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1. Introduction

Fractional calculus is an extension of the ordinary differentiation and integration to arbitrary
non-integer order. In recent years, this theory has become an important object of investigations due to
its demonstrated applications in different areas of physics and engineering (see, for example, [1,2] and
the references therein). In particular, time fractional differential equations are used when attempting
to describe transport processes with long memory. Recently, the study of time fractional ordinary
and partial differential equations has received great attention from many researchers, both in theory
and in applications; we refer the reader to the monographs of Abbas et al. [3–5], Samko et al. [6],
and Kilbas et al. [7], and the papers [8–14] and the references therein. On the other hand, the existence
of solutions of initial and boundary value problems for fractional differential equations with the Hilfer
fractional derivative have started to draw attention. For the related works, see for example [1,15–20]
and the references therein.

Functional differential equations with random effects are differential equations with a stochastic
process in their vector field [21–25]. They play a fundamental role in the theory of random
dynamical systems.
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Consider the following coupled system of Hilfer fractional differential equations:{
(Dα1,β1

0 u)(t, w) = f1(t, u(t, w), v(t, w), w)

(Dα2,β2
0 v)(t, w) = f2(t, u(t, w), v(t, w), w)

; t ∈ I := [0, T], w ∈ Ω, (1)

with the following initial conditions:{
(I1−γ1

0 u)(0, w) = φ1(w)

(I1−γ2
0 v)(0, w) = φ2(w)

; w ∈ Ω, (2)

where T > 0, αi ∈ (0, 1), βi ∈ [0, 1], (Ω,A) is a measurable space, γi = αi + βi− αiβi, φi : Ω→ Rm, fi :
I ×Rm ×Rm ×Ω→ Rm; i = 1, 2, are given functions, I1−γi

0 is the left-sided mixed Riemann–Liouville

integral of order 1− γi, and Dαi ,βi
0 is the generalized Riemann–Liouville derivative (Hilfer) operator of

order αi and type βi : i = 1, 2. Next, we discuss the following coupled system of Hilfer–Hadamard
fractional differential equations:{

(H Dα1,β1
1 u)(t, w) = g1(t, u(t, w), v(t, w), w)

(H Dα2,β2
1 v)(t, w) = g2(t, u(t, w), v(t, w), w)

; t ∈ [1, T], w ∈ Ω, (3)

with the following initial conditions:{
(H I1−γ1

1 u)(1, w) = ψ1(w)

(H I1−γ2
1 v)(1, w) = ψ2(w)

; w ∈ Ω, (4)

where T > 1, αi ∈ (0, 1), βi ∈ [0, 1], γi = αi + βi − αiβi, ψi : Ω → Rm, gi : [1, T]×Rm ×Rm ×Ω →
Rm; i = 1, 2 are given functions, Rm; m ∈ N∗, H I1−γi

1 is the left-sided mixed Hadamard integral of

order 1− γi, and H Dαi ,βi
1 is the Hilfer–Hadamard fractional derivative of order αi and type βi; i = 1, 2.

2. Preliminaries

We denote by C; the Banach space of all continuous functions from I into Rm with the supremum
(uniform) norm ‖ · ‖∞. As usual, AC(I) denotes the space of absolutely continuous functions from I
into Rm. By L1(I), we denote the space of Lebesgue-integrable functions v : I → Rm with the norm:

‖v‖1 =
∫ T

0
‖v(t)‖dt.

By Cγ(I) and C1
γ(I), we denote the weighted spaces of continuous functions defined by:

Cγ(I) = {w : (0, T]→ Rm : t1−γw(t) ∈ C},

with the norm:
‖w‖Cγ

:= sup
t∈I
‖t1−γw(t)‖,

and:
C1

γ(I) = {w ∈ C :
dw
dt
∈ Cγ},

with the norm:
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ

.

Furthermore, by C := Cγ1 × Cγ2 , we denote the product weighted space with the norm:

‖(u, v)‖C = ‖u‖Cγ1
+ ‖v‖Cγ2

.
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Now, we give some definitions and properties of fractional calculus.

Definition 1. [4,6,7] The left-sided mixed Riemann–Liouville integral of order r > 0 of a function w ∈ L1(I)
is defined by:

(Ir
0w)(t) =

1
Γ(r)

∫ t

0
(t− s)r−1w(s)ds; f or a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir
0w ∈ C, and:

(Ir1
0 Ir2

0 w)(t) = (Ir1+r2
0 w)(t); f or a.e. t ∈ I.

Definition 2. [4,6,7] The Riemann–Liouville fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I)
is defined by:

(Dr
0w)(t) =

(
d
dt

I1−r
0 w

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−rw(s)ds; f or a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then, the following expression leads to the left inverse
operator as follows.

(Dr
0 Ir

0w)(t) = w(t); f or all t ∈ (0, T].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proven in [6]:

(Ir
0Dr

0w)(t) = w(t)−
(I1−r

0 w)(0+)
Γ(r)

tr−1; f or all t ∈ (0, T].

Definition 3. [4,6,7] The Caputo fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I) is defined by:

(cDr
0w)(t) =

(
I1−r
0

d
dt

w
)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
w(s)ds; f or a.e. t ∈ I.

In [1], R.Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [17,19]).

Definition 4. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), and I(1−α)(1−β)
0 w ∈ AC(I). The

Hilfer fractional derivative of order α and type β of w is defined as:

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I(1−α)(1−β)
0 w

)
(t); f or a.e. t ∈ I. (5)

Property 1. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β− αβ, and w ∈ L1(I).

1. The operator (Dα,β
0 w)(t) can be written as:

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I1−γ
0 w

)
(t) =

(
Iβ(1−α)
0 Dγ

0 w
)
(t); f or a.e. t ∈ I.
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Moreover, the parameter γ satisfies:

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (5) for β = 0, coincides with the Riemann–Liouville derivative and for β = 1
with the Caputo derivative.

Dα,0
0 = Dα

0 , and Dα,1
0 = cDα

0 .

3. If Dβ(1−α)
0 w exists and is in L1(I), then:

(Dα,β
0 Iα

0 w)(t) = (Iβ(1−α)
0 Dβ(1−α)

0 w)(t); f or a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I1−β(1−α)
0 w ∈ C1

γ(I), then:

(Dα,β
0 Iα

0 w)(t) = w(t); f or a.e. t ∈ I.

4. If Dγ
0 w exists and is in L1(I), then:

(Iα
0 Dα,β

0 w)(t) = (Iγ
0 Dγ

0 w)(t) = w(t)−
I1−γ
0 (0+)

Γ(γ)
tγ−1; f or a.e. t ∈ I.

Corollary 1. Let h ∈ Cγ(I). Then, the Cauchy problem:
(Dα,β

0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ,

has the following unique solution:

u(t) =
φ

Γ(γ)
tγ−1 + (Iα

0 h)(t).

Let βRm be the σ-algebra of Borel subsets of Rm. A mapping v : Ω→ Rm is said to be measurable
if for any B ∈ βRm ; one has:

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

Definition 5. Let A× βRm be the direct product of the σ-algebras A and βRm those defined in Ω and Rm,
respectively. A mapping T : Ω×Rm → Rm is called jointly measurable if for any B ∈ βRm , one has:

T−1(B) = {(w, v) ∈ Ω× E : T(w, v) ∈ B} ⊂ A× βRm .

Definition 6. A function T : Ω × Rm → Rm is called jointly measurable if T(·, u) is measurable for all
u ∈ Rm and T(w, ·) is continuous for all: w ∈ Ω.

A random operator is a mapping T : Ω×Rm → Rm such that T(w, u) is measurable in w for
all u ∈ Rm, and it expressed as T(w)u = T(w, u); we also say that T(w) is a random operator on Rm.
The random operator T(w) on E is called continuous (resp. compact, totally bounded, and completely
continuous) if T(w, u) is continuous (resp. compact, totally bounded, and completely continuous) in
u for all w ∈ Ω. The details of completely continuous random operators in Banach spaces and their
properties appear in Itoh [26].

Definition 7. [27] Let P(Y) be the family of all nonempty subsets of Y and C be a mapping from Ω into P(Y).
A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y is called a random operator with stochastic domain C if C
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is measurable (i.e., for all closed A ⊂ Y, {w ∈ Ω, C(w) ∩ A 6= ∅} is measurable), and for all open D ⊂ Y
and all y ∈ Y, {w ∈ Ω : y ∈ C(w), T(w, y) ∈ D} is measurable. T will be called continuous if every T(w) is
continuous. For a random operator T, a mapping y : Ω→ Y is called a random (stochastic) fixed point of T if for
P-almost all w ∈ Ω, y(w) ∈ C(w) and T(w)y(w) = y(w), and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D}
is measurable.

Definition 8. A function f : I ×Rm ×Ω → Rm is called random Carathéodory if the following conditions
are satisfied:

(i) The map (t, w)→ f (x, y, u, w) is jointly measurable for all u ∈ Rm and
(ii) The map u→ f (t, u, w) is continuous for all t ∈ I and w ∈ Ω.

Let x, , y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym).
By x ≤ y, we mean xi ≤ yi; i = 1, . . . , m. Also |x| = (|x1|, |x2|, . . . , |xm|), max(x, y) =

(max(x1, y1), max(x2, y2), . . . , max(xm, ym)), and Rm
+ = {x ∈ Rm : xi ∈ R+, i = 1, . . . , m}. If c ∈ R,

then x ≤ c means xi ≤ c; i = 1, . . . , m.

Definition 9. Let X be a nonempty set. By a vector-valued metric on X, we mean a map d : X × X → Rm

with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and if d(x, y) = 0, then x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We call the pair (X, d) a generalized metric space with d(x, y) :=



d1(x, y)
d2(x, y)
·
·
·

dm(x, y)


.

Notice that d is a generalized metric space on X if and only if di; i = 1, . . . , m are metrics on X.
For r = (r1, . . . , rm) ∈ Rm and x0 ∈ X, we will denote by:

Br(x0) := {x ∈ X : d(x0, x) < r} = {x ∈ X : di(x0, x) < ri; i = 1, . . . , m}

the open ball centered in x0 with radius r and:

Br(x0) := {x ∈ X : d(x0, x) ≤ r} = {x ∈ X : di(x0, x) ≤ ri; i = 1, . . . , m}

the closed ball centered in x0 with radius r. We mention that for generalized metric spaces, the notations
of open, closed, compact, convex sets, convergence, and Cauchy sequence are similar to those in usual
metric spaces.

Definition 10. [28,29] A square matrix of real numbers is said to be convergent to zero if and only if its spectral
radius ρ(M) is strictly less than one. In other words, this means that all the eigenvalues of M are in the open
unit disc, i.e., |λ| < 1; for every λ ∈ C with det(M− λI) = 0; where I denotes the unit matrix of Mm×m(R).

Example 1. The matrix A ∈ M2×2(R) defined by:

A =

(
a b
c d

)
,

converges to zero in the following cases:
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(1) b = c = 0, a, d > 0, and max{a, d} < 1.
(2) c = 0, a, d > 0, a + d < 1, and −1 < b < 0.
(3) a + b = c + d = 0, a > 1, c > 0, and |a− c| < 1.

In the sequel, we will make use of the following random fixed point theorems:

Theorem 1. [23–25] Let (Ω,F ) be a measurable space, X a real separable generalized Banach space, and
F : Ω× X → X a continuous random operator, and let M(w) ∈ Mn×n(R+) be a random variable matrix
such that for every w ∈ Ω, the matrix M(w) converges to zero and:

d(F(w, x1), F(w, x2)) ≤ M(w)d(x1, x2); f or each x1, x2 ∈ X and w ∈ Ω,

then there exists a random variable x : Ω→ X that is the unique random fixed point of F.

Theorem 2. [23–25] Let (Ω,F ) be a measurable space, X be a real separable generalized Banach space, and
F : Ω× X → X be a completely continuous random operator. Then, either:

(i) the random equation F(w, x) = x has a random solution, i.e., there is a measurable function x : Ω→ X
such that F(w, x(w)) = x(w) for all w ∈ Ω or

(ii) the set M = {x : Ω → X is measurable : λ(w)F(w, x) = x} is unbounded for some measurable
function λ : Ω→ X with 0 < λ(w) < 1 on Ω.

Furthermore, we will use the following Gronwall lemma:

Lemma 1. [23] Let u : I → [0, ∞) be a real function and u(·) a nonnegative, locally-integrable function on I.
Assume that there exist constants c > 0 and r < 1 such that:

u(t) ≤ v(t) + c
∫ t

0

u(s)
(t− s)r ds,

then, there exists a constant K := K(r) such that:

u(t) ≤ v(t) + cK
∫ t

0

v(s)
(t− s)r ds,

for every t ∈ I.

3. Coupled Hilfer Fractional Differential Systems

In this section, we are concerned with the existence and uniqueness results of the system (1)
and (2).

Definition 11. By a solution of the problem (1) and (2), we mean coupled measurable functions (u, v) ∈ Cγ1 ×
Cγ2 , which satisfy the Equation (1) on I, and the conditions (I1−γ1

0 u)(0+) = φ1, and (I1−γ2
0 v)(0+) = φ2.

The following hypotheses will be used in the sequel.

(H1) The functions fi; i = 1, 2 are Carathéodory.
(H2) There exist measurable functions pi, qi : Ω→ (0, ∞); i = 1, 2 such that:

‖ fi(t, u1, v1)− fi(t, u2, v2)‖ ≤ pi(w)‖u1 − u2‖+ qi(w)‖v1 − v2‖;

f or a.e. t ∈ I, and each ui, vi ∈ Rm, i = 1, 2.
(H3) There exist measurable functions ai, bi : Ω→ (0, ∞); i = 1, 2 such that:

‖ fi(t, u, v)‖ ≤ ai(w)‖u‖+ bi(w)‖v‖; f or a.e. t ∈ I, and each u, v ∈ Rm.
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First, we prove an existence and uniqueness result for the coupled system (1)–(2) by using
Banach’s random fixed point theorem in generalized Banach spaces.

Theorem 3. Assume that the hypotheses (H1) and (H2) hold. If for every w ∈ Ω, the matrix:

M(w) :=

( Tα1
Γ(1+α1)

p1(w) Tα1
Γ(1+α1)

q1(w)
Tα2

Γ(1+α2)
p2(w) Tα2

Γ(1+α2)
q2(w)

)

converges to zero, then the coupled system (1) and (2) has a unique random solution.

Proof. Define the operators N1 : C ×Ω→ Cγ1 and N2 : C ×Ω→ Cγ2 by:

(N1(u, v))(t, w) =
φ1(w)

Γ(γ1)
tγ1−1 +

∫ t

0
(t− s)α1−1 f (s, u(s, w), v(s, w), w)

Γ(α1)
ds, (6)

and:

(N2(u, v))(t, w) =
φ2(w)

Γ(γ2)
tγ2−1 +

∫ t

0
(t− s)α2−1 f (s, u(s, w), v(s, w), w)

Γ(α2)
ds. (7)

Consider the operator N : C ×Ω→ C defined by:

(N(u, v))(t, w) = ((N1(u, v))(t, w), (N2(u, v))(t, w)). (8)

Clearly, the fixed points of the operator N are random solutions of the system (1) and (2).
Let us show that N is a random operator on C. Since fi; i = 1, 2 are Carathéodory functions, then

w→ fi(t, u, v, w) are measurable maps. We concluded that the maps:

w→ (N1(u, v))(t, w) and w→ (N2(u, v))(t, w),

are measurable. As a result, N is a random operator on C ×Ω into C. We show that N satisfies all
conditions of Theorem 1.

For any w ∈ Ω and each (u1, v1), (u2, v2) ∈ C, and t ∈ I, we have:

‖t1−γ1(N1(u1, v1))(t, w)− t1−γ1(N1(u2, v2))(t, w)‖

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u1(s, w), v1(s, w), w)− f1(s, u2(s, w), v2(s, w), w)‖ds

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)‖u1(s, w)− v1(s, w)‖

+ q1(w)‖u2(s, w)− v2(s, w)‖)ds

≤ 1
Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)s1−γ1‖u1(s, w)− v1(s, w)‖

+ q1(w)s1−γ1‖u2(s, w)− v2(s, w)‖)ds

≤
p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2

Γ(α1)

×
∫ t

0
(t− s)α1−1ds

≤ Tα1

Γ(1 + α1)
(p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Then,

‖(N1(u1, v1))(·, w)− (N1(u2, v2))(·, w)‖Cγ1
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≤ Tα1

Γ(1 + α1)
(p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Furthermore, for any w ∈ Ω and each (u1, v1), (u2, v2) ∈ C, and t ∈ I, we get:

‖(N2(u1, v1))(·, w)− (N2(u2, v2))(·, w)‖Cγ2

≤ Tα2

Γ(1 + α2)
(p2(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q2(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Thus,

d((N(u1, v1))(·, w), (N(u2, v2))(·, w)) ≤ M(w)d((u1(·, w), v1(·, w)), (u2(·, w), v2(·, w))),

where:

d((u1(·, w), v1(·, w)), (u2(·, w), v2(·, w))) =

(
‖u1(·, w)− v1(·, w)‖Cγ1

‖u2(·, w)− v2(·, w)‖Cγ2

)
.

Since for every w ∈ Ω, the matrix M(w) converges to zero, then Theorem 1 implies that the
operator N has a unique fixed point, which is a random solution of system (1) and (2).

Now, we prove an existence result for the coupled system (1) and (2) by using the random
nonlinear alternative of the Leray–Schauder type in generalized Banach space.

Theorem 4. Assume that the hypotheses (H1) and (H3) hold. Then, the coupled system (1) and (2) has at least
one random solution.

Proof. We show that the operator N : C ×Ω→ C defined in (8) satisfies all conditions of Theorem 2.
The proof will be given in four steps.

Step 1. N(·, ·, w) is continuous.

Let (un, vn)n be a sequence such that (un, vn) → (u, v) ∈ C as n → ∞. For any w ∈ Ω and each
t ∈ I, we have:

‖t1−γ1(N1(un, vn))(t, w)− t1−γ1(N1(u, v))(t, w)‖

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, un(s, w), vn(s, w), w)− f1(s, u(s, w), v(s, w), w)‖ds

≤ 1
Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1‖ f1(s, un(s, w), vn(s, w), w)− f1(s, u(s, w), v(s, w), w)‖ds

≤ Tα1

Γ(1 + α1)
‖ f1(·, un(·, w), vn(·, w), w)− f1(·, u(·, w), v(·, w), w)‖Cγ1

.

Since f1 is Carathéodory, we have:

‖(N1(un, vn))(·, w)− (N1(u, v))(·, w)‖Cγ1
→ 0 as n→ ∞.

On the other hand, for any w ∈ Ω and each t ∈ I, we obtain:

‖t1−γ2(N2(un, vn))(t, w)− t1−γ2(N2(u, v))(t, w)‖

≤ Tα2

Γ(1 + α2)
‖ f2(·, un(·, w), vn(·, w), w)− f2(·, u(·, w), v(·, w), w)‖Cγ2

.

Furthermore, from the fact that f2 is Carathéodory, we get:

‖(N2(un, vn))(·, w)− (N2(u, v))(·, w)‖Cγ2
→ 0 as n→ ∞.
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Hence, N(·, ·, w) is continuous.

Step 2. N(·, ·, w) maps bounded sets into bounded sets in C.

Let R > 0, and set:

BR := {(µ, ν) ∈ C : ‖µ‖Cγ1
≤ R, ‖ν‖Cγ2

≤ R}.

For any w ∈ Ω and each (u, v) ∈ BR and t ∈ I, we have:

‖t1−γ1(N1(u, v))(t, w)‖ ≤ ‖φ1(w)‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ ‖φ1(w)‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w)‖u(s, w‖+ b1(w)‖v(s, w‖)ds

≤ ‖φ1(w)‖
Γ(γ1)

+
R

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w) + b1(w))ds

≤ ‖φ1(w)‖
Γ(γ1)

+
(a1(w) + b1(w)Tα1

Γ(1 + α1)

:= `1.

Thus,
‖(N1(u, v))(·, w)‖Cγ1

≤ `1.

Furthermore, for any w ∈ Ω and each (u, v) ∈ BR and t ∈ I, we get:

‖(N2(u, v))(·, w)‖Cγ2
≤ ‖φ2(w)‖

Γ(γ2)
+

(a2(w) + b2(w)Tα2

Γ(1 + α)

:= `2.

Hence,
‖(N(u, v))(·, w)‖C ≤ (`1, `2) := `.

Step 3. N(·, ·, w) maps bounded sets into equicontinuous sets in C.

Let BR be the ball defined in Step 2. For each t1, t2 ∈ I with t1 ≤ t2 and any (u, v) ∈ BR and
w ∈ Ω, we have:

‖t1−γ1
1 (N1(u, v))(t1, w)− t1−γ1

2 (N1(u, v))(t2, w)‖

≤
t1−γ1
2

Γ(α1)

∫ t2

t−1
(t2 − s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ Tα1

Γ(1 + α1)
(t2 − t1)

α1(a1(w)‖u(·, w)‖Cγ1
+ b1(w)‖v(·, w)‖Cγ2

)

≤ RTα1(a1(w) + b1(w))

Γ(1 + α1)
(t2 − t1)

α1

→ 0 as t1 → t2.

Furthermore, we get:

‖t1−γ2
1 (N2(u, v))(t1, w)− t1−γ2

2 (N2(u, v))(t2, w)‖

≤ RTα12(a2(w) + b2(w))

Γ(1 + α2)
(t2 − t1)

α2
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→ 0 as t1 → t2.

As a consequence of Steps 1–3, with the Arzela–Ascoli theorem, we conclude that N(·, ·, w) maps
BR into a precompact set in C.

Step 4. The set E(w) consisting of (u(·, w), v(·, w)) ∈ C such that (u(·, w), v(·, w)) = λ(w)(N((u, v))(·, w)

for some measurable function λ : Ω→ (0, 1) is bounded in C.

Let (u(·, w), v(·, w)) ∈ C such that (u(·, w), v(·, w)) = λ(w)(N((u, v))(·, w). Then, u(·, w) =

λ(w)(N1((u, v))(·, w) and v(·, w) = λ(w)(N2((u, v))(·, w). Thus, for any w ∈ Ω and each t ∈ I,
we have:

‖t1−γ1 u(t, w)‖ ≤ ‖φ1(w)‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ ‖φ1(w)‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w)‖u(s, w‖+ b1(w)‖v(s, w‖)ds.

Furthermore, we get:

‖t1−γ2 v(t, w)‖ ≤ ‖φ2(w)‖
Γ(γ2)

+
1

Γ(α2)

∫ t

0
(t− s)α2−1s1−γ2(a2(w)‖u(s, w‖+ b2(w)‖v(s, w‖)ds.

Hence, we obtain:

‖t1−γ1 u(t, w)‖+ ‖t1−γ2 v(t, w)‖ ≤ a + bc
∫ t

0
(t− s)α−1(‖s1−γ1 u(s, w‖+ ‖s1−γ2 v(s, w‖)ds,

where:

a :=
‖φ1(w)‖

Γ(γ1)
+
‖φ2(w)‖

Γ(γ2)
, b :=

1
Γ(α1)

+
1

Γ(α2)
,

c := max{a1(w) + a2(w), b1(w) + b2(w)}, α := max{α1, α2}.

Lemma 1 implies that there exists ρ := ρ(α) > 0 such that:

‖t1−γ1 u(t, w)‖+ ‖t1−γ2 v(t, w)‖ ≤ a + abcρ
∫ t

0
(t− s)α−1ds

≤ a + abcρTα

α
= L.

This gives:
‖u(·, w)‖Cγ1

+ ‖v(·, w)‖Cγ2
≤ L.

Hence:
‖(u(·, w), v(·, w))‖C ≤ L.

This shows that the set E(w) is bounded. As a consequence of Steps 1–4 together with Theorem 2,
we can conclude that N has at least one fixed point in BR, which is a solution for the system (1)
and (2).
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4. Coupled Hilfer–Hadamard Fractional Differential Systems

Now, we are concerned with the coupled system (3) and (4). Set C := C([1, T]), and denote the
weighted space of continuous functions defined by:

Cγ,ln([1, T]) = {w(t) : (ln t)1−γw(t) ∈ C},

with the norm:
‖w‖Cγ,ln := sup

t∈[1,T]
|(ln t)1−rw(t)|.

Furthermore, by Cγ1,γ2,ln([1, T]) := Cγ1,ln([1, T])× Cγ2,ln([1, T]), we denote the product weighted
space with the norm:

‖(u, v)‖Cγ1,γ2,ln([1,T]) = ‖u‖Cγ1,ln + ‖v‖Cγ2,ln .

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [7] for a more detailed analysis.

Definition 12. [7] (Hadamard fractional integral) The Hadamard fractional integral of order q > 0 for a
function g ∈ L1([1, T]) is defined as:

(H Iq
1 g)(x) =

1
Γ(q)

∫ x

1

(
ln

x
s

)q−1 g(s)
s

ds,

provided the integral exists.

Example 2. Let 0 < q < 1. Let g(x) = ln x, x ∈ [0, e]. Then:

(H Iq
1 g)(x) =

1
Γ(2 + q)

(ln x)1+q; f or a.e. x ∈ [0, e].

Set:
δ = x

d
dx

, q > 0, n = [q] + 1,

and:
ACn

δ := {u : [1, T]→ E : δn−1[u(x)] ∈ AC(I)}.

Definition 13. [7] The Hadamard fractional derivative of order q > 0 applied to the function w ∈ ACn
δ is

defined as:
(H Dq

1w)(x) = δn(H In−q
1 w)(x).

In particular, if q ∈ (0, 1], then:

(H Dq
1w)(x) = δ(H I1−q

1 w)(x).

Example 3. Let 0 < q < 1. Let w(x) = ln x, x ∈ [0, e]. Then:

(H Dq
1w)(x) =

1
Γ(2− q)

(ln x)1−q, f or a.e. x ∈ [0, e].

It has been proven (see, e.g., Kilbas [30], Theorem 4.8) that in the space L1(I), the Hadamard
fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.:

(H Dq
1)(

H Iq
1 w)(x) = w(x).
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From [7], we have:

(H Iq
1)(

H Dq
1w)(x) = w(x)−

(H I1−q
1 w)(1)
Γ(q)

(ln x)q−1.

The Caputo–Hadamard fractional derivative is defined in the following way:

Definition 14. The Caputo–Hadamard fractional derivative of order q > 0 applied to the function w ∈ ACn
δ is

defined as:
(HcDq

1w)(x) = (H In−q
1 δnw)(x).

In particular, if q ∈ (0, 1], then:

(HcDq
1w)(x) = (H I1−q

1 δw)(x).

Definition 15. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, w ∈ L1(I), and H I(1−α)(1−β)
1 w ∈ AC(I).

The Hilfer–Hadamard fractional derivative of order α and type β applied to the function w is defined as:

(H Dα,β
1 w)(t) =

(
H Iβ(1−α)

1 (H Dγ
1 w)

)
(t)

=
(

H Iβ(1−α)
1 δ(H I1−γ

1 w)
)
(t); f or a.e. t ∈ [1, T].

(9)

This new fractional derivative (9) may be viewed as interpolating the Hadamard fractional
derivative and the Caputo–Hadamard fractional derivative. Indeed, for β = 0, this derivative
reduces to the Hadamard fractional derivative, and when β = 1, we recover the Caputo–Hadamard
fractional derivative.

H Dα,0
1 = H Dα

1 , and H Dα,1
1 = HcDα

1 .

From [31], we conclude the following lemma.

Lemma 2. Let g : [1, T]× E → E be such that g(·, u(·)) ∈ Cγ,ln([1, T]) for any u ∈ Cγ,ln([1, T]). Then,
Problem (3) is equivalent to the following Volterra integral equation:

u(t) =
φ0

Γ(γ)
(ln t)γ−1 + (H Iα

1 g(·, u(·)))(t).

Definition 16. By a random solution of the coupled system (3) and (4), we mean a coupled measurable function
(u, v) ∈ Cγ1,ln × Cγ2,ln that satisfies the conditions (4) and Equation (3) on [1, T].

Now, we give (without proof) similar existence and uniqueness results for the system (3) and (4).
Let us introduce the following hypotheses:

(H′1) The functions gi; i = 1, 2 are Carathéodory.
(H′2) There exist measurable functions pi, qi : Ω→ (0, ∞); i = 1, 2 such that:

‖gi(t, u1, v1)− gi(t, u2, v2)‖ ≤ pi(w)‖u1 − u2‖+ qi(w)‖v1 − v2‖;

f or a.e. t ∈ [1, T], and each ui, vi ∈ Rm, i = 1, 2.
(H′3) There exist measurable functions ai, bi : Ω→ (0, ∞); i = 1, 2 such that:

‖gi(t, u, v)‖ ≤ ai(w)‖u‖+ bi(w)‖v‖; f or a.e. t ∈ [1, T], and each u, v ∈ Rm.
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Theorem 5. Assume that the hypotheses (H′1) and (H′2) hold. If for every w ∈ Ω, the matrix: (ln T)α1

Γ(1+α1)
p1(w) (ln T)α1

Γ(1+α1)
q1(w)

(ln T)α2

Γ(1+α2)
p2(w) (ln T)α2

Γ(1+α2)
q2(w)


converges to zero, then the coupled system (3) and (4) has a unique random solution.

Theorem 6. Assume that the hypotheses (H′1) and (H′3) hold. Then, the coupled system (3) and (4) has at at
least a random solution.

5. An Example

We equip the space R∗− := (−∞, 0) with the usual σ-algebra consisting of Lebesgue measurable
subsets of R∗−. Consider the following random coupled Hilfer fractional differential system:

(D
1
2 , 1

2
0 u)(t, w) = f (t, u(t, w), v(t, w), w);

(D
1
2 , 1

2
0 v)(t) = g(t, u(t, w), v(t, w), w);

(I
1
4
0 u)(0, w) = cos w,

(I
1
4
0 vn)(0, w) = sin w,

; w ∈ R∗−, t ∈ [0, 1], (10)

where:

f (t, u, v, w) =
t
−1
4 w2(u(t) + v(t)) sin t

64(1 + w2 +
√

t)(1 + |u|+ |v|)
; t ∈ [0, 1],

g(t, u, v) =
w2(u(t) + v(t)) cos t

64(1 + |u|+ |v|) ; w ∈ R∗−, t ∈ [0, 1].

Set αi = βi =
1
2 ; i = 1, 2, then γi =

3
4 ; i = 1, 2. The hypothesis (H2) is satisfied with:

p1(w) = p2(w) = q1(w) = q2(w) =
w2

64(1 + w2)
.

Furthermore, if for every w ∈ R∗−, the matrix:

w2

64(1 + w2)Γ( 1
2 )

(
1 1
1 1

)

converges to zero, hence, Theorem 3 implies that the system (10) has a unique random solution defined
on [0, 1].
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