0, T] → (0, 1), q : [0, T] → (0, 1) are continuous functions. Since p(t) is right
continuous at point 0, then, for arbitrary small ε > 0, there is δ01 > 0 such that

|p(t)− p(0)| < ε, for 0 ≤ t ≤ δ01.
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Since q(t) is right continuous at point 0, then, for arbitrary small ε > 0, there is δ02 > 0 such that

|q(t)− q(0)| < ε, for 0 ≤ t ≤ δ02.

Then for arbitrary small ε > 0, takeing δ0 = min{δ01, δ02}, it holds

|p(t)− p(0)| < ε, |q(t)− q(0)| < ε, for 0 ≤ t ≤ δ0. (17)

We take point δ0
.
= T1 (if T1 < T, we consider continuities of p(t), q(t) at point T1, otherwise,

we end this procedure). Since p(t) is right continuous at point T1, so, for arbitrary small ε > 0, there is
δ11 > 0 such that

|p(t)− p(T1)| < ε, for T1 ≤ t ≤ T1 + δ11,

Since q(t) is right continuous at point T1, then, for arbitrary small ε > 0, there is δ12 > 0 such that

|q(t)− q(T1)| < ε, for T1 ≤ t ≤ T1 + δ12.

Hence, for arbitrary small ε > 0, taking δ1 = min{δ11, δ12}, it holds

|p(t)− p(T1)| < ε, |q(t)− q(T1)| < ε, for T1 ≤ t ≤ T1 + δ1. (18)

We take point T1 + δ1
.
= T2 (if T2 < T, we consider continuities of p(t), q(t) at point T2, otherwise,

we end this procedure). Since p(t) is right continuous at point T2, so, for arbitrary small ε > 0, there is
δ21 > 0 such that

|p(t)− p(T2)| < ε, for T2 ≤ t ≤ T2 + δ21.

Since q(t) is right continuous at point T2, so, for arbitrary small ε > 0, there is δ22 > 0 such that

|q(t)− q(T2)| < ε, for T2 ≤ t ≤ T2 + δ22.

Thus, for arbitrary small ε > 0, taking δ2 = min{δ21, δ22}, it holds

|p(t)− p(T2)| < ε, |q(t)− q(T2)| < ε, for T2 ≤ t ≤ T2 + δ2. (19)

We take point T2 + δ2
.
= T3 (if T3 < T, we consider continuities of p(t), q(t) at point T3, otherwise,

we end this procedure). Since p(t) is right continuous at point T3, so, for arbitrary small ε > 0, there is
δ31 > 0 such that

|p(t)− p(T3)| < ε, for T3 ≤ t ≤ T3 + δ31,

Since q(t) is right continuous at point T3, so, for arbitrary small ε > 0, there is δ32 > 0 such that

|q(t)− q(T3)| < ε, for T3 ≤ t ≤ T3 + δ32.

Therefore, for arbitrary small ε > 0, taking δ3 = min{δ31, δ32}, it holds

|p(t)− p(T3)| < ε, |q(t)− q(T3)| < ε, for T3 ≤ t ≤ T3 + δ3. (20)

Since [0, T] is a finite interval, then, continuing this analysis procedure, we could obtain that
there exist δn∗−2 > 0, δn∗−1 > 0 (n∗ ∈ N) such that Tn∗−2 + δn∗−2

.
= Tn∗−1 < T, Tn∗−1 + δn∗−1 ≥ T,

such that for arbitrary small ε > 0, it holds

|p(t)− p(Tn∗−1)| < ε, |q(t)− q(Tn∗−1)| < ε for Tn∗−1 ≤ t ≤ T, (21)
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From (16)–(21), we could let

p(0) .
= p1, p(T1)

.
= p2, p(T2)

.
= p3, p(T3)

.
= p4, · · · , p(Tn∗−1)

.
= pn∗ ,

q(0) .
= q1, q(T1)

.
= q2, q(T2)

.
= q3, q(T3)

.
= q4, · · · , q(Tn∗−1)

.
= qn∗ .

Thus, we define functions α, β : [0,+∞)→ (0, 1) as following

α(t) =



p1, t ∈ [0, T1],

p2, t ∈ (T1, T2],
...
pn∗ , t ∈ (Tn∗−1, T],

ρ1, t ∈ (T,+∞),

β(t) =



q1, t ∈ [0, T1],

q2, t ∈ (T1, T2],
...
qn∗ , t ∈ (Tn∗−1, T],

ρ2, t ∈ (T,+∞).

Hence, from the previous arguments, for arbitrary small ε > 0, we have

|p(t)− p1| < ε, |q(t)− q1| < ε, for t ∈ [0, T1],

|p(t)− p2| < ε, |q(t)− q2| < ε, for t ∈ (T1, T2],
...

|p(t)− pn∗ | < ε, |q(t)− qn∗ | < ε, for t ∈ (Tn∗−1, T],

|p(t)− ρ1| < ε, |q(t)− ρ2| < ε, for t ∈ (T,+∞).

(22)

Thus, we complete this proof.

The following example illustrates that the semigroup property of the variable order fractional
integral does not holds for the piecewise constant functions p(t) and q(t) defined in the same partition
of finite interval [a, b].

Example 3. Let p(t) =

{
4, 0 ≤ t ≤ 1,
3, 1 < t ≤ 4,

q(t) =

{
3, 0 ≤ t ≤ 1,
2, 1 < t ≤ 4,

and f (t) = 1, 0 ≤ t ≤ 4. We’ll

verify Ip(t)
0+ Iq(t)

0+ f (t)|t=3 6= Ip(t)+q(t)
0+ f (t)|t=3, here, the variable order fractional integral is defined in (3).

For 1 ≤ t ≤ 4, we have

Ip(t)
0+ Iq(t)

0+ f (t)

=
∫ 1

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)3−1

Γ(3)
dτds +

∫ t

1

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)2−1

Γ(2)
dτds

=
∫ 1

0

(t− s)p(t)−1s3

6Γ(p(t))
ds +

∫ t

1

(t− s)p(t)−1s2

2Γ(2)Γ(p(t))
ds,

thus, we have

Ip(t)
0+ Iq(t)

0+ f (t)|t=3 =
∫ 1

0

(3− s)2s3

6Γ(3)
ds +

∫ 3

1

(3− s)2s2

2Γ(2)Γ(3)
ds =

245
144

.
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Ip(t)+q(t)
0+ f (t)|t=3 =

∫ 3

0

(3− s)p(3)+q(3)−1

Γ(p(3) + q(3))
ds =

33+2

Γ(1 + 3 + 2)
=

81
40

.

Therefore, we obtain
Ip(t)
0+ Iq(t)

0+ f (t)|t=3 6= Ip(t)+q(t)
0+ f (t)|t=3,

which implies that the semigroup property of the variable order fractional integral does not hold for the piecewise
constant functions p(t) and q(t) defined in the same partition [0, 1], (1, 4] of finite interval [0, 4].

Lemma 7. [10] Suppose β > 0, a(t) is a nonnegative nondecreasing function locally integrable on 0 ≤ t < L
(some L ≤ +∞) and g(t) is a nonnegative nondecreasing continuous function defined on 0 ≤ t < L, g(t) ≤ M
(constant), and suppose u(t) is nonnegative and locally integrable on 0 ≤ t < L with

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)β−1u(s)ds

on this interval. Then
u(t) ≤ a(t)Eβ(g(t)Γ(β)tβ), 0 ≤ t < L,

where Eβ is the Mittag–Leffler function defined by Eβ(z) = ∑∞
k=0

zk

Γ(kβ+1) .

3. Existence of Approximate Solution

According to the previous arguments, we do not transform the problem (1) into an integral
equation. Here, we consider the unique existence of approximate solution of the problem (1). In this
section, we present our main results.

Now we make the following assumptions:

(A2) f : [0,+∞)× R2 → R be a continuous function, and there exist positive constants λ > {ρ1, ρ2},
c1, c2 > 0 satisfying

c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)
< 1,

such that

| f (t, (1 + tλ)x1, (1 + tλ)y1)− f (t, (1 + tλ)x2, (1 + tλ)y2)| ≤ c1|x1 − x2|+ c2|y1 − y2|, (23)

where ρ1, ρ2 are the constants in (A1).

(A3) f (t, 0, 0)(t ∈ (0,+∞)) satisfies

lim
t→+∞

1
1 + tλ

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds = 0.

Let Bi denote the Banach spaces defined as

Bi = {x|x ∈ C[0, Ti]}

with the norm
‖x‖Bi = max

t∈[0,Ti ]
|x(t)|, (24)

where Ti is the constant obtained in Lemma 6, i = 1, · · · , n∗(Tn∗ = T). Let

E =

{
x
∣∣∣∣x ∈ C[0,+∞), sup

t≥0

|x(t)|
1 + tλ

< ∞
}
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with the norm

‖x‖E = sup
t≥0

|x(t)|
1 + tλ

, (25)

where λ > {ρ1, ρ2}. Then, by the same arguments as in Lemma 2.2 of [22], we know that (E, ‖ · ‖E) is
a Banach space, here we omit this proof.

Now, we consider the following initial value problem{
Dα(t)

0+ x(t) = f (t, x, Dβ(t)
0+ x), 0 < t < +∞,

x(0) = 0,
(26)

where α(t), β(t) are defined in (13) and (14).
In order to obtain our main results, we start off by carrying on essential analysis to the equation

of (26).
By (13) and (14), we get

∫ t

0

(t− s)−α(t)

Γ(1− α(t))
x(s)ds =

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−pk

Γ(1− pk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds,

∫ t

0

(t− s)−β(t)

Γ(1− β(t))
x(s)ds =

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−qk

Γ(1− qk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ2

Γ(1− ρ2)
x(s)ds .

= hβ,x(t),

So, the equation of (26) can be written by

d
dt
(

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−pk

Γ(1− pk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds) = f (t, x,

d
dt

hβ,x(t)), 0 < t < +∞. (27)

Then, Equation (27) in the interval (0, T1] can be written by

d
dt

∫ t

0

(t− s)−p1

Γ(1− p1)
x(s)ds = Dp1

0+x(t) = f (t, x, Dq1
0+x), 0 < t ≤ T1. (28)

The Equation (27) in the interval (T1, T2] can be written by

d
dt

∫ t

0

(t− s)−p2

Γ(1− p2)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−q2

Γ(1− q2)
x(s)ds), T1 < t ≤ T2. (29)

The Equation (27) in the interval (T2, T3] can be written by

d
dt

∫ t

0

(t− s)−p3

Γ(1− p3)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−q3

Γ(1− q3)
x(s)ds), T2 < t ≤ T3. (30)

The Equation (27) in the interval (Ti−1, Ti], i = 4, 5, · · · , n∗ (Tn∗ = T) can be written by

d
dt

∫ t

0

(t− s)−pi

Γ(1− pi)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−qi

Γ(1− qi)
x(s)ds), Ti−1 < t ≤ Ti. (31)

The Equation (27) in the interval (T,+∞) can be written by

d
dt

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−ρ2

Γ(1− ρ2)
x(s)ds), T < t < +∞. (32)

Now, we present the definition of a solution to the problem (26), which is crucial in our work.
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Definition 4. We say the problem (26) exists one unique solution, if there are unique functions ui(t),
i = 1, 2, · · · , n∗, such that u1 ∈ C[0, T1] satisfying Equation (28) and u1(0) = 0; u2 ∈ C[0, T2] satisfying
Equation (29) and u2(0) = 0; u3 ∈ C[0, T3] satisfying Equation (30) and u3(0) = 0; ui ∈ C[0, Ti] satisfying
Equation (31) and ui(0) = 0 (i = 4, 5, · · · , n∗)(Tn∗ = T); uT ∈ C[0,+∞) satisfying Equation (32) and
uT(0) = 0.

The following is the definition of approximate solution of the problem (1).

Definition 5. If there exist T > 0, natural number n∗ ∈ N and intervals [0, T1], (T1, T2], · · · , (Tn∗−1, T],
(T,+∞) and functions defined in Equations (13) and (14), such that the problem (26) exists one unique solution,
then, we say this solution of the problem (26) is one unique approximate solution of the problem (1).

Our main result is as follows.

Theorem 1. Let conditions (A1), (A2), (A3) hold, then the problem (1) exists one unique approximate solution.

Proof of Theorem 1. From Definitions 4 and 5 and Lemma 6, we only need to consider the unique
existence of solution of the problem (26). According to the above analysis, equation of problem (26)
can be written as the Equation (27). So Equation (26) in the interval (0, T1] can be written as (28).
Applying operator Ip1

0+ to both sides of (28), by Lemma 5, we have

x(t) = ctp1−1 +
1

Γ(p1)

∫ t

0
(t− s)p1−1 f (s, x(s), Dq1

0+x(s))ds, 0 < t ≤ T1.

By x(0) = 0 and the assumption of function f , we get c = 0, that is

x(t) =
1

Γ(p1)

∫ t

0
(t− s)p1−1 f (s, x(s), Dq1

0+x(s))ds, 0 ≤ t ≤ T1. (33)

Let Dq1
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = Iq1
0+y(t),

hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1 f (s, Iq1

0+y(s), y(s))ds, 0 ≤ t ≤ T1. (34)

Obviously, if y∗ ∈ B1 = C[0, T1] is a solution of (34), then, applying operator Iq1
0+ on both sides

of (34), from Lemma 2, it holds

Iq1
0+y∗(t) = Iq1

0+ Ip1−q1
0+ f (t, Iq1

0+y∗(t), y∗(t)) = Ip1
0+ f (t, Iq1

0+y∗(t), y∗(t)), 0 ≤ t ≤ T1,

let
Iq1
0+y∗(t) = x∗(t), 0 ≤ t ≤ T,

as a result, we have that

x∗(t) = Ip1
0+ f (t, x∗(t), Dq1

0+x∗(t)), 0 ≤ t ≤ T1,

that is, x∗ ∈ B1 = C[0, T1] is a solution of (33), thus, we know that x∗ ∈ B1 = C[0, T1] is a solution of
Equation (28) with zero initial value condition.
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Define operator F : B1 → B1 by

Fy(t) =
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1 f (s, Iq1

0+y(s), y(s))ds, 0 ≤ t ≤ T1. (35)

From the continuity of function f and the standard arguments, we know that the operator
F : B1 → B1 is well defined. Let M = max0≤t≤T | f (t, 0, 0)|. Let Ω1 be a bounded, convex and closed
subset of B1 defined by

Ω1 = {y|y ∈ B1; |y(t)| ≤ K1eR2
1tp1−q1 , 0 ≤ t ≤ T1},

where

K1 =
2MTp1−q1

1
Γ(1 + p1 − q1)

,

R1 ∈ N satisfying

R1 > {1, (
2d1(1 + Tp1−q1

1 )

p1 − q1
)

1
p1−q1 },

here d1 = 1
Γ(p1−q1)

[
c1T

q1
1

Γ(1+q1)
+ c2

]
(c1, c2 are the constants appearing in condition (A2)).

By the analogy way as in [23], we could verify that F : Ω1 → Ω1 is well defined. In fact, for
y ∈ Ω1, since

|Iq1
0+y(s)| ≤ 1

Γ(q1)

∫ s

0
(s− τ)q1−1|y(τ)|dτ

≤ K1

Γ(q1)

∫ s

0
(s− τ)q1−1eR2

1τp1−q1 dτ

≤ K1

Γ(q1)

∫ s

0
(s− τ)q1−1eR2

1sp1−q1 dτ

=
K1

Γ(1 + q1)
sq1 eR2

1sp1−q1

≤
K1Tq1

1
Γ(1 + q1)

eR2
1sp1−q1 .

Now, y ∈ Ω1, by estimations above and (A2), we get

|Fy(t)|

≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1| f (s, Iq1

0+y(s), y(s))|ds

=
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1| f (s, Iq1

0+y(s), y(s))− f (s, 0, 0) + f (s, 0, 0)|ds

≤
MTp1−q1

1
Γ(1 + p1 − q1)

+
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1

|Iq1
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

≤ K1

2
+

1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1|I

q1
0+y(s)|+ c2|y(s)|)ds
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≤ K1

2
+

1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1

(
K1c1Tq1

1
Γ(1 + q1)

eR2
1sp1−q1 + c2K1eR2

1sp1−q1
)

ds

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

(t− s)p1−q1−1eR2
1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1sp1−q1 ds

]

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

R1−p1+q1
1 (R1 − i)p1−q1−1tp1−q1−1eR2

1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1tp1−q1 ds

]

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

R1−p1+q1
1 tp1−q1−1eR2

1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1tp1−q1 ds

]

=
K1

2
+ K1d1R1−p1+q1

1

∫ (R1−1)t
R1

0
tp1−q1−1eR2

1sp1−q1 ds +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
+ K1d1R1−p1+q1

1

∫ (R1−1)t
R1

0
sp1−q1−1eR2

1sp1−q1 ds +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
+

K1d1R1−p1+q1
1

R2
1(p1 − q1)

eR2
1(

(R1−1)t
R1

)p1−q1
+

K1d1Rq1−p1
1 Tp1−q1

1
p1 − q1

eR2
1tp1−q1

≤ K1

2
+

K1d1R−1−p1+q1
1

p1 − q1
eR2

1tp1−q1 +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
eR2

1tp1−q1 +
K1d1(1 + Tp1−q1

1 )

p1 − q1
Rq1−p1

1 eR2
1tp1−q1

≤ K1

2
eR2

1tp1−q1 +
K1

2
eR2

1tp1−q1 = K1eR2
1tp1−q1 ,

which implies that F : Ω1 → Ω1 is well defined. By the standard arguments, we could know that
F : Ω1 → Ω1 is a completely operator. Hence, the Schauder fixed point theorem assures that operator
F has at least one fixed point y1(t) ∈ Ω1. Obviously, y1(0) = 0. Now, we will verify the uniqueness
of solution to the integral Equation (34). We notice that: for 0 ≤ s ≤ t ≤ T1, if 0 ≤ t− s ≤ 1, then
(t− s)p1−1 ≤ (t− s)p1−q1−1; if t− s ≥ 1, then (t− s)p1−q1−1 ≤ (t− s)p1−1. As a result, we take

max{(t− s)p1−1, (t− s)p1−q1−1} .
= (t− s)α−1,

where α denotes p1 or p1 − q1. Now, let u1(t), u2(t) zre two solutions of the integral Equation (34),
by expression above and (A2), we get

|u1(t)− u2(t)|

≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1

|Iq1
0+(u1(s)− u2(s))|

1 + sλ
+ c2
|u1(s)− u2(s)|

1 + sλ
)ds
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≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1|I

q1
0+(u1(s)− u2(s))|+ c2|u1(s)− u2(s)|)ds

≤ c1

Γ(p1 − q1)Γ(q1)

∫ t

0
(t− s)p1−q1−1

∫ s

0
(s− τ)q1−1|u1(τ)− u2(τ)|dτds

+
c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

=
c1

Γ(p1 − q1)Γ(q1)

∫ t

0

∫ t

τ
(t− s)p1−q1−1(s− τ)q1−1|u1(τ)− u2(τ)|dsdτ

+
c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

=
c1

Γ(p1)

∫ t

0
(t− τ)p1−1|u1(τ)− u2(τ)|dτ +

c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

≤ c1

Γ(p1)

∫ t

0
(t− τ)α−1|u1(τ)− u2(τ)|dτ +

c2

Γ(p1 − q1)

∫ t

0
(t− s)α−1|u1(s)− u2(s)|ds

= [
c1

Γ(p1)
+

c2

Γ(p1 − q1)
]
∫ t

0
(t− τ)α−1|u1(τ)− u2(τ)|dτ,

by Lemma 7, we obtain that u1(t) = u2(t), 0 ≤ t ≤ T1, this assures the uniqueness of solution of (34).
As a result, by some arguments above, x1(t) = Iq1

0+y1(t) is one unique solution of the Equation (28)
with zero initial value condition.

Also, we have obtained that the Equation (27) in the interval (T1, T2] can be written by (29).
In order to consider the existence result of solutions to (29), we may discuss the following equation
defined on interval (0, T2]

d
dt

∫ t

0

(t− s)−p2 x(s)
Γ(1− p2)

ds = Dp2
0+x(t) = f (t, x,

d
dt

∫ t

0

(t− s)−q2 x(s)
Γ(1− q2)

ds) = f (t, x, Dq2
0+x). (36)

It is clear that if function x ∈ C[0, T2] satisfies the Equation (36), then x(t) must satisfy the
Equation (29). In fact, if x∗ ∈ C[0, T2] with x∗(0) = 0 is a solution of the Equation (36) with initial value
condition x(0) = 0, that is

Dp2
0+x∗(t)

=
d
dt

∫ t

0

(t− s)−p2 x∗(s)
Γ(1− p2)

ds

= f (t, x∗(t), Dq2
0+x∗(t)) = f (t, x∗(t),

d
dt

∫ t

0

(t− s)−q2 x∗(s)
Γ(1− q2)

ds), 0 < t ≤ T2; x∗(0) = 0.

Hence, from the equality above, we have that x∗ ∈ C[0, T2] with x∗(0) = 0 satisfies the equation

d
dt

∫ t

0

(t− s)−p2 x∗(s)
Γ(1− p2)

ds = f (t, x∗(t),
d
dt

∫ t

0

(t− s)−q2 x∗(s)
Γ(1− q2)

ds), T1 ≤ t ≤ T2,

which means the function x∗ ∈ C[0, T2] with x∗(0) = 0 is a solution of the Equation (29).
Based on this fact, we consider the existence of solutions to the Equation (36) with initial value

condition x(0) = 0.



Mathematics 2019, 7, 286 14 of 23

Now, applying operator Ip2
0+ on both sides of (36), by Lemma 5, we have

x(t) = ctp2−1 +
1

Γ(p2)

∫ t

0
(t− s)p2−1 f (s, x(s), Dq2

0+x(s))ds, 0 < t ≤ T2.

By initial value condition x(0) = 0, we have c = 0, that is

x(t) =
1

Γ(p2)

∫ t

0
(t− s)p2−1 f (s, x(s), Dq2

0+x(s))ds, 0 ≤ t ≤ T2. (37)

Let Dq2
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = Iq2
0+y(t),

hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(p2 − q2)

∫ t

0
(t− s)p2−q2−1 f (s, Iq2

0+y(s), y(s))ds, 0 ≤ t ≤ T2. (38)

Obviously, if y∗ ∈ B2 = C[0, T2] is a solution of (38), then, by (38) and Lemma 2, it holds

Iq2
0+y∗(t) = Iq2

0+ Ip2−q2
0+ f (t, Iq2

0+y∗(t), y∗(t)) = Ip2
0+ f (t, Iq2

0+y∗(t), y∗(t)), 0 ≤ t ≤ T2,

let
Iq2
0+y∗(t) = x∗(t), 0 ≤ t ≤ T2,

as a result, we have that

x∗(t) = Ip2
0+ f (t, x∗(t), Dq2

0+x∗(t)), 0 ≤ t ≤ T2,

that is, x∗ ∈ B2 = C[0, T2] is a solution of (37), hence, x∗ ∈ B2 = C[0, T2] is a solution of Equation (29)
with zero initial value condition.

Define operator F : B2 → B2 by

Fy(t) =
1

Γ(p2 − q2)

∫ t

0
(t− s)p2−q2−1 f (s, Iq2

0+y(s), y(s))ds, 0 ≤ t ≤ T2.

From the continuity of function f and the standard arguments, we know that the operator
F : B1 → B2 is well defined. Let Ω2 be a bounded, convex and closed subset of B2 defined by

Ω2 = {y|y ∈ B2; |y(t)| ≤ K2eR2
2tp2−q2 , 0 ≤ t ≤ T2},

where

K2 =
2MTp2−q2

2
Γ(1 + p2 − q2)

,

R2 ∈ N satisfying

R2 > {1, (
2d2(1 + Tp2−q2

2 )

p2 − q2
)

1
p2−q2 },

here d2 = 1
Γ(p2−q2)

[
c1Tq2

2
Γ(1+q2)

+ c2

]
(c1, c2 are the constants appearing in condition (A2)). By the same

arguments above, there exists y2 ∈ Ω2 such that x2(t) = Iq2
0+y2(t) is one unique solution of the

Equation (29) with zero initial value condition.



Mathematics 2019, 7, 286 15 of 23

In a similar way, for i = 3, · · · , n∗, we get that the Equation (31) defined on (Ti−1, Ti] (Tn∗ = T)
has one solution xi(t) ∈ Ωi ⊂ Bi with xi(0) = 0 , where

Ωi = {y|y ∈ Bi; |y(t)| ≤ KieR2
i tpi−qi , 0 ≤ t ≤ Ti},

Ki =
2MTpi−qi

i
Γ(1 + pi − qi)

,

Ri ∈ N satisfying

Ri >

{
1, (

2di(1 + Tpi−qi
i )

pi − qi
)

1
pi−qi

}
,

here di =
1

Γ(pi−qi)

[
c1T

qi
i

Γ(1+qi)
+ c2

]
(c1, c2 are the constants appearing in condition (A2)), i = 3, 4, · · · , n∗,

Tn∗ = T.
Finally, we get that the Equation (27) in the interval (T,+∞) can be written by (32). In order to

consider the existence result of solutions to (32), we may discuss the following equation defined on
interval (0,+∞)

d
dt

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds = Dρ1

0+x(t) = f (t, x, Dρ2
0+x), 0 < t < +∞. (39)

We see that, if function x ∈ C[0,+∞) satisfies the Equation (39), then x(t) must satisfy the
Equation (32). In fact, if x∗ ∈ C[0,+∞) with x∗(0) = 0 is a solution of the Equation (39) with initial
value condition x(0) = 0, that is

Dρ1
0+x∗(t) =

d
dt

∫ t

0

(t− s)−ρ1 x∗(s)
Γ(1− ρ1)

ds = f (t, x∗(t), Dρ2
0+x∗)

= f (t, x∗(t),
d
dt

∫ t

0

(t− s)−ρ2 x∗(s)
Γ(1− ρ2)

ds), 0 < t < +∞; x∗(0) = 0.

Hence, from the equality above, we have x∗ ∈ C[0,+∞) with x∗(0) = 0 satisfying the equation

d
dt

∫ t

0

(t− s)−ρ1 x(s)
Γ(1− ρ1)

ds = f (t, x(t),
d
dt

∫ t

0

(t− s)−ρ2 x(s)
Γ(1− ρ2)

ds), T < t < +∞,

which means the function x∗ ∈ C[0,+∞) with x∗(0) = 0 is a solution of the Equation (32).
Based on this fact, we will consider the existence of solutions to the Equation (39) with initial

value condition x(0) = 0.
Now, applying operator Iρ1

0+ on both sides of (39), by Lemma 5, we have that

x(t) = ctρ1−1 +
1

Γ(ρ1)

∫ t

0
(t− s)ρ1−1 f (s, x(s), Dρ2

0+x(s))ds, 0 < t < +∞.

By initial value condition x(0) = 0, we have c = 0, that is

x(t) =
1

Γ(ρ1)

∫ t

0
(t− s)ρ1−1 f (s, x(s), Dρ2

0+x(s))ds, 0 ≤ t < +∞. (40)

Similar to arguments above, we let Dρ2
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5,

we get that
x(t) = Iρ2

0+y(t),
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hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds, 0 ≤ t < +∞. (41)

Obviously, if y∗ ∈ E is a solution of (41), then, by (41) and Lemma 2, it holds

Iρ2
0+y∗(t) = Iρ2

0+ Iρ1−ρ2
0+ f (t, Iρ2

0+y∗(t), y∗(t)) = Iρ1
0+ f (t, Iρ2

0+y∗(t), y∗(t)), 0 ≤ t < +∞.

Let
Iρ2
0+y∗(t) = x∗(t), 0 ≤ t < +∞.

As a result, we have that

x∗(t) = Iρ1
0+ f (t, x∗(t), Dρ2

0+x∗(t)), 0 ≤ t < +∞,

that is, x∗ ∈ E is a solution of (40), hence, x∗ ∈ E is a solution of Equation (32) with zero initial
value condition.

Defining operator F : E→ E as follows

Fy(t) =
1

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds, 0 ≤ t < +∞.

To get the operator F : E → E is well defined. First, we verify that Fy ∈ C[0,+∞) for x ∈ E.
In fact, for the case of t0 ∈ (0,+∞), take t > t0, t− t0 < 1, then

(t0 − s)ρ1−1 > (t− s)ρ1−1, 0 ≤ s < t0.

Now, for y ∈ E, it holds

|Iρ2
0+y(s)|
1 + sλ

≤
∫ s

0 (s− τ)ρ2−1|y(τ)|dτ

Γ(ρ2)(1 + sλ)

≤
∫ s

0 (s− τ)ρ2−1(1 + τλ)‖y‖Edτ

Γ(ρ2)(1 + sλ)

≤
∫ s

0 (s− τ)ρ2−1(1 + sλ)‖y‖Edτ

Γ(ρ2)(1 + sλ)

=
‖y‖Esρ2

Γ(1 + ρ2)
,

thus, for y ∈ E, we have

|Fy(t)| ≤ 1
Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)(c1

|Iρ2
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1(c1
|Iρ2

0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)| f (s, 0, 0)|ds

+
1

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds
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≤ ‖y‖E
Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)

(
c1

sρ2

Γ(1 + ρ2)
+ c2

)
ds

+
‖y‖E

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1
(

c1
sρ2

Γ(1 + ρ2)
+ c2

)
ds

+
max0≤t≤t0+1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds

+
max0≤t≤t0+1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1ds.

We will consider the four terms above, respectively. For 0 < η < ρ1 − ρ2, it is easy to show that

∫ t

0
(t− s)ρ1−ρ2−1sηds =

Γ(1 + η)Γ(ρ1 − ρ2)tρ1−ρ2+η

Γ(1 + ρ1 − ρ2 + η)
.

Hence, for any given ε > 0, there exists a δ1 > 0, such that, when 0 ≤ t0 ≤ δ1, it holds that

c1‖y‖E
Γ(ρ1 − ρ2)Γ(1 + ρ2)

∫ t0

0
(t0 − s)ρ1−ρ2−1sρ2 ds <

ε

4
,

c2‖y‖E
Γ(ρ2 − ρ2)

∫ t0

0
(t0 − s)ρ1−ρ2−1ds <

ε

4
. (42)

Moreover, we get

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)sρ2 ds

≤ tρ2
0

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds

=
tρ2
0

ρ1 − ρ2
((t0 − δ1)

ρ1−ρ2 − (t− δ1)
ρ1−ρ2 + (t− t0)

ρ1−ρ2)

≤
tρ2
0

ρ1 − ρ2
(t− t0)

ρ1−ρ2 ,

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds ≤ 1
ρ1 − ρ2

(t− t0)
ρ1−ρ2 ,

hence, we know that there exists δ2 > 0 such that for 0 < t− t0 < δ2, we have

c1‖y‖E
Γ(ρ1 − ρ2)Γ(1 + ρ2)

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)sρ2 ds <
ε

4
,

c2‖y‖E
Γ(ρ2 − ρ2)

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds <
ε

4
,

together with (42), it leads to

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)(

c1‖y‖Esρ2

Γ(ρ1 − ρ2)Γ(1 + ρ2)
+

c2‖y‖E
Γ(ρ2 − ρ2)

)ds < ε.

By the direct calculation, we have

∫ t

t0

(t− s)ρ1−ρ2−1sρ2 ds ≤ (t0 + 1)ρ2
(t− t0)

ρ1−ρ2

ρ1 − ρ2
,
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∫ t

t0

(t− s)ρ1−ρ2−1ds ≤ (t− t0)
ρ1−ρ2

ρ1 − ρ2
,

which implies that there exists δ3 > 0 such that for 0 < t− t0 < δ3, we get

∫ t

t0

(t− s)ρ1−ρ2−1(
c1‖y‖Esρ2

Γ(ρ1 − ρ2)Γ(1 + ρ2)
+

c2‖y‖E
Γ(ρ2 − ρ2)

)ds < ε.

By the same arguments, we get that these estimations still hold for the last two terms above. Hence,
we obtain Fx(t) is continuous on point t0. In view of the arbitrariness of t0, we have Fx ∈ C(0,+∞).

For the case of t0 = 0, by (A2), for y ∈ E, take t < 1, then

|Fy(t)| = | 1
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds|

≤ ‖y‖E
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1)(c1

sρ2

Γ(1 + ρ2)
+ c2)ds

+
max0≤t≤1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1ds,

From the previous arguments, we could know that Fy(t) is continuous on point 0. As a result,
we have Fy ∈ C[0,+∞) for x ∈ E.

By the similar arguments, for y ∈ E, by (A2), we have

| Fy(t)
1 + tλ

| ≤ 1
Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1(c1

|Iρ2
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds

≤ ‖y‖E

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1(c1

sρ2

Γ(1 + ρ2)
+ c2)ds

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds

=
‖y‖E

1 + tλ
[

c1tρ1

Γ(1 + ρ1)
+

c2tρ1−ρ2

Γ(1 + ρ1 − ρ2)
]

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds,

according to these estimations and (A2), we ge that limt→+∞
Fy(t)
1+tλ = 0. Hence, F : E→ E is well defined.

Now, for x, y ∈ E, by a similar way, we get

|Fx(t)− Fy(t)|
1 + tλ

≤ 1
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1(c1

Iρ2
0+|x(s)− y(s)|

1 + sλ
+ c2
|x(s)− y(s)|

1 + sλ
)ds

≤ ‖x− y‖E

1 + tλ
[

c1tρ1

Γ(1 + ρ1)
+

c2tρ1−ρ2

Γ(1 + ρ1 − ρ2)
]

≤ [
c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)
]‖x− y‖E,



Mathematics 2019, 7, 286 19 of 23

which implies that the operator F : E→ E is a contraction operator, so the Banach contraction principle
assures that the operator F has a unique fixed point yT(t) ∈ E. According to some arguments above,
we obtain that xT(t) = Iρ2

0+yT(t) is one unique solution of the Equation (32) with zero initial value
condition. Thus, according to Definition 5, we obtain that the problem (1) has one unique approximate
solution.

Example 4. Now, we consider the initial value problem as following
D

1
2+

t
200(1+t2)

0+ x(t) = Γ( 3
2 )x4

12(1+t2)4(1+x4)
+

Γ( 7
6 )(D

1
3 +

t
600(1+t2+t3)

0+ x)2

12(1+t2)2(1+(D
1
3 +

t
600(1+t2+t3)

0+ x)2)

, 0 < t < +∞,

x(0) = 0.

(43)

We let
p(t) =

1
2
+

t
200(1 + t2)

, q(t) =
1
3
+

t
600(1 + t2 + t3)

, 0 ≤ t < +∞,

f (t, x(t), y(t)) =
Γ( 3

2 )x4(t)
12(1 + t2)4(1 + x4(t))

+
Γ( 7

6 )y
2(t)

12(1 + t2)2(1 + y2(t))
, 0 < t < +∞, x(t), y(t) ∈ R.

Obviously, we get limt→+∞ p(t) = 1
2 and limt→+∞ q(t) = 1

3 , thus, p satisfies (A1) with ρ1 = 1
2 ,

ρ2 = 1
3 . That f (t, 0, 0) = 0. In addition, for all 0 ≤ t < +∞, x(t), y(t) ∈ R, from the differentiation mean

theorem, we get

| f (t, (1 + t2)x1, (1 + t2)y1)− f (t, (1 + t2)x2, (1 + t2)y2)|

≤
Γ( 3

2 )

12
|

x4
1

1 + (1 + t2)4x4
1
−

x4
2

1 + (1 + t2)4x4
2
|

+
Γ( 7

6 )

12
|

y2
1(t)

1 + (1 + t2)2y2
1
−

y2
2

1 + (1 + t2)2y2
2
)|

≤
Γ( 3

2 )

3
|x1 − x2|+

Γ( 7
6 )

3
|y1 − y1|,

which implies that f satisfies (A2) with c1 =
Γ( 3

2 )
3 , c2 =

Γ( 7
6 )

3 , which satisfies

c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)

=
Γ( 3

2 )

3
1

Γ(1 + 1
2 )

+
Γ( 7

6 )

3
1

Γ(1 + 1
2 −

1
3 )

=
2
3
< 1.

For given arbitrary small ε = 1.1
100 , there exists T = 22

ε = 2000, such that

|p(t)− 1
2
| = t

200(1 + t2)
<

1
t
≤ 1

T
=

ε

22
< ε, t ≥ T,

|q(t)− 1
3
| = t

600(1 + t2 + t3)
<

1
t
≤ 1

T
=

ε

22
< ε, t ≥ T.
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Now, we consider function p(t) restricted on interval [0, T] = [0, 2000]. By the right continuity of function
p(t) at point 0, for ε = 1.1

100 , taking δ0 = 2, when 0 ≤ t ≤ δ0 = 2, we have

|p(t)− p(0)| = | t
200(1 + t2)

| ≤ t
200

<
δ0

200
=

1
100

<
1.1
100

= ε.

|q(t)− q(0)| = | t
600(1 + t2 + t3)

| ≤ t
600

<
δ0

200
=

1
100

<
1.1
100

= ε.

We get t1 = δ0 = 2. By the right continuity of functions p(t), q(t) at the point t1, for ε = 1.1
100 , taking

δ1 = 2, when 0 ≤ t− t1 ≤ δ1, by differential mean value theorem, we have

|p(t)− p(t1)| = | t
200(1 + t2)

− t1

200(1 + t2
1)
|

≤ | 1− ξ2

200(1 + ξ2)2 ||t− t1|

≤ 1 + ξ2

200(1 + ξ2)2 |t− t1|

≤ 1
200
|t− t1|

<
δ1

200
=

1
100

<
1.1
100

= ε,

|q(t)− q(t1)| = | t
600(1 + t2 + t3)

− t1

600(1 + t2
1 + t3

1)
|

≤ | 1− η2 − 2η3

600(1 + η2 + η3)2 ||t− t1|

≤ | 1 + η2 + 2η3

600(1 + η2 + η3)2 ||t− t1|

≤ 3
600
|t− t1|

<
δ1

200
=

1
100

<
1.1
100

= ε,

where t1 < ξ < t, t1 < η < t. We let t2 = t1 + δ1 = 4. By the right continuity of function p(t) at point t2,
for ε = 1.1

100 , taking δ2 = 2, when 0 ≤ t− t1 ≤ δ2, by the same reasons above, we have

|p(t)− p(t1)| = | t
200(1 + t2)

− t2

20(1 + t2
2)
| < δ2

200
=

1
100

<
1.1
100

= ε,

|q(t)− q(t1)| = | t
600(1 + t2 + t3)

− t2

600(1 + t2
2 + t3)

| < δ2

200
=

1
100

<
1.1
100

= ε,

Continuing this procession, from tn−1 = 2(n− 1) < 2000, tn = tn−1 + δn−1 = 2(n− 1) + 2 = 2000,
we get n = 1000. Thus, let

p1
.
= p(0) =

1
2

, p2
.
= p(t1) = p(2) =

1
2
+

2
200(1 + 4)

,
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p3
.
= p(t2) = p(4) =

1
2
+

4
200× (1 + 16)

, · · · , p1000 = p(t999) = p(1998) =
1
2
+

1998
200× (1 + 19982)

.

q1
.
= q(0) =

1
3

, q2
.
= q(t1) = q(2) =

1
3
+

2
600(1 + 4 + 8)

,

q3
.
= q(t2) = q(4) =

1
3
+

4
600× (1 + 16 + 64)

, · · · ,

q1000 = q(t999) = q(1998) =
1
3
+

1998
600× (1 + 19982 + 19983)

.

As a result, we get intervals [0, 2], (2, 4], · · · , (1998, 2000], (2000,+∞) and function α(t) defined by

α(t) =



p1 = 1
2 , for t ∈ [0, 2],

p2 = 1
2 + 2

200×(1+4) , for t ∈ (2, 4],

p3 = 1
2 + 4

200×(1+16) , for t ∈ (4, 6],

· · · ,

p1000 = 1
2 + 1998

200×(1+19982)
, for t ∈ (1998, 2000]

ρ1 = 1
2 , for t ∈ (2000,+∞).

(44)

β(t) =



q1 = 1
3 , for t ∈ [0, 2],

q2 = 1
3 + 2

600×(1+4+8) , for t ∈ (2, 4],

q3 = 1
3 + 4

600×(1+16+64) , for t ∈ (4, 6],

· · · ,

q1000 = 1
3 + 1998

6000×(1+19982+19983)
, for t ∈ (1998, 2000]

ρ2 = 1
3 , for t ∈ (2000,+∞).

By Definitions 4 and 5 and the arguments of Theorem 1, the problem (43) has one unique
approximate solution.

Remark 1. From Lemma 6 and Definition 5, we may take arbitrary small ε, such that the problem (43) has one
unique approximate solution. This means that the proximity is very high.

Example 5. Finally, we calculate the approximate solution of the following initial value problem for linear equation

D
1
2+

t
200(1+t2)

0+ x(t) = t
1
4 , x(0) = 0, 0 < t < +∞, (45)

According to analysis in Example 4, we get intervals [0, 2], (2, 4], · · · , (1998, 2000], (2000,+∞) and
function α(t) defined in (44). By Definitions 4 and 5, we calculate out the approximate solution of the problem (45)
as following
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x1(t) =
Γ( 5

4 )

Γ( 7
4 )

t
3
4 ∈ C[0, 2],

x2(t) =
Γ( 5

4 )

Γ( 7
4+

2
200×(1+4) )

t
3
4+

2
200×(1+4) ∈ C[0, 4],

x3(t) =
Γ( 5

4 )

Γ( 7
4+

4
200×(1+16) )

t
3
4+

4
200×(1+16) ∈ C[0, 6],

· · · ,

x1000 =
Γ( 5

4 )

Γ( 7
4+

1998
200×(1+19982)

)
t

3
4+

1998
200×(1+19982) ∈ C[0, 2000],

x2000(t) =
Γ( 5

4 )

Γ( 7
4 )

t
3
4 ∈ C[0,+∞).

Remark 2. By the characters of variable order derivative, we cannot get accurate solution of the problem (45).
Hence, the approximate solution given by us is significative.

4. Conclusions

In this paper, we have obtained the unique existence result of approximate solution of initial
value problem for fractional differential equation of variable order involving with the variable
order derivative defined on the half-axis. Through discussing the characters of variable order
calculus(integral and derivative), we introduce the concept of approximate solution to the problem.
Based on our discussion and analysis, using the fixed point theorem, we have found the unique
existence results. As applications, two examples are presented to illustrate the main results. The issue
of the existence and qualitative analysis of approximate solution of initial value problems for fractional
differential equation of variable order is interesting. In the future, we will consider the existence and
qualitative analysis of approximate solution of initial value problem for singular fractional differential
equation of variable order.
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