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Abstract: Very often items that are substitutable and complementary to each other are sent from
suppliers to retailers for business. In this paper, for these types of items, fixed charge (FC)
four-dimensional (4D) multi-item transportation problems (MITPs) are formulated with both space
and budget constraints under crisp and rough environments. These items are damageable/breakable.
The rates of damageability of the items depend on the quantity transported and the distance of travel
i.e., path. A fixed charge is applied to each of the routes (independent of items). There are some
depots/warehouses (origins) from which the items are transported to the sales counters (destinations)
through different conveyances and routes. In proposed FC 4D-MITP models, per unit selling prices,
per unit purchasing prices, per unit transportation expenditures, fixed charges, availabilities at the
sources, demands at the destinations, conveyance capacities, total available space and budget are
expressed by rough intervals, where the transported items are substitutable and complementary in
nature. In this business, the demands for the items at the destinations are directly related to their
substitutability and complementary natures and prices. The suggested rough model is converted into
a deterministic one using lower and upper approximation intervals following Hamzehee et al. as well
as Expected Value Techniques. The converted model is optimized through the Generalized Reduced
Gradient (GRG) techniques using LINGO 14 software. Finally, numerical examples are presented to
illustrate the preciseness of the proposed model. As particular cases, different models such as 2D,
3D FCMITPs for two substitute items, one item with its complement and two non substitute non
complementary items are derived and results are presented.

Keywords: four-dimensional transportation problem; fixed charge; space constraint; budget constraint;
substitute and complimentary items; rough interval

1. Introduction

Due to globalization, nowadays, transportation of commodities from sources to the destinations
by road is getting more important. The advent of transportation problem (TP) was mainly based
on real-life problems. Many numbers of real-life goods carrying problems are easily framed as
transportation problems. The credit of first transportation problem goes to Hitchcock [1], which is
a particular case of Linear Programming Problem (LPP). This optimizing problem consists of two main
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constraints i.e., source and destination constraints. However, it is very common knowledge that, in
practical situations, these two constraints are not enough to formulate the problem perfectly since there
exist other constraints, namely mode of transport, type of products, the distance of path traveled, etc.
Due to the presence of these additional real-life constraints, the conventional transportation problems
(2D-TPs) are modified to a solid transportation problem (STP-3D-TPs), which was first developed
by Schell [2]. After the advent of STP, it has swiftly gained a very important place for research and
development in transportation. Researchers like Yang et al. [3], Kocken et al. [4], etc. were on the
development of STP, in which conveyances at different sources are considered.

In general circumstances, the length of a route remains unchanged in a normal transportation
problem, so it does not make any significant change in the minimization of cost or time.
However, reality dictates that there may be a number of available option/paths for the transportation
of an item from source to destination. The common knowledge suggests that the cost per unit for
transportation or other fixed charges related to routes are of different values. Thus, it can be seen
that a three-dimensional transportation problem (3D-TP) is converted to a 4D-TP. Such a 4D-TP was
considered by Halder et al. [5].

Nowadays, the business of multi -items is quite popular. Normally, in business, it is thought that
if one item brings loss, another item may produce the profit. Moreover, due to the constantly changing
business environment, the parameters related to transportation are imprecise. This situation has been
recently dealt with in two recent investigations Das et al. [6] and Bera et al. [7]. Again, the transportation
of multi-items may be substitutable and/or complementary because more options/choices of items
bring more customers. This is true for supply chain models. Recently, Sarkar and Lee [8] and
sarkar et al. [9] presented optimum pricing strategies for complementary products using game the
orectic approach. Khanna et al. [10] suggested supply chain with customer-based two-level credit
policies under an imperfect quality environment. Recently, Halder et al. [5] also solved an FCSTP for
substitute and breakable items in crisp and fuzzy environments.

1.1. Scope of the Paper

Considering the above facts, we formulate the transportation policies of some damageable
substitute and/or complementary items from some sources to destinations using some convenient
vehicles and appropriate routes where the parameters of the problem are deterministic or imprecise
and some realistic resource constraints are imposed.

In this investigation, there are different types of conveyance at different sources and different
routes/paths available to travel from a source to a destination. Along some paths, fixed charges such
as toll taxes, festival collections, etc. are collected. At each destination, retailers have some limitations
on space and budget. The transportation costs, fixed charges, availabilities, demands, resources are
imprecise and expressed by rough intervals. As the items are substitutable and complementary, items’
demands are influenced by each other’s prices. The demand for an item is reduced due to its own and
complementary item’s prices but increases due to its substitute’s price. With these features, the model
is formulated as a constrained FC 4DMITP problem and solved using Generalised Reduced Gradient
(GRG) method (using LINGO 14.0). As particular cases, transportation policies for several models
(i.e., 2D, 3D TPs for different combinations of items) are derived. The model are illustrated numerically.
Some sensitivity analyses are also performed. Results of an earlier investigation (Bera et al. [7]) are
obtained as a particular case. The novelties of the present investigation are as follows:

• As earlier discussed, TP and STP with various types of constraints are considered by
several researchers. However, few researchers have considered 4D-TPs and 4D-MITPs.
Moreover, 4D-MITP with rough parameters is an updated contribution.

• The items are complementary and substitutable in nature, that is, demands of the items are
appropriately affected by their selling prices.

• The most important issues of this paper are to analyze how the travel distances are related to profit
maximization when manufacturing companies transport both complementary and substitute
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items that are differentiated by distance including the fixed charge of the path and damageability.
The importance of route on profit is illustrated.

• Until now, in transportation, no one has considered the space constraint at the destinations along
with the budget constant. The idea of space constraint is introduced here.

• The earlier researchers gave attention to minimization of aggregate transportation expenditure and
very few have realized the importance of consideration of total profit instead of total cost/expanses.

• As particular cases, several earlier transportation models are deduced from the present model.

1.2. Structure of the Paper

The structure/organization of the paper is split as:
Section 1: Introduction
Section 2: Notations and Assumptions for the proposed model are given.
Section 3: Model description and formulation
Section 4: Numerical Experiments
Section 5: Particular Cases
Section 6: Sensitivity Analyses
Section 7: A discussion of the models on the basis of numerical results are presented.
Section 8: Practical implication is described.
Section 9: Conclusions drawn.

1.3. Literature Review

Though the transportation problem is quite an age-old one, several researchers are still working in
this area as it is important due to national highways within the country and international transportation
using cargos and ships. Hirsch and Dantzig [11] first introduced the concept of a fixed charge
transportation problem in 1968. In each country, there are different major highways connecting the
cities/ports and, for the maintenance, some charges (fixed) are collected from the vehicles plying on
these roads. This real-life scenery has been depicted in the fixed charge TPs (FCTP). Kowalski and
Lev [12] developed the FCTP as a nonlinear programming problem of practical interest in business and
industry. Gen et al. [13] discussed the bi-criteria solid transportation problem with equality constraints
solved by a genetic algorithm. Several researchers like Verma et al. [14], Shafaat and Goyal [15], Saad
and Abbas [16] and others worked on transportation problems.

Though there are a lot of works on damageable/deteriorating items in inventory (cf. Sarkar and
Iqbal [17] and Sarkar et al. [18]), only limited works have been done on damageable/breakable
items in transportation. This is because transportation time is not normally considered in TP.
However, the damageability may also depend on the route lengths which are different for different
routes. Pramanik et al. [19] presented a multi-objective solid transportation problem with reliability
for damageable items in a random-fuzzy environment.

Though Sarkar et al. [20] considered a power function of the delivery quantity as a unit
transportation cost in inventory, normally constant unit transportation cost is assumed in TP to
formulate it as an LPP. Ojha et al. [21] presented a solid transportation problem with nonlinear
transportation cost and fuzzy resources, demand and conveyances. However, in the present problem,
transportation cost is considered constant. Depending on different aspects, unit transportation costs,
resources, demands, available budget and storing capacity at destination, etc. fluctuate due to
uncertainty in judgement, lack of evidence, insufficient information, etc. Thus, a transportation
model becomes more realistic if these parameters are assumed to be flexible /imprecise in nature i.e.,
uncertain in non-stochastic sense which may be represented by fuzzy, rough [22], type-2-fuzzy, fuzzy
stochastic numbers. There are several investigations on TPs with fuzzy parameters. Verma et al. [14],
Bit et al. [23], Jimenez and Verdegay [24], Li and Lai [25], Dey et al. [26] and others solved fuzzy
multi-objective TP(s) using a Fuzzy compromise programming approach. Yang and Liu [3] investigated
a fixed charge STP with fuzzy costs, fuzzy supplies, fuzzy demands and fuzzy conveyance capacities
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using an expected value method. There are also many investigations on TP with rough parameters.
Recently, Kundu et al. [27] presented an STP considering crisp and rough costs. Tao et al. [28] applied
rough multiple objective programming in STP. Das et al. [6] developed a profit-maximizing STP with
parameters represented by rough intervals. Recently, Bera et al. [7] solved multi-item 4D TPs under
budget constraints using rough interval values for TP parameters. The year-wise investigations of
various TPs and STPs with different variations are recorded in the following table.

In spite of all these investigations, there are still some lacunas in making the investigated problem
more realistic ones. Some of these gaps such as substitutable and complementary items, both budget
and space constraint, damageable units, 4D MITP, fixed charge, profit maximization, etc. have been
taken into account in the present investigation.

1.4. Motivation

Although there are so many existing kinds of literature available in the field of transportation
problem (cf in Table 1), but still there are some lacunas. Most of the researchers developed
two-dimensional or three-dimensional problems that motivated us to form a four-dimensional real
transportation problem.

Table 1. Year wise investigations of TP and STP.

References’ Different Kind of TP Item Fixed Charge Space Constraint Budget Constraint Different Kind of Environment

Hitchcock et al. [1] 2-dimension one × × - crisp
Schell [2] 3-dimension one × × - crisp

Haley [29] 3-dimension one × × - crisp
Hirsch and Dantzig [11] 2-dimension one X × × crisp

Verma et al. [14] 2-dimension one × × × fuzzy
Shafaat and Goyal [15] 2-dimension one × × × crisp
Saad and Abbas [16] 2-dimension one × × × fuzzy

Jimenez et al. [24] 3-dimension one × × × fuzzy
Tao et al. [28] 3-dimension one × × × rough

Ojha et al. [30] 2-dimension multi-item × × X fuzzy
Liu et al. [31] 3-dimension one × × × type-2 fuzzy

Kundu et al. [27] 3-dimension multi-item × × × type-2 fuzzy
Yang et al. [3] 2-dimension one X × × fuzzy
Giri et al. [32] 3-dimension multi-item X × × fuzzy

Kocken et al. [4] 3-dimension one × × × fuzzy
Das et al. [6] 3-dimension one × × × rough

Present Paper 4-dimensional multi-item X X X rough

In modern business, multifarious items are preferable for transportation rather than the single
item. In the long term, transportation system fixed charges like (road tax etc.) are very common to
real life; this is also a motivation which leads to consideration of fixed charge. Finally, in today’s
constantly fluctuating life, uncertainty is the only certain factor in our life. In this concept, the different
coefficients are not fixed to its deterministic values. It must take an interval. For example, demand of
an item is not fixed, but it is represented by its lower and upper limits bl , bu, respectively. Again, this
limit also may fluctuate, so the necessity of rough interval arise. In this regard, the demand for an item
roughly lies on ([bl , bu], [bl , bu]), respectively.

In reality, most of the problems are not described specifically but described with uncertainty.
This may due to the fluctuation of daily life, lack of information, etc. Until now, most of the
impreciseness are described by interval values.

In interval analysis, a parameter is represented by lower and upper limits a, b and the possibility
of existence of every point within this limits [a, b] are same. However, in reality, it is not so, where
the lower ‘a’ and upper limits ‘b’ occurred very occasionally. Most of the time, there exists a normal
interval [c, d], where a 0 c 0 d 0 b. Thus, vagueness here is described by two nested intervals
([a, b], [c, d]). Such representation is well known as a rough interval.

For example, if we go through “Air Quality Index (AQI)” measurement of the city Ananda Vihar,
Delhi in the year 2017, the lower and the upper intervals of this AQI (measured by PM2.5) were
[78, 404]. The AQI 78 µg/m3 found in the day of July 2017 (during rainy season) and the AQI is
404 µg/m3 is found on the day of Dewali (November 2017), whereas the normal range of AQI (PM2.5)
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is [150, 290]. In this regard, the rough representation of AQI (PM2.5) of Ananda Vihar New Delhi is
([78, 404], [150, 290]).

2. Notation and Assumptions

2.1. Notations

2.1.1. Parameters

For r-th item,

• Ar
i : quantity of homogeneous merchandise available at i-th source.

• Dr
0j: market demand at j-th goal.

• Dr
j : actual demand at j-th goal.

• ekp: quantity of the merchandise which can be carried by k-th conveyance along p-th route.

• Cr
ijpk: per unit transportation price from i-th origin to j-th goal by k-th vehicle via p-th route.

• Sr
j : selling expenses at the j-th destination.

• Pr
i : purchasing price at the i-th origin.

• fijpk: fixed transportation cost for shipping units from i-th source/origin to j-th goal/destination
by k-th vehicles along p-th route.

• λr
ijpk: rate of breakability per unit distance from i-th source to j-th goal via p-th route and

k-th conveyance.
• Budj : total budget at the j-th goal point.
• dsijp: distance from i-th origin to j-th goal along p-th route.

• SPr: required space for r-th item.
• SPCj: available space to the j-th retailer.

• α: power of the route length, related with the frangibility.
• β j, θ1

j , θ11
j and τ: Price sensitivity of products.

2.1.2. Decision Variable

• xr
ijpk: the transported quantity from i-th source/origin to j-th goal/destination by k-th vehicle

along p-th route (decision variable).

2.1.3. Indices

• R: total number of items.
• M: total number of origin/sources.
• N: total number of goal/destinations.
• L: total number of route/paths.
• K: total number of vehicles/conveyance.

2.2. Assumptions

(i) Particulars are breakable and carried from sources to goals using a vehicle through a path.
Broken/damaged amounts depend on conveyance and path.

(ii) Particulars are substitutable and complementary to each other. In case of a substitute item,
the demand is negative and is positive when the items are complementary nature:

D1
j = D1

0j − β jS1
j + τβ jS2

j − θ1
j β jS3

j
D2

j = D2
0j + τβ jS1

j − β jS2
j − θ11

j β jS3
j

D3
j = D3

0j − θ1
j β jS1

j − θ11
j β jS2

j − β jS3
j

}
.
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3. Model Description and Formulation

Let us define a four-dimensional transportation problem in this way. A merchant/wholesaler
having different M godowns/storing houses (sources) at different locations and different N sales
counters/shops (destinations) in different cities. The merchant buys R number of items of which some
are substitutes and others complementary to each other and stores at the godowns which are of finite
capacities. There are different K conveyances and L routes for transportation of goods from sources
to destinations.

The schematic diagram of this 4D-MITP is given in Figure 1. The conveyances are of finite
capacities and charge different charges for transportation along different routes. There are some
fixed costs/charges (toll taxes, etc.) along each route and items are damageable. This damageability
depends on type of conveyance and the distance of traveled by that conveyance. At each destination,
the items are known and, for that, some amount of items are stored as per the capacities of the
go-downs. The merchant can use any conveyance and route for transportation and the above
mentioned transportation parameters are crisp or rough interval numbers. At the destination, the
merchant sells the good items at some prices. The merchant has a limitation on his initial expenditure.
Now, the problem for the merchant is to decide the amount of quantities to be transported from
different sources to different destinations by the appropriate conveyance through the appropriate
route so that total profit out of this business is at a maximum subject to the constraints.

Destination-1
Route-111

Conveyance-1

Source-1

Source-2

Route-112

Conveyance-2

Destination-2

Figure 1. Pictorial representation of a four-dimensional transportation model.

Thus, TP is developed as a profit maximization problem. In this process of business, there are
total purchase charge cost, fixed charge cost, transportation cost, revenue in the objective functions and
five constraints on source, destination, conveyance capacity, space and budget. Therefore, as per the
availability of type of the input parameters with the help of considerable assumptions and notations,
we formulate two different models: the crisp model and rough model as given below.
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3.1. Model-I: Crisp Model

Maximum Profit = Total Revenue - Total Purchase Cost - Total Transportation cost - Total fixed charge

Maximize Z =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
Sr

j (1− λr
ijpkdsα

ijp)− Pr
i − Cr

ijpkdsijp
}

xr
ijpk −

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f r
ijpk

subject to
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ Ar
i , ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥ D1
0j − β js1

j + τβ js2
j − θ1

j β js3
j ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥ D2
0j + τβ jS1

j − β jS2
j − θ11

j β jS3
j ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥ D3
0j − θ1

j β jS1
j − θ11

j β jS2
j − β jS3

j ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ ekp ∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ SPCr
j ∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
Pr

i + Cr
ijpkdsijp

]
xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) fijpk ≤ Budj ∀ j = 1, 2, ..., N,

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R



. (1)

3.2. Model-II: Rough Model

If the parameters, selling expenses, cost of transportation, purchasing prices, fixed charges,
availability, demand, capacities, available space and permittable budget are found as rough
intervals i.e.,

Š1
j = ([S1

jl , S1
ju ], [S

1
jl , S1

ju ]), Š2
j = ([S2

jl , S2
ju ], [S

2
jl , S2

ju ]), Š3
j = ([S3

jl , S3
ju ], [S

3
jl , S3

ju ]), P̌r
i = ([Pr

il , Pr
iu ], [P

r
il , Pr

iu ])Čr
ijpk = ([Cijpkl , Cijpku ], [Cijpkl , Cijpku ]),

f̌ijpk = ([ f ijpkl , f ijpku ], [ f ijpkl , f ijpku ]), Ǎr
i = ([Ar

il , Ar
iu ], [A

r
il , Ar

iu ])Ď1
j = ([D1

0jl , D1
0ju ], [D

1
0jl , D1

0ju ])Ď2
j = ([D2

0jl , D2
0ju ], [D

2
0jl , D2

0ju ]), Ď3
j = ([D3

0jl ,

D3
0ju ], [D

3
0jl , D3

0ju ])ěkp = ([ekpl , ekpu ], [ekpl , ekpu ]), ˇSPCj = ([SPCjl , SPCju ], [SPCjl , SPCju ]) ˇBudj = ([Budjl , Budju ], [Budjl , Budju ])

∀ i = 1, 2, ..., M, j = 1, 2, ..., N, k = 1, 2, ..., K, r = 1, 2, ..., L.

 (2)

Thus, after the introduction of these rough parameters, the above crisp model (1) is translated to
the following rough model:

Maximize Z =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{(
[Sr

jl , Sr
ju ], [S

r
jl , S

r
ju ]

)
(1− λr

ijpkdsα
ijp)−

(
[Pr

il , Pr
iu ], [P

r
il , Pr

iu ]

)
−
(
[Cr

ijpkl , Cr
ijpku ], [C

r
ijpkl , C

r
ijpku ]

)
dsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

(
[ f

ijpkl
, f

ijpku
], [ f ijpkl , f ijpku ]

)
subject to

N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤
(
[Ar

il , Ar
iu ], [A

r
il , A

r
iu ]

)
∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
{(

[D1
0jl , D1

0ju ], [D
1
0jl , D1

0ju ]

)
− β j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
+τβ j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− θ1

j β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
{(

[D2
0jl , D2

0ju ], [D
2
0jl , D2

0ju ]

)
+ τβ j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
−β j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− θ11

j β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
{(

[D3
0jl , D3

0ju ], [D
3
0jl , D3

0ju ]

)
− β jθ

1
j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
−β jθ

11
j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤
(
[ekpl , ekpu ], [ekpl , ekpu ]

)
∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤
(
[SPCr

jl , SPCr
ju ], [SPC

r
jl , SPC

r
ju ]

)
∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

{(
[Pr

il , Pr
iu ], [P

r
il , Pr

iu ]

)
+

(
[Cr

ijpkl , Cr
ijpku ], [C

r
ijpkl , C

r
ijpku ]

)
dsijp

}
xr

ijpk

+
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

(
[ f

ijpkl
, f

ijpku
], [ f ijpkl , f ijpku ]

)
≤
(
[Budjl , Budju ], [Budjl , Budju ]

)
∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(3)
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According to the discussion of Linear Programming issues with Rough Interval Coefficient
(LPRIC) in Appendix A.1, at first, we get two different transportation problems (TPIC-1, TPIC-2) with
interval coefficients—and again, as discussed, TPIC-1 and TPIC-2 broken as TP-1, TP-2 and TP-3, TP-4.
The above stated consideration can be graphically represented in Figure 2.

Figure 2. Optimization flowchart of 4D-TP under rough interval coefficients.

3.3. The Mathematical Form of TPIC-1

Maximize Z1 =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
[Sr

jl , Sr
ju](1− λr

ijpkdsα
ijp)− [Pr

il , Pr
iu]− [Cr

ijpkl , Cr
ijpku]dsijp

}
xr

ijpk

−
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)[ f
ijpkl

, f
ijpku

]

s.t
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ [Ar
il , Ar

iu] ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥ [D1
0jl , D1

0ju]− β j[S1
jl , S1

ju] + τβ j[S2
jl , S2

ju]− θ1
j β j[S3

jl , S3
ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥ [D2
0jl , D2

0ju] + τβ j[S1
jl , S1

ju]− β j[S2
jl , S2

ju]− θ11
j β j[S3

jl , S3
ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥ [D3
0jl , D3

0ju]− β jθ
1
j [S

1
jl , S1

ju]− β jθ
11
j [S2

jl , S2
ju]− β j[S3

jl , S3
ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ [ekpl , ekpu] ∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤
(
[SPCr

jl , SPCr
ju]

)
∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1
{[Pr

il , Pr
iu] + [Cr

ijpkl , Cr
ijpku]dsijp}xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)[ f
ijpkl

, f
ijpku

]

≤ [Budjl , Budju] ∀ j = 1, 2, ..., N
and xr

ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(4)
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3.4. The Mathematical Form of TPIC-2

Maximize Z2 =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
{[Sr

jl , Sr
ju](1− λr

ijpkdsα
ijp)− [Pr

il , Pr
iu]− [Cr

ijpkl , Cr
ijpku]dsijp}xr

ijpk

−
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)[ f ijpkl , f ijpku]

s.t
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ [Ar
il , Ar

iu] ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥ [D1
0jl , D1

0ju]− β j[S
1
jl , S1

ju] + τβ j[S
2
jl , S2

ju]− θ1
j β j[S

3
jl , S3

ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥ [D2
0jl , D2

0ju] + τβ j[S
1
jl , S1

ju]− β j[S
2
jl , S2

ju]− θ11
j β j([S

3
jl , S3

ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥ [D3
0jl , D3

0ju]− β jθ
1
j [S

1
jl , S1

ju]− β jθ
11
j [S2

jl , S2
ju]− β j[S

3
jl , S3

ju],

∀ j = 1, 2, ..., N, r = 1, 2, ..., R
R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ [ekpl , ekpu] ∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤
(
[SPCr

jl , SPCr
ju]

)
∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1
{[Pr

il , Pr
iu] + [Cr

ijpkl , Cr
ijpku]dsijp}xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)[ f ijpkl , f ijpku]

≤ [Budjl , Budju] ∀ j = 1, 2, ..., N
and xr

ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(5)

3.4.1. TP-1

Maximize Zl =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
Sr

jl(1− λr
ijpkdsα

ijp)− Pr
iu − Cr

ijpkudsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f
ijpku

s.t
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ Ar
il ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
{

D1
0ju − β jS1

jl + τβ jS2
ju − θ1

j β jS3
jl

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
{

D2
0ju + τβ jS1

ju − β jS2
jl − θ11

j β jS3
jl

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
{

D3
0ju − β jθ

1
j S1

jl − β jθ
11
j S2

jl − β jS3
jl

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ ekpl k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ SPCr
jl ∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

{
Pr

iu + Cr
ijpkudsijp

}
xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f
ijpku

)
≤ Budjl , ∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(6)
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3.4.2. TP-2

Maximize Zu =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
Sr

ju(1− λr
ijpkdsα

ijp)− Pr
il − Cr

ijpkldsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f
ijpkl

s.t
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ Ar
iu ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
{

D1
0jl − β jS1

ju + τβ jS2
jl − θ1

j β jS3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
{

D2
0jl + τβ jS1

jl − β jS2
ju − θ11

j β jS3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
{

D3
0jl − β jθ

1
j S1

ju − β jθ
11
j S2

ju − β jS3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ ekpu ∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ SPCr
ju ∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

{
Pr

il + Cr
ijpkldsijp

}
xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f
ijpkl
≤ Budju ∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(7)

3.4.3. TP-3

Maximize Zl
=

R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
Sr

jl(1− λr
ijpkdsα

ijp)− Pr
iu − Cr

ijpkudsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f ijpku

subject to
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ Ar
il ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
{

D1
0ju − β jS

1
jl + τβ jS

2
ju − θ1

j β jS
3
jl

}
, j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
{

D2
0ju + τβ jS

1
ju − β jS

2
jl − θ11

j β jS
3
jl

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
{

D3
0ju − β jθ

1
j S1

jl − β jθ
11
j S2

jl − β jS
3
jl

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ ekpl k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ SPCr
jl ∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

{
Pr

iu + Cr
ijpkudsijp

}
xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f ijpku ≤ Budjl ∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(8)

3.4.4. TP-4

Maximize Zu
=

R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{
Sr

ju(1− λr
ijpkdsα

ijp)− Pr
il − Cr

ijpkldsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f ijpkl

subject to
N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ Ar
iu ∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
{

D1
0jl − β jS

1
ju + τβ jS

2
jl − θ1

j β jS
3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
{

D2
0jl + τβ jS

1
jl − β jS

2
ju − θ11

j β jS
3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
{

D3
0jl − β jθ

1
j S1

ju − β jθ
11
j S2

ju − β jS
3
ju

}
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ ekpu k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ SPCr
ju ∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

{
Pr

il + Cr
ijpkldsijp

}
xr

ijpk +
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk) f ijpkl ≤ Budju ∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(9)
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3.4.5. Approach-2

After use of the Expected Value Method, the Rough transportation problem ( Model-II)
mathematically reduces to:

Maximize E
[

Z
]
= E

[
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

{(
[Sr

jl , Sr
ju ], [S

r
jl , S

r
ju ]

)
(1− λr

ijpkdsα
ijp)−

(
[Pr

il , Pr
iu ], [P

r
il , Pr

iu ]

)
−
(
[Cr

ijpkl , Cr
ijpku ], [C

r
ijpkl , C

r
ijpku ]

)
dsijp

}
xr

ijpk −
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

(
[ f

ijpkl
, f

ijpku
], [ f ijpkl , f ijpku ]

)]
subject to

N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤ E
[(

[Ar
il , Ar

iu ], [A
r
il , A

r
iu ]

)]
∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥ E
[{(

[D1
0jl , D1

0ju ], [D
1
0jl , D1

0ju ]

)
− β j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
+τβ j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− θ1

j β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}]
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥ E
[{(

[D2
0jl , D2

0ju ], [D
2
0jl , D2

0ju ]

)
+ τβ j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
−β j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− θ11

j β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}]
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥ E
[{(

[D3
0jl , D3

0ju ], [D
3
0jl , D3

0ju ]

)
− β jθ

1
j

(
[S1

jl , S1
ju ], [S

1
jl , S

1
ju ]

)
−β jθ

11
j

(
[S2

jl , S2
ju ], [S

2
jl , S

2
ju ]

)
− β j

(
[S3

jl , S3
ju ], [S

3
jl , S

3
ju ]

)}]
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤ E
[(

[ekpl , ekpu ], [ekpl , ekpu ])

)]
∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤ E
[(

[SPCr
jl , SPCr

ju ], [SPC
r
jl , SPC

r
ju ]

)]
∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1
E
[{(

[Pr
il , Pr

iu ], [P
r
il , Pr

iu ]

)
+

(
[Cr

ijpkl , Cr
ijpku ], [C

r
ijpkl , C

r
ijpku ]

)
dsijp

}
xr

ijpk

+
M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

(
[ f

ijpkl
, f

ijpku
], [ f ijpkl , f ijpku ]

)]
≤ E

[(
[Budjl , Budju ], [Budjl , Budju ]

)]
∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.
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The problem (16) can be written as:

Maximize Z =
R
∑

r=1

M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1

[
{η(Sr

jl + Sr
ju) + (1− η)(S

r
jl + S

r
ju)}/2 ∗ (1− λr

ijpkdsα
ijp)

−{η(Pr
il + Pr

iu) + (1− η)(Pr
il + Pr

iu)}/2− {η(Cr
ijpkl + Cr

ijpku) + (1− η)(C
r
ijpkl + C

r
ijpku)}/2 ∗ dsijp

]
xr

ijpk

−
M
∑

i=1

N
∑

j=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

[
{η( f

ijpkl
+ f

ijpku
) + (1− η)( f ijpkl + f ijpku)}/2

]
subject to

N
∑

j=1

L
∑

p=1

K
∑

k=1
xr

ijpk ≤
[
{η(Ar

il + Ar
iu) + (1− η)(A

r
il + A

r
iu)}/2

]
∀ i = 1, 2, ..., M, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ1

ijpkdsα
ijp)x1

ijpk ≥
[
{η(D1

0jl + D1
0ju) + (1− η)(D1

0jl + D1
0ju)}/2− β j{η(S1

jl + S1
ju) + (1− η)(S

1
jl + S

1
ju)}/2

+τβ j{η(S2
jl + S2

ju) + (1− η)(S
2
jl + S

2
ju)}/2− θ1

j β j{(S3
jl + S3

ju) + (1− η)(S
3
jl + S

3
ju)}/2

]
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ2

ijpkdsα
ijp)x2

ijpk ≥
[
{η(D2

0jl + D2
0ju) + (1− η)(D2

0jl + D2
0ju)}/2 + τβ j{η(S1

jl + S1
ju) + (1− η)(S

1
jl + S

1
ju)}/2

−β j{η(S2
jl + S2

ju) + (1− η)(S
2
jl + S

2
ju)/2− θ11

j β j{η(S3
jl + S3

ju) + (1− η)(S
3
jl + S

3
ju)}/2

]
, ∀ j = 1, 2, ..., N, r = 1, 2, ..., R

M
∑

i=1

L
∑

p=1

K
∑

k=1
(1− λ3

ijpkdsα
ijp)x3

ijpk ≥
[
{η(D3

0jl + D3
0ju) + (1− η)(D3

0jl + D3
0ju)}/2− β jθ

1
j {η(S

1
jl + S1

ju) + (1− η)(S
1
jl + S

1
ju)}/2

−β jθ
11
j {η(S

2
jl + S2

ju) + (1− η)(S
2
jl + S

2
ju)}/2− β j{η(S3

jl + S3
ju) + (1− η)(S

3
jl + S

3
ju)}/2

]
, j = 1, 2, ..., N, r = 1, 2, ..., R

R
∑

r=1

M
∑

i=1

N
∑

j=1
xr

ijpk ≤
[

η(ekpl + ekpu) + (1− η)(ekpl + ekpu)]/2)
]
∀ k = 1, 2, ..., K, p = 1, 2, ..., L

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
1− λr

ijpkdsα
ijp

]
xr

ijpk ∗ SPr ≤
[
{η(SPCr

jl + SPCr
ju) + (1− η)(SPC

r
jl + SPC

r
ju)}/2

]
∀ j = 1, 2, ..., N,

R
∑

r=1

M
∑

i=1

L
∑

p=1

K
∑

k=1

[
{η(Pr

il + (1− η)Pr
iu) + (Pr

il + Pr
iu)}/2 + {η(Cr

ijpkl + Cr
ijpku) + (1− η)(C

r
ijpkl + C

r
ijpku)}/2 ∗ dsijp

]
xr

ijpk+

M
∑

i=1

L
∑

p=1

K
∑

k=1
w(xr

ijpk)

[
{η( f

ijpkl
+ f

ijpku
) + (1− η)( f ijpkl + f ijpku)}/2

]
≤
[
{η(Budjl + Budju) + (1− η)(Budjl + Budju)}/2

]
∀ j = 1, 2, ..., N

and xr
ijpk ≥ 0 ∀ i = 1, 2, ..., M, j = 1, 2, ..., N, p = 1, 2, ..., L, k = 1, 2, ..., K, r = 1, 2, ..., R.



(11)
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4. Numerical Experiments

Let us consider a real life transportation system where number of sources = 2 (i.e., M = 2), number
of destination = 2 (i.e., N = 2), number of vehicles = 2 (i.e., K = 2) and number of routes = 2 (L = 2),
number of items = 3 (i.e., R = 3). The input values of unit transportation costs, fixed charges are of crisp
and rough interval forms which are presented in Tables 2 and 3. The amount of breakability in a crisp
environment is also presented in Table 2. Here, it is assumed that there are three types of products.
The 1st and 2nd ones are the substitute, the 1st and 3rd are complementary, and the 2nd and 3rd are
also complimentary.

Table 2. Unit cost of transportation (Cr
ijpk), fixed charges ( fijpk), breakability (λr

ijpk) for
proposed Models.

p 1 2

k 1 2 1 2
i/j 1 2 1 2 1 2 1 2

Model-I

(Crisp Model)

1 0.5 2.1 1.7 1.12 0.85 0.5 1.38 1.28C1
ijkp 2 1.21 1.28 2.05 0.6 1.65 2.72 1.66 1.78

1 1.5 2.25 2.0 1.3 0.08 0.7 1.05 1.25C2
ijkp 2 1.05 2.15 2.2 0.9 1.35 2.25 1.85 0.98

1 1.3 1.2 1.91 1.2 0.9 0.94 0.73 0.93C3
ijkp 2 1.22 1.3 2 0.7 1.8 3 1.8 1.8

1 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
λ1

ijkp 2 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

1 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
λ2

ijkp 2 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

1 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
λ3

ijkp 2 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

1 1.9 1.7 1.1 1.3 1.2 1.4 0.3 1.8fijkp 2 1.2 1.85 0.9 1.5 1.5 2.1 2.1 1.6

Model-II

(Rough Model)

1 ([1, 2], ([0.5, 1.5], ([1.1, 2.3], ([0.8, 1.3], ([1.4, 2.3], ([0.7, 1], ([1.2, 2], ([1.2, 2.4],
[0.7, 2.3]) [0.5, 2]) [1, 2.5]) [0.5, 2]) [1.2, 2.8] ) [0.5, 1.5]) [1.2, 2.3]) [1, 3])

Č1
ijkp

2 ([1.2, 2.5], ([0.9, 2], ([1.1, 2], ([1, 2], ([1.1, 2.2], ([1, 2.5], ([0.9, 2.1], ([1.3, 2.5],
[1, 3] ) [0.5, 3.2]) [0.7, 2.5]) [0.9, 2.6]) [1, 2.7]) [0.3, 3]) [0.7, 2.8] ) [1.1, 3.5])

1 ([1, 2], ([0.5, 1.5], ([1.1, 2.3], ([0.8, 1.3], ([1.4, 2.3], ([0.7, 1], ([1.2, 2], ([1.2, 2.4],
[0.7, 2.3]) [0.5, 2]) [1, 2.5]) [0.5, 2]) [1.2, 2.8] ) [0.5, 1.5]) [1.2, 2.3]) [1, 3])

Č2
ijkp

2 ([1.2, 2.5], ([0.9, 2], ([1.1, 2], ([1, 2], ([1.1, 2.2], ([1, 2.5], ([0.9, 2.1], ([1.3, 2.5],
[1, 3] ) [0.5, 3.2]) [0.7, 2.5]) [0.9, 2.6]) [1, 2.7]) [0.3, 3]) [0.7, 2.8] ) [1.1, 3.5])

1 ([1.3, 2.7], ([1.7, 2.8], ([1.5, 2.5], ([1.6, 2.4], ([1.3, 3], ([1.4, 2], ([1.5, 2.6], ([1.8, 2.7],
[1, 3]) [1.2, 3.1]) [1.4, 3.1]) [1.5, 3.5]) [1.2, 3.5]) [1.1, 2.5]) [1.3, 3]) [1.6, 3.4]

Č3
ijkp

2 ([1.5, 2.5], ([1.3, 3], ([1.7, 2.7], ([1.4, 3], ([2, 2.7], ([1.3, 2.2], ([1.6, 2.1], ([1.6, 2.5],
[1, 3.5]) [1.1, 3.7]) [1.5, 3]) [1.2, 3.2]) [1.8, 3]) [1, 2.5]) [1.5, 2.8]) [1.4, 2.8])

1 ([0.5, 1.5], ([0.7, 1], ([0.7, 1.3], ([0.8, 1.6], ([0.7, 1.4], ([0.8, 1.8], ([1, 1.5], ([0.9, 1.8],
[0.5, 2]) [0.6, 1.5]) [0.4, 2] ) [0.3, 1.7]) [0.6, 2]) [0.3, 2.3]) [0.8, 1.8]) [0.7, 2.1])

f̌ijkp
2 ([0.2, 0.5], ([0.3, 0.6], ([0.9, 1.7], ([1, 1.5], ([0.9, 1.5], ([0.5, 1.6], ([0.4, 0.9], ([1, 1.7],

[0.1, 1]) [0.2, 1]) [0.6, 1.8]) [0.5, 1.6]) [0.4, 1.9]) [0.2, 2]) [0.2, 1]) [0.5, 2])



Mathematics 2019, 7, 281 13 of 26

The other parametric magnitudes such as unit purchasing price and unit selling price, capacities
of conveyances, available space, budget, sources and demands of the Models-I and -II are given in
Tables 3 and 4. Let the unit space for 1st, 2nd and 3rd items are two units, three units and two units.

Table 3. Parametric values for the Models.

Models Source Demand Capacities. of Conveyance.

(A1
1, A2

1, A3
1 (D1

01, D2
01, D3

01 (e1
1, e2

1, e3
1)

A1
2, A2

2, A3
2) D1

02, D2
02, D2

02) (e1
2, e2

2, e3
2)

-I (90, 80, 85 (75, 73, 70, (90, 85, 80
85, 75, 70) 65, 63, 60) 85, 70, 75)

{([89.5, 90], [88.6, 91]), {([74, 75], [73.6, 76]), {([89, 90], [88, 91]),
([79.6, 80], [78.5, 81.3]), ([72.6, 73], [72, 74]), ([84, 85], [83, 86.3]),
([84.7, 85], [83.5, 86]), ([69.4, 70], [68.7, 71]), ([79, 80], [78, 81.3]),

-II ([84.4, 85], [83.6, 86]), ([64.5,65], [64, 66]), ([84, 85], [83, 86.3]),
([74, 75], [73.6, 76]), ([62.4, 63], [62, 64]), ([69, 70], [68, 71]),

([69.4, 70], [68.7, 71])} ([59.4, 60], [59, 61])} ([74, 75], [73, 76])}

Table 4. Parametric values for the Models.

Models Purchasing Costs Unit Selling Price Budget

(P1
1 , P2

1 , P3
1 (S1

1, S2
1, S3

1 (Bud1, Bud2, Bud3) (SPC1, SPC2, SPC3)
P1

2 , P2
2 , P3

2 ) S1
2, S2

2, S3
2)

-I (9, 8, 10 (52, 30, 24, (3000, 2500, 2700) (510, 520, 525)
6, 7, 8.5) 46, 28, 20)

{([8.3, 9], [8, 10]), {([51.5, 52], [51, 53]), {([8250,5000], {([509.6,510.3],
([7.5, 8], [7, 9]), ([29, 30], [28, 31]), [7500,8600]), [509, 511]),

([9, 10], [8, 10.5]), ([23.5, 24], [23, 25]), ([7500,8600], ([519.4,520],
-III ([5.5, 6], [5, 7]), ([45.5,45], [45.3, 46]), [4500,4600]), [519, 521]),

([6.5, 7], [6, 7.8]), ([27.4, 28], [27, 29]), ([4400,4700]), ([524, 525]),
([8, 8.5], [7.5, 9])} ([19.5, 20], [19.1, 21])} [4400,4700])} [523,526])}

By considering the general demand function, it is necessary to define β j, θ1
j , θ11

j and τ.

These parameters are defined as follows: β j = 0.1, θ1
j = 0.052, θ11

j = 0.051 and τ = 0.05. The following
Table 5 represent the distances from different origins to destinations by route-1 and route-2.

Table 5. Distances (dsijp) of the routes for the Models.

Route Destination Origin-1 Origin-2

1 1 35 30
2 40 25

2 1 30 35
2 25 30

Now, the problem is to determine the optimal policy of transportation to maximize the profit.
Under the objective of maximization of profit subjected to the traditional constraints, available
space, and budget constraints for the above given input data, the crisp model is solved using
Generalised Reduced Gradient (GRG) method and rough model by (i) Hamzehee et al and (ii) Expected
Value Techniques along with GRG method. The results are presented in Table 6 (Crisp Model and
Rough Model by Hamzehee Method) and Table 7 (Rough Model by Expected Value Technique).
The convergence of the GRG method is also well established (shown in Appendix A.5) [33].
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Table 6. Optimum results for Model-I and Model-II (Hamzehee Method) by Lingo.

Models Crisp Model 4D Rough Model

TP-1 TP-2 TP-3 TP-4

Optimal profit 6966.775 5293.95 8058.61 4109.11 9130.81

Set-1 Set-2 Set-3 Set-4

x11111 = 63.07 x11221 = 14.04 x11122 = 48.7 x11111 = 54.4 x11111 = 52.44
x11122 = 52.75 x12112 = 46 x11221 = 65.3 x11221 = 32.2 x11112 = 25.41
x11222 = 8.75 x12211 = 29.96 x11222 = 49.6 x11222 = 17.9 x11222 = 19.9

x21121 = 67.15 x21121 = 50.46 x12211 = 22.1 x12211 = 0.2 x12112 = 9.09
x21122 = 47.1 x21122 = 21.84 x12221 = 42.2 x21121 = 20.3 x12211 = 62.24

x22211 = 27.74 x21211 = 33.04 x21111 = 44 x21122 = 19.9 x21121 = 54.71
x22212 = 39.9 x21222 = 45.16 x21121 = 9.80 x22211 = 31.31 x21122 = 65.91
x22213 = 26.9 x21223 = 26.07 x21123 = 14.80 x22213 = 2.23 x21123 = 27.09
x11213 = 7.9 x21123 = 27.16 x22123 = 23.80 x22113 = 62.04 x22123 = 15.09

x11123 = 15.91 x11123 = 15.91 x11123 = 15.91 x22212 = 18.65 x21113 = 28.51
others are zero others are zero x21122 = 33.4 other are zero x21211 = 8.29

x22212 = 14.9 x22212 = 31.21
other are zero other are zero

Table 7. Optimum results for Model-II (Expected Value Technique) by Lingo.

η = 0.0 η = 0.2 η = 0.4 η = 0.5 η = 0.6 η = 0.8 η = 1.0

6351.76 6393.95 6412.61 6463.11 6488.81 6504.54 6523.54

x11111 = 32.75 x11111 = 32.84 x11111 = 32.86 x11111 = 28.85 x11111 = 28.14 x11111 = 28.09 x11111 = 28.92
x11222 = 30.33 x11222 = 30.33 x22212 = 27.46 x11222 = 30.13 x11222 = 30.02 x11222 = 30.33 x11222 = 30.33
x12211 = 45.65 x12211 = 45.576 x12211 = 45.52 x12211 = 45.5 x12211 = 45.48 x12211 = 45.44 x12211 = 45.40
x21121 = 52.20 x21121 = 52.16 x21121 = 52.13 x21111 = 39.2 x21113 = 39.09 x21113 = 42.76 x21113 = 42.76
x21122 = 10.8 x21122 = 18.75 x21122 = 10.712 x21121 = 32.3 x21121 = 32.24 x21121 = 54.05 x21121 = 54.21
x21223 = 30.74 x21223 = 30.44 x21223 = 30.04 x21123 = 14.9 x21123 = 14.71 x21123 = 24.01 x21123 = 24.32
x22111 = 23.9 x22111 = 23.13 x22111 = 23.80 x21222 = 23.14 x21222 = 23.37 x21222 = 23.41 x21222 = 33.51
x22213 = 32.9 x22213 = 32.06 x22213 = 32.16 x22213 = 32.16 x22213 = 32.22 x22113 = 32.8 x22113 = 41.05

and all and all x22212 = 18.9 x22212 = 27.46 x21211 = 27.49 and all and all
others others and all others and all x22212 = 5.61 others are zero others are zero

variables variables variables others and all
are zero are zero are zero variables others are zero

are zero

To compare the results for existence of different constraints, we present the following Table 8
for η = 0.5.

Table 8. Optimum results for existence of different constraints (Expected Value Technique) by Lingo.

Results without Space and Budget Results with Space and without Budget Results without Space and with Budget

x11111 = 42.75 x11221 = 22.84 x11211 = 19.06
x11212 = 13.33 x11222 = 32.04 x21222 = 53.33
x12211 = 25.65 x12211 = 45.57 x22212 = 14.9
x21121 = 52.20 x21121 = 52.16 x21121 = 32.13
x21122 = 10.8 x21122 = 10.75 x21122 = 10.71

x21223 = 57.74 x21223 = 30.44 x21213 = 24.54
x22112 = 43.9 x22112 = 53.16 x22112 = 53.80
x22213 = 32.9 x22213 = 32.16 x22213 = 32.16
x12213 = 12.9 x12213 = 12.9 x21122 = 27.4

x11123 = 21.17 x11123 = 11.17 x11123 = 31.12
and all others and all others and all others

variables are zero variables are zero variables are zero
Optimal profit 6579.135 Optimal profit 6529.07 Optimal profit 6513.513
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5. Particular Cases

5.1. Three-Dimensional TP Model

If we take the system where there is only one route only, i.e., L = 1 in the Model-II (Rough
Model), then the converted transportation problem is termed as a solid transportation problem (STP).
The corresponding three dimensional TP-1, TP-2, TP-3, TP-4 is obtained by substituting L = 1 in the
TP-1, TP-2, TP-3, TP-4 of the four-dimensional transportation Model. The results of the 3DTP (i.e., STP)
model are given in Table 9.

Table 9. Optimum results of the STP Model ignoring route.

823.76 1263.95 323.61 2623.21

x1111 = 14.22 x1111 = 0.82 x1111 = 16.52 x1111 = 18.04
x1112 = 0.75 x1112 = 4.19 x1112 = 4.43 x1112 = 9.12
x1121 = 0.05 x1121 = 6.26 x1121 = 0.72 x1121 = 0.21

x1122 = 11.225 x1122 = 12.06 x1122 = 0.92 x1122 = 11.42
x1211 = 8.25 x1211 = 0.36 x1211 = 0.26 x1211 = 0.53
x1212 = 0.65 x1212 = 0.16 x1212 = 0.36 x1212 = 0.43
x1222 = 0.25 x1222 = 5.06 x1222 = 0.16 x1221 = 8.12
x2111 = 0.51 x2111 = 0.06 x2111 = 0.91 x1222 = 0.09
x2112 = 0.62 x2112 = 8.03 x2112 = 0.82 x2111 = 5.05

x2121 = 29.74 x2121 = 0.4 x2121 = 4.24 x2112 = 27.3
x2122 = 5.9 x2122 = 0.44 x2122 = 0.80 x2121 = 8.44
x2211 = 0.65 x2211 = 5.26 x2211 = 0.6 x2122 = 5.32

x2213 = 10.25 x2213 = 0.96 x2213 = 0.03 x2213 = 14.76
x2221 = 0.35 x2221 = 4.81 x2221 = 6.6 x2212 = 5.75
x2223 = 5.05 x2223 = 5.76 x2223 = 7.6 x2223 = 9.2
others zero others zero others zero others zero

If we take K = 1, then we get another three-dimensional transportation Model. Like above,
the corresponding 3D TP-1, TP-2, TP-3, TP-4 are found by substituting K = 1 in the TP-1, TP-2, TP-3,
TP-4 of the four-dimensional transportation Model. The optimum results of this STP model are given
in Table 10.

Table 10. Optimum results of the STP Model ignoring conveyance.

623.76 1103.95 383.61 2056.32

x1111 = 0.24 x1111 = 0.84 x1111 = 0.57 x1111 = 14.17
x1112 = 0.76 x1112 = 0.11 x1112 = 0.33 x111 = 0.42
x1121 = 0.05 x1121 = 0.26 x1121 = 0.62 x1121 = 0.43
x1122 = 0.24 x1122 = 0.26 x1122 = 0.92 x1122 = 0.97
x1211 = 0.23 x1211 = 0.46 x1211 = 0.36 x1211 = 0.64
x1212 = 0.54 x1212 = 0.16 x1212 = 0.46 x1212 = 0.54
x1222 = 0.25 x1222 = 14.06 x1222 = 0.26 x1223 = 0.17
x2111 = 0.51 x2111 = 0.06 x2111 = 0.91 x1333 = 0.65
x2112 = 0.62 x2112 = 42.03 x2112 = 0.82 x1213 = 0.42

x2121 = 32.74 x2121 = 0.4 x2121 = 44.24 x2121 = 41.53
x2122 = 20.9 x2122 = 0.44 x2122 = 0.80 x2122 = 10.42
x2211 = 7.65 x2211 = 10.26 x2211 = 0.6 x2211 = 0.95
x2213 = 0.25 x2213 = 0.96 x2213 = 0.03 x221 = 0.94
x2221 = 0.35 x2221 = 25.11 x2221 = 1.6 x2221 = 0.79
x2223 = 0.05 x2223 = 8.76 x2223 = 12.6 x2222 = 0.57
others zero others zero others zero others zero
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5.2. 2D-TP Model

If we take L = 1 and K = 1 in the Model-II (Rough Model), then we get the 2D-transportation
problem. The corresponding 2D TP-1, TP-2, TP-3, TP-4 are found in the following Table 11.

Table 11. Optimum solutions for 2D-TP Model.

4113.06 8093.95 453.61 8243.93

x111 = 63 x111 = 64.82 x111 = 63.32 x111 = 62
x112 = 52 x112 = 19.26 x112 = 2.62 x112 = 17.2

x121 = 50.0 x121 = 16.36 x121 = 0.67 x211 = 8
x122 = 5.0 x122 = 0.70 x122 = 0.32 x223 = 23
x211 = 6 x211 = 23.8 x211 = 2.18 x222 = 26.21

x213 = 5.5 x213 = 5.0 x213 = 2.23 other zero
x221 = 16.5 x221 = 8.0 x221 = 4.15
x223 = 19.5 x223 = 27.4 x223 = 4.32
other zero other zero other zero

5.3. 4D-TPs with Different Natures of the Items

Results for the different combinations of substitute and complementary items are shown
in Table 12.

Table 12. Results for the different combinations of substitute and complementary items.

Problem Independent Substitute Complementary Profit for Model-1

1 Item-1, Item-2, Item-3 7388.841
1 Item-1, Item-2 Item-3 6966.775
2 Item-1, Item-2 5497.527
3 Item-1, Item-3 6021.859
4 Item-2, Item-3 5952.067

6. Sensitivity Analyses

Taking β j = 0.1, 0.2, ..., 0.7, and keeping θ1
j , θ11

j and τ as same, the sensitivity analyses for the
Model-1 are presented in Table 13.

Table 13. Sensitivity analysis (w.r.t β j).

Set τ θ1
j = θ11

j βj Maximum Profit Demand

1

0.052 0.052 0.1 6966.68 379.542
0.052 0.052 0.2 6519.775 359.084
0.052 0.052 0.3 6072.868 338.627
0.052 0.052 0.4 5625.962 318.1696
0.052 0.052 0.5 5179.055 297.712
0.052 0.052 0.6 4732.149 277.254
0.052 0.052 0.7 4285.242 256.79

If price of items are sensitives with τ = 0.1, 0.2, ..., 0.7, and β j = 0.5, keeping θ1
j and θ11

j as
unchanged, the sensitivity analyses for the Model-1 are presented in Table 14.
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Table 14. Sensitivity Analysis (w.r.t τ).

Set τ θ1
j = θ11

j βj Maximum Profit Demand

1

0.1 0.052 0.5 5223.015 298.09
0.2 0.052 0.5 5314.598 298.89
0.3 0.052 0.5 5406.181 299.69
0.4 0.052 0.5 5497.76 300.49
0.5 0.052 0.5 5589.34 301.29
0.6 0.052 0.5 5680.93 302.09
0.7 0.052 0.5 5772.513 303.89

7. Discussion

Tables 6–10 represent the optimal solutions for given assumed values, which are self explained.
From the above observation of TP-1 and TP-2, we can conclude that it yields satisfactory results and that
of TP-3 and TP-4 yield almost satisfactory results. From the above observation of Table 7, we can easily
infer that, with the increasing value of η , the profit increases. The profit is varied for the substitute
and complementary nature of the items observed from Table 11. When items are independent, then
profit is maximum that is $7388.841. When item-1 and item-2 are substituted in nature with each other
and item-3 is complementary nature then profit is $6966.775. However, when the item-1 and item-2 are
the substitutes in nature to each other, then profit is minimum that is $5499.527.

Table 11 shows the optimal profit of model-1 for the nature of the items. This table helps the
manager to make the decisions of the type of items he/she should use for his/her business policy.
For the current consideration, it is observed that the existence of the complementary item is more
profitable than the existence of the substitute item.

From Table 12, it is seen that the demand parameter τ, θ1
j , θ11

j and β j have an effect on the amount
of demand. As the parameter β j is the negative indicator of the demand expression, its increase in
value causes decreasing demand and optimum profit.

Similarly, Table 13 gives reverse calculation as τ is a positive (+ve) parameter present in the
demand expression. The Figures 3 and 4 have also established the same conclusion in Tables 12 and 13.
It is to be noticed that the coefficients of selling prices and amounts of gains do not depend on the
actual amounts of these factors. Profit depends only on the deviation of the factors.
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Figure 3. Profit vs. demand with respect to β.
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Figure 4. Profit vs. demand with respect to τ.

Thus, with the constant degree of substitution and complementary, profit and demand are constant
though the measures of responsiveness of both merchandise are dissimilar for all cases.

Figure 5 draws a comparison between the profit versus price of sensitivities β j and τ. It is
observed that, when the price of sensitivity of product (β j) is increasing, then profit is decreasing and,
when τ is increasing, then profit is increasing. The maximum profit is dependent on both β j and τ.
Thus, it is essential to trade-off between these sensitivities parameters to achieve maximum profit
when substitute and complimentary items are transported.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
4000

4500

5000
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7000
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it

Price Sensitivity  of Products ( b   and t )

Figure 5. Profit vs. demand with respect to β and τ.

7.1. Discussion for Particular Models

From Table 8, when we consider only the first route of Model-II, the profit range of a corresponding
3D TP is ([823.76, 1263.95], [323.61, 2623.21]) and, from Table 9, when we take only the first conveyance
of Model-II, the profit range of corresponding 3D TP is ([623.76, 1103.95], [383.61, 2056.32]). Again when
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we consider only the first route and first conveyance in the Model-II, the profit range of corresponding
2D TP is ([4113.06, 8093.95], [453.61, 8243.93]).

7.2. Results of Bera et al.’s Model

If we don’t consider the damageability, substitutability, complementary and space constraint i.e.,
if we put λr

ijpk = 0 = β j = θ1
j = θ11

j = τ and remove the space constraint in Equation (1), it becomes
the same type expressions as Bera et al. [7] for three items.

8. A Real-Life Problem

M/S. Sargar studio has two shops (studios) at Midnapore Sadar, Paschim Midnapur and Digha,
Purba Medinipur, India. The owner of the studio brings the photographic materials-two types of
plastics and one type wooden frame material (by weight) from Kolkata, West Bengal, and Bhubaneswar,
Orissa, India. There are two conveyances—bus and lorries—between sources and destinations.
Two different routes for transportation are also available. Here, plastic sheets (one high quality
and other one little low) are substitutes and the wooden frame is complementary. The relevant data
and the results are given in Table 15. The company has sufficient storing spaces at destinations
along with the sufficient budget. Here, we take the crisp values for the parameters given by the
studio company (Table 16).

Table 15. Unit cost of transportation (Cr
ijpk), fixed charges ( fijpk), breakability (λr

ijpk) for
proposed Models.

p 1 2

k 1 2 1 2

i/j 1 2 1 2 1 2 1 2

Model-I

(Crisp Model)

1 0.15 1.1 1.2 0.12 0.85 0.5 1.38 1.28C1
ijkp 2 0.21 1.3 2.5 0.6 1.65 1.72 0.66 0.78

1 1.5 2.25 2.0 1.3 0.08 0.7 1.05 1.25C2
ijkp 2 0.25 0.25 1.2 1.9 1.35 1.25 1.85 0.98

1 1.3 1.2 1.91 1.2 0.9 0.94 0.73 0.93C3
ijkp 2 0.52 1.53 1.2 0.7 1.8 0.53 1.9 0.98

1 0.01 0.01 0.02 0.03 0.01 0.02 0.01 0.02
λ1

ijkp 2 0.02 0.01 0.03 0.04 0.02 0.01 0.03 0.02

1 0.04 0.03 0.01 0.02 0.05 0.01 0.02 0.03
λ2

ijkp 2 0.05 0.04 0.02 0.03 0.02 0.01 0.03 0.02

1 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
λ3

ijkp 2 0.04 0.05 0.02 0.03 0.01 0.02 0.04 0.02

1 1.1 1.4 1.5 1.0 1.2 1.4 0.3 1.8fijkp 2 1.3 1.5 0.9 1.1 1.3 2.1 2.1 1.02

Table 16. Parametric values for the Models.

Models Source Demand Capacities. of Conveyance. Purchasing Costs Unit Selling Price

(A1
1, A2

1, A3
1 (D1

01, D2
01, D3

01 (e1
1, e2

1, e3
1) (P1

1 , P2
1 , P3

1 (S1
1, S2

1, S3
1

A1
2, A2

2, A3
2) D1

02, D2
02, D2

02) (e1
2, e2

2, e3
2) P1

2 , P2
2 , P3

2 ) S1
2, S2

2, S3
2)

-I (85, 75, 80 (60, 70, 75, (86, 89, 90 (45, 48, 51 (132, 145, 124,
83, 72, 68) 62, 64, 59) 81, 65, 70) 36, 47, 58.5) 126, 135, 137)
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Out put results are without constraints are x11111 = 67.07, x11122 = 51.75, x21121 = 66.15,
x21122 = 57.1, x22211 = 16.54, x22212 = 49.9, x22213 = 16.9, x11213 = 7.9, x11123 = 15.91 others are zero.
Max z = 6947.52.

9. Conclusions

Renowned scientific discoveries and Research always had a practical application in the real
world. Standing in the 21st century where machines, technology and industries govern the civilization,
the need for sophisticated and easy techniques in the industry for optimizing products and profit is
of immense importance. To further proceed and bring new ideas, we investigate a four-dimensional
multifarious item transportation issue with rough interval coefficient, which maximizes the profit
considering substitute and complementary products. The concept of rough interval and its properties
are discussed briefly. In recent times, the rough interval has played an important role in different
techniques handling vagueness for decision-making problems. The models we have discussed
comprises of all earlier factors that are all considered as rough intervals. While solving the proposed
model, at first, we discuss a solving procedure of a general linear programming problem with rough
intervals and then we solve our model according to the concept of the above model. The rough
problem is disintegrated into four classical transportation cases. We derive some special cases like
a three-dimensional model and two-dimensional model to realize the problem more practically.
Few examples are illustrated using LINGO 14.0 software showcasing the smooth working of the
technique. We have considered a single profit maximization problem which can be extended to become
a multi-objective optimization problem if we simultaneously maximize profit and minimize time.
Moreover, the travelling salesman problem (TSP), Inventory routing problem, Travelling purchase
problem, etc. are NP hard problems and are represented as LPPs and formulated as both single and
multi-objective problems (cf. Khanra et al. [34], Manbera [35], etc.). In these problems, the travelling
cost, stay charge, etc. can be taken as rough intervals and Hamzehee et al. [36] can be applied to
convert to crisp models, which can be solved by heuristic methods, Genetic-Algorithms, Ant Colony
Optimization, etc.

The drawback of the present methodology is that it provides a wide-range of possible profit
values. The average of these possible values may give an approximate single value.

Author Contributions: S.H.J., B.D. and M.M. determined this problem and proposed the method for solutions.
B.J. and G.P. did computer programming and mathematical calculations. B.J., S.H.J. and B.D. wrote the paper.
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Appendix A

In this section, some definitions and properties on Rough Intervals (RI) are given. For more
details, see Hamzehee et al. [36]. An RI can be treated as a qualitative amount from a vague concept
specified on a variable x in R [37], which is abstracted in the following definition.

Appendix A.1. Rough Intervals and Its Algebra

The algebraic operations applied on Rough Intervals (RIs) are taken from Moore’s Interval
Arithmetic [14]. Rebolledo [13] discussed the rough interval arithmetic very significantly.

Let Q = ([al , au], [al , au]) and T = ([bl , bu], [bl , bu]) represents the rough intervals. Then, the different
operations on these are:

Addition: Q + T = ([al + bl , au + bu], [al + bl , au + bu]),
Subtraction: Q− T = ([al − bu, au − bl ], [al − bu, au − bl ]),
Negation: −Q = ([−au, al], [−au, al ]).
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Appendix A.2. Expected Value of a Rough Interval (Shu and Edmund [38])

Let an event X be uttered by {x | ψ(x) ∈ T}, whereas ψ is a mathematical function in universe U
in R, T ⊆ R and X is estimated by (X, X) consorting to the similar relation in R. The corresponding
lower expected measure of X is given by

E[ψ] =
∫ ∞

0
Appro{ψ ≥ y}dy−

∫ 0

−∞
Appro{ψ ≤ y}dy where Appro(X) =

|X ∩ X|
X

and the corresponding upper expected measure of X is given by

E[ψ] =
∫ ∞

0
Appro{ψ ≥ y}dy−

∫ 0

−∞
Appro{ψ ≤ y}dy where Appro(X) =

|X|
X

and the corresponding expected value of X is given by

E[X] =
∫ ∞

0
Appro{ψ ≥ y}dy−

∫ 0

−∞
Appro{ψ ≤ y}dy.

Proposition (Shu and Edmund [38])

For any predetermined parameter η, chosen by the decision maker’s (DM’s) preference,
E(X) = ηE(X) + (1− η)E(X).

Appendix A.3. General Linear Programming Problem in Rough Interval Environments

A Linear Programming Problem (LPP) in which the coefficients of the objective function and the
constraints are rough intervals:

Maximize Z =
N
∑

j=1
([cjl , cju], [cjl , cju])xj

s.t
N
∑

j=1
([aijl , aiju], [aijl , aiju])xj ≤ ([bil , biu], [bil , biu]) ∀ i = 1, 2, ...m,

N
∑

j=1
([dkjl , dkju], [dkjl , dkju])xj ≥ ([ekl , eku], [ekl , eku]) ∀ k = 1, 2, ...p,

and xj ≥ 0 ∀ j = 1, 2, ...n,


(A1)

where ([cjl , cju], [cjl , cju]), ([aijl , aiju], [aijl , aiju]), ([bil , biu], [bil , biu]), ([dkjl , dkju], [dkjl , dkju]) and
([ekl , eku], [ekl , eku]) (i = 1, 2, ..., m; j = 1, 2, ..., n; k = 1, 2, ..., p) are rough intervals.
Let x = (x1, x2, ..., xn)t be the vector form of decision variables.

Now, according to Hamzehee et al. [36], here we state two theorems which help us to find the
rough optimal range of the problem (1).

Let us consider two LPIC problems which are as follows.

Appendix A.3.1. LPIC-1

Maximize Z =
N
∑

j=1
[cjl , cju]xj

s.t
N
∑

j=1
([aijl , aiju])xj ≤ ([bil , biu]) ∀ i = 1, 2, ..., m,

N
∑

j=1
([dkjl , dkju])xj ≥ ([ekl , eku]) ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A2)
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Appendix A.3.2. LPIC-2

Maximize Z =
N
∑

j=1
([cjl , cju])xj

s.t
N
∑

j=1
([aijl , aiju])xj ≤ ([bil , biu]) ∀ i = 1, 2, ..., m,

N
∑

j=1
([dkjl , dkju])xj ≥ ([ekl , eku]) ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A3)

The best optimal solution of the problem (1) according to Hamzehee et al. [36] and Chinneck and
Ramadan [39] is i.e., LPIC-1 is found by solving:

LP1:

Maximize Z =
N
∑

j=1
cjuxj

s.t
N
∑

j=1
aijl xj ≤ biu ∀ i = 1, 2, ..., m,

N
∑

j=1
dkjuxj ≥ ekl , ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A4)

The best optimal solution of the problem (1) i.e., LPIC-1 is found by solving:
LP2:

Maximize Z =
N
∑

j=1
cjl xj

s.t
N
∑

j=1
aiju)xj ≤ bil ∀ i = 1, 2, ..., m,

N
∑

j=1
dkjl xj ≥ eku) ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A5)

The best optimal solution of the problem (1) i.e., LPIC-2 is found by solving:
LP3:

Maximize Z =
N
∑

j=1
cjuxj

s.t
N
∑

j=1
aijl xj ≤ biu ∀ i = 1, 2, ..., m,

N
∑

j=1
dkjuxj ≥ ekl ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A6)

The best optimal solution of the problem (1) i.e., LPIC-2 is found by solving:
LP4:
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Maximize Z =
N
∑

j=1
cjl xj

s.t
N
∑

j=1
aiju)xj ≤ bil ∀ i = 1, 2, ..., m,

N
∑

j=1
dkjl xj ≥ eku ∀ k = 1, 2, ..., p,

and xj ≥ 0 ∀ j = 1, 2, ..., n.


(A7)

Appendix A.3.3. Types of Solutions

There are three possible types of solutions of the problem LPIC-1 and LPIC-2 which are
listed below:

• If LP-1 and LP-2 (LP-3 and LP-4) have optimal solutions, then the problem LPIC-1 (LPIC-2) has a
finite bounded surely optimal (possibly optimal) range. If the maximizing value of LP-1 and LP-2
(LP-3 and LP-4) are respectively zl , zu(zl , zu), then the surely optimal range (possibly optimal
range) of LPIC-1 (LPIC-2) is [zl , zu]([zl , zu])

• If LP-2 (LP-4) is unbounded, then LPIC-1 (LPIC-2) is unbounded.
• If LP-1 (LP-3) is infeasible, then LPIC-1 (LPIC-2) is infeasible.

Appendix A.4. Algorithm for Conversion from a Rough LPP to a Crisp LPP

The steps for converting a Rough LPP to a Crisp LPP are
Step 1: Decompose the problem (1) into two linear programming part where interval coefficients

are considered i.e., LPIC-1 and LPIC-2 which are given by (2) and (3), respectively.
Step 2: In this step, LPIC-1 again transformed into two linear programming problem where crisp

coefficients are considered i.e., LP-1 and LP-2 given by respectively the problems (5) and (6) and
similarly from LPIC-2 as LP-3 and LP-4 given by (7) and (8), respectively.

Step 3: In this step, LP-1, LP-2, LP-3 and LP-4 to find zl , zu, zl and zu respectively. [zl , zu] and
[zl , zu] are the solutions of LPIC-1 and LPIC-2 respectively, which are called surely optimal range and
possibly optimal range.

Step 4: Here three possible consequences are given below:

• If LPIC-1 and LPIC-2 have an optimal range, then the LPRIC problem (1) has an optimal range
([zl , zu], [(zl , zu)]) which is a rough interval, compared to the surely optimal range

• If LPIC-1 has boundless range, then the LPRIC problem (1) has boundless range.
• If LPIC-2 is infeasible, then the LPRIC problem (1) has an infeasible solution space.

Appendix A.5. Convergence of the GRG Method

Let us consider the general nonlinear programming problem

minimize f (x) (A8)

x ∈ Rn : g(x) = 0,

x ≥ 0,

where f : Rn → R and g : Rn → Rm are continuously differentiable functions. Any nonlinear
programming theory is based on the LAGRANGE function of (19), i.e., on

L(x, u, ū) = f (x)− g(x)Tu− xT ū, (A9)
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where x ∈ Rn, u ∈ Rm and ū ∈ Rn. Using this LAGRANGE function, the necessary optimality or
Kuhn–Tucker conditions are stated in the form

∇N L(x, u, ū) = 0, (A10)

g(x) = 0,

x ≥ 0,

ū ≥ 0,

xT ū = 0,

which are to be approximated by the GRG algorithm. Note that the first condition can be used to
eliminate ū, since we get ū = ∇ f (x)−∇g(x)Tu. A further function which will play an important role
for proving a global convergence theorem is the augmented LAGRANGE function

Ψr(x, v, v̄) := f (x)− g(x)Tv +
1
2

rg(x)T g(x)− v̄T
J xJ +

1
2

rxT
J xJ −

1
2r

v̄T
K v̄K, (A11)

where r ∈ R, x ∈ Rn v ∈ Rm and v̄ ∈ Rn.
Assume that the GRG Algorithm produces a sequence of iterates xk, vk, v̄k, ūk, rk.
First, we note again that the boundedness of {xk} implies the boundedness of {uk}, {vk} and {v̄k}.
Again, we denote this set of iteration indices by K. Since only finitely many different index

sets Rk and Fk are allowed, there is an infinite subset K‘ of K and index sets R, F with Rk = R ⊂ N,
Fk = F ⊂ N, for all k ∈ K‘. For the same reason, we find a constant index set D ⊂ N, i.e., we can also
assume that Dk = D and Ik̄ = I := N D for all k ∈ K‘.

Thus, there are accumulation points x∗, u∗ and ū∗ of {xk}, {uk}, and{ūk}, respectively, so that

lim
k∈K“

xk = x∗,

lim
k∈K“

uk = u∗,

lim
k∈K“

ūk = ū∗

Then, for an infinite subset K

∇DL(xk, uk, ūk) = ∇D f (xk)−∇Dg(xk)Tuk = 0, (A12)

∇FL(xk, uk, ūk) = ∇F f (xk)−∇Fg(xk)Tuk = 0, for all k ∈ K“.

We conclude that

∇N L(x∗, u∗, ū∗) = 0.

In addition, we have x∗ ≥ 0, x∗T ū∗ = 0, g(x∗) = 0 and ū∗ ≥ 0
x∗, u∗and ū∗ = 0 define a Kuhn–Tucker point for problem (19).
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