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Abstract: In this paper, we study the multiple solutions for Lagrangian systems of discrete
second-order boundary value systems involving the discrete p-Laplacian operator. The technical
approaches are based on a local minimum theorem for differentiable functionals in a finite
dimensional space and variational methods due to Bonanno. The existence of at least one solution,
as well as three solutions for the given system are discussed and some examples and remarks have
also been given to illustrate the main results.
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1. Introduction

In recent years, equations involving the discrete p-Laplacian operator, subjected to classical
conditions, have been studied by many authors using various techniques. The variational method
appears to be a very fruitful one. In this direction, we mention Refs. [1–8]. In [3–5], using a
variational approach, the authors obtained the existence of periodic solutions for systems involving
a general discrete φ-Laplacian operator. In addition, in recent years, boundary value problems
with discrete p(·)-Laplacian have been studied (we refer the reader to [1,7]). Existence results for
the discrete p(.)-Laplacian equations subjected to a general potential type boundary condition are
obtained in [1] using Szulkin’s critical point theory [1]. By mountain pass type arguments and the
Karush–Kuhn–Tucker theorem, in [9], the existence of at least two positive solutions in the case of
Dirichlet boundary conditions are established.

In all the aforementioned papers, discrete boundary value problems involving a variety of
operators and boundary conditions are studied in a variational framework. The solutions are seen as
critical points of a convenient energy functional, defined on a function space. In general, such function
spaces have a finite dimension, which makes things easier (in comparison with the variational methods
for differential equations).

There seems to be increasing interest in the existence of solutions to boundary value problems for
finite difference equations with the p-Laplacian operator. This is as a result of their applications in
many fields. Recently, difference equations have attracted the interest of many researchers since they
provide a natural description of several discrete models. Such discrete models are often investigated
in various fields of science and technology such as computer science, economics, neural networks,
ecology, cybernetics, optimal control and population dynamics. These studies cover many branches
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of difference equations, such as stability, attractiveness, periodicity, oscillation, and boundary value
problems (see [1–8] and the references therein).

This article, using variational methods, aims at studying the existence of multiple solutions for
the Lagrangian discrete boundary-value system of second-order difference equations involving the
discrete p-Laplacian operator having the following form:{

−∆p(
−−−−→
u(t− 1)) = −∆φp(∆

−−−−→
u(t− 1)) = λ∇F(t,

−−→
u(t)) +∇H(

−−→
u(t)), t ∈ [1, T]Z−−→

u(1) =
−−→
u(T), ∆

−−→
u(1) = ∆

−−→
u(T)

(1)

where φp : R −→ RN , for all p ∈ (1, ∞) is a homeomorphism given by the

φp(
−→u ) = |−→u |p−2−→u

= (u1, · · · , uN)

(√
u2

1 + · · ·+ u2
N

)p−2

for all −→u ∈ RN and ui ∈ R, for all i = 1, · · · , N such that φp(0) = 0, φp = ∇Φp with Φp : RN −→
(0,+∞) of class C1 strictly convex on RN and given by Φp(

−→u ) = |−→u |p
p for all −→u ∈ RN .

∆ denotes the forward difference operator defined by

∆
−−→
u(t) = (∆u1(t), · · · , ∆uN(t))

= (u1(t + 1)− u1(t), · · · , uN(t + 1)− uN(t))

=
−−−−→
u(t + 1)−

−−→
u(t),

∆n−−→u(t) = (∆nu1(t), · · · , ∆nuN(t))

=
(

∆(∆n−1u1(t)), · · · , ∆(∆n−1uN(t))
)

= ∆(∆n−1−−→u(t))

and ∆p is the discrete p-Laplace operator

∆p(
−−−−→
u(t− 1)) = ∆φp(∆

−−−−→
u(t− 1)) = φp(∆

−−→
u(t))− φp(∆

−−−−→
u(t− 1)).

In this case, T > 1 is a fixed positive integer, [1, T]Z is a discrete interval {1, · · · , T}, and
the potential

F(t,−→u ) = F(t, u1(t), · · · , uN(t))

where F : [1, T]Z × RN −→ R, is measurable with respect to t, for all −→u ∈ RN continuously
differentiable in−→u , for almost every t ∈ [1, T]Z assuming that the functional∇F : [1, T]Z×RN −→ RN

is a continuous function and H : RN −→ R is a Lipschitz continuous function with the Lipschitz
constant.

Inspired by the above works, in this article, we discuss the existence of multiple solutions for the
second-order discrete Lagrangian boundary value system with a real parameter. The main tool used
in ensuring the existence of multiple non-trivial solutions to the system in Equation (1) is a version
of Ricceri’s variational principle [6]. We establish the existence of a precise interval Λ such that for
every λ ∈ Λ, the system in Equation (1) admits one nontrivial solution, which is in the space W and is
introduced below.

In detail, using the local minimum theorem (see Theorem 1) the existence of at least one nontrivial
solution of Equation (1) is proven. Under suitable conditions and Theorem 2, we get the existence of at
least three solutions. To prove the main result, we introduce some suitable hypotheses. In Theorem
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3, we establish the existence of at least one nontrivial weak solution for the system in Equation (1).
In Theorem 4, we prove the existence of at least three solutions of the system in Equation (1).

2. Preliminaries and Basic Notations

Our main tool to investigate the existence of multiple solutions for the system in Equation (1) is a
smooth version of Theorems 1 and 2, consequences the existence result of the a local minimum ([10],
Theorem B) is used).

Theorem 1 ([7], Theorem 2.1). Let X be a finite-dimensional Banach space, and J, Ψ : X −→ R be lower
semi-continuous functional, with J a coercive and J(0) = Ψ(0) = 0. Further, set J − λΨ. Then, for each
r > infu∈X Ψ(u) and each λ satisfying

λ >
− infu∈J−1((−∞,r]) Ψ(u)

r
.

Then, for each

λ ∈
(

0,
r

supJ−1([0, r]) Ψ(u)

)
,

the restriction of Iλ to J−1((−∞, r]) has a global minimum.

Theorem 2 ([10], Theorem B). Let X be a reflexive real Banach space, J : X → R a continuously Gâteaux
differentiable functional and sequentially weakly lower semicontinuous whose Gâteaux derivative admits a
continues inverse on X∗, Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact. Assume that there exist r > 0 and x ∈ X with r < J(x) such that

supu∈J−1((−∞,r)) Ψ(u)

r
<

Ψ(x)
J(x)

,

for each r > infX J, where J−1((−∞, r))w is the closure of J−1((−∞, r)). Then, for each

λ ∈
(

J(x)
Ψ(x)

,
r

supu∈J−1((−∞,r)) Ψ(u)

)
,

the functional I is coercive and the equation

J′(u)− λΨ′(u) = 0,

has at least three critical points in X.

For a given positive integer T, we define the T-dimensional Banach space

W =
{−→u : [1, T]Z −→ RN : f or a.e. t ∈ [1, T]Z,

−−→
u(1) =

−−→
u(T)

}
where W is equipped with the norm

‖−→u ‖ =
( T

∑
t=1
|
−−→
u(t)|p

)1/p
, ∀u ∈W. (2)

Define
‖−→u ‖∞ = max

t∈[1,T]Z
|
−−→
u(t)|.
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For −→u ∈W, set −→̃
u = −→u −−→̄u and W̃ = {−→u ∈W : −→̄u = 0},

where −→̄u = ∑T
t=1
−−→
u(t). Then, one knows

W = W̃ ⊕RN .

Furthermore, via [11], one gets

‖−→u ‖p =
T

∑
t=1
|
−−→
u(t)|p ≤ (T − 1)2p−1

Tp−1

T

∑
t=1
|∆−→u |p =

(T − 1)2p−1

Tp−1 ‖∆−→u ‖p, ∀−→u ∈ W̃. (3)

Form Equation (3), we get

‖∆−→u ‖p ≥ Tp−1

(T − 1)2p−1 ‖
−→u ‖p. (4)

In fact, the norm of the space W is

‖∆−→u ‖p =

(
T

∑
t=1
|∆
−−→
u(t)|p

)1/p

but we use the notation of Equation (2) since they are equal (see [11]).

Remark 1. Since W is a finite dimensional Banach space, it is reflexive Banach space with the norm is given
in the relation in Equation (2). Now, to show that the inclusion i : W −→ C is a compact operator, for this
end, we suppose that un is a sequence in W and since W is finite and from (um) has a bounded subsequence
(umk ) in W and since W ⊆ C, thus C the subsequent (umk ) is also in C thus, the operator i is compact. Since
W = (W, ‖ · ‖) is compactly embedded in C =

(
C([1, T]Z,RN), ‖ · ‖∞

)
. Then, from [11], there exists a

positive constant α such that

‖−→u ‖∞ ≤ α‖−→u ‖. (5)

Now, define J, Ψ : W −→ R as follows:

J(−→u ) =
T

∑
t=1

Φp(∆
−−→
u(t))− H(

−−→
u(t)) f or all −→u ∈W (6)

Ψ(−→u ) =
T

∑
t=1

F(t,
−−→
u(t)) f or all −→u ∈W (7)

and define the functional I : W −→ R as follows:

I(−→u ) =
T

∑
t=1

{
Φp(∆

−−→
u(t))− H(

−−→
u(t))− λF(t,

−−→
u(t))

}
.

Remark 2. The functional I is of class C1 on W for any −→u ,−→v ∈W

(∇I(−→u )|−→v ) =
T

∑
t=1

{
φp(∆

−−→
u(t)∆

−−→
v(t))−∇H

−−→
(u(t))

−−→
v(t)− λ∇F(t,−→u )

−−→
v(t)

}
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since
T

∑
t=1

φp∆
−−→
u(t)∆

−−→
v(t) = −

T

∑
t=1

∆φp(∆
−−−−→
u(t− 1))

−−→
v(t)

(∇I(−→u )|−→v ) =
T

∑
t=1

{
−∆φp(∆

−−−−→
u(t− 1))

−−→
v(t)−∇H(

−−→
u(t))

−−→
v(t)− λ∇F(t,−→u )

−−→
v(t)

}
for all −→u ,−→v ∈ W. It is clear that the global minimum (local minimum) of Iλ are exactly the solutions of the
problem in Equation (1).

3. Existence of at Least One Nontrivial Solution

In the following, by using the conditions of Theorem 1, we prove that the system in Equation (1)
has at least one nontrivial weak solution.

(H1) Suppose that H : RN −→ R is a strictly monotone Lipschitz continuous function of order p with
p > 1 and Lipschitazian constant L satisfying 0 < L < 1

2 , i.e.,

|H(−→u1)− H(−→u2)| ≤ L|−→u1 −−→u2 |p ∀ −→u1 ,−→u2 ∈ RN ,

and H(0, · · · , 0) = 0.

Theorem 3. Assume that (H1) holds and suppose that there is a positive real vector −→ε and positive constant α

with 0 < α < 1 and Tp−1 > pL(T − 1)2p−1, such that the following condition is satisfied.

(H2)

∑T
t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

max1≤i≤N |εi|p
>

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1 ,

where (t,
−→
ξ ) ∈ [1, T]Z ×RN and

−→
ξ = (ξ1, · · · , ξN), for all i = 1, · · · , N

such that for each

λ ∈ Λ1 =

(
0,

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

max1≤i≤N |εi|p

)
.

Then, the system in Equation (1) has at least one nontrivial solution.

Proof. To apply Theorem 1 to our problem, let us prove that the functionals J and Ψ satisfy the required
conditions in Theorem 1. From 2, we can get that the functionals J and Ψ are Gâteaux differentiable
function.

Since J and Ψ are continuous and since (every continuous real valued function on W is lower
semi-continuous), they are lower semi-continuous, and since W is finite dimensional, they are weakly
lower semi-continuous, thus it follows that the functional J − λΨ is lower semi-continues in W.

Now, we want to show that the functional J is coercive on W, taking into account the relations in
Equations (4) and (5) and supposing that for any sequence (−→um) ∈W such that
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J(
−−−→
um(t)) =

T

∑
t=1

{
Φp(∆

−−−→
um(t))− H(

−−−→
um(t))

}
=

T

∑
t=1

|∆
−−−→
um(t)|p

p
−

T

∑
t=1

H(
−−−→
um(t))

≤ ‖−−→∆um‖p

p
−

T

∑
t=1

L|
−−−→
um(t)|p (8)

≥ ‖−−→∆um‖p

p
− L

(T − 1)2p−1

Tp−1 ‖−−→∆um‖p,

≥ Tp−1 − pL(T − 1)2p−1

Tp−1 p
‖−−→∆um‖p,

≥ Tp−1 − pL(T − 1)2p−1

(T − 1)2p−1 p
‖−→um‖p,

thus, we get that J(
−−−→
um(t)) −→ +∞ as ‖

−−−→
um(t)‖ −→ +∞ and so the functional J is coercive.

For every −→u ∈W such that J(−→u ) ≤ r. Then,

sup
J(−→u )≤r

Ψ(−→u ) ≤ max
|ξi |≤max1≤i≤N |εi |

T

∑
t=1

F(t, ξ1, · · · , ξN).

Suppose that

r =
Tp−1 − pL(T − 1)2p−1

pαp(T − 1)2p−1 max
1≤i≤N

|εi|p.

sup−→u ∈J−1((−∞,r]) Ψ(−→u )

r
=

supJ(−→u )≤r ∑T
t=1 F(t, u1(t), · · · , uN(t))

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1 max1≤i≤N |εi|p

≤
∑T

t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1 max1≤i≤N |εi|p

≤ pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

max1≤i≤N |εi|p
.

Now, we want to show that zero is not local minimum for the functional Iλ; to this end, we claim
that the mapping λ −→ Iλ(

−→u ) is negative. From the definition of Λ, we observe that

∑T
t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1 max1≤i≤N |εi|p
< λ.

Now, suppose that τ > 0 such that

∑T
t=1 max|ξi |≤max1≤i≤N |εi | F(t, ξ1, · · · , ξN)

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1 max1≤i≤N |εi|p
< λ <

1
τ

. (9)

Moreover, since −→w ∈W defined as

−→w =

{ −→
ξ , t ∈ [1, T],
−→
0 , otherwise.

(10)
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Moreover, since −→w ∈ J−1((0, r)), we have

Iλ(u) = Iλ(
−→w ) = J(−→w )− λΨ(−→w )

≤ r− λ
T

∑
t=1

max
|ξi |≤max1≤i≤N |εi |

F(t, ξ1, · · · , ξN)

<
Tp−1 − pL(T − 1)2p−1

pαp(T − 1)2p−1 max
1≤i≤N

|εi|p(1− λτ),

since λτ < 1, it follows that the functional Iλ(
−→u ) is negative and thus zero is not a local minimum for

the functional Iλ(
−→u ).

Therefore, the assertion of Theorem 1 follows and the existence of one solution−→u ∈ Ψ−1((−∞, r))
to our problem is established.

Remark 3. In Theorem 3, if the functional F = F(t,
−−→
u1(t), · · · ,

−−→
ui(t)), for i = 1, · · · , N is nonnegative

hypothesis (H2) assumes a simpler form

∑T
t=1 F(t, max1≤i≤N |εi|, · · · , max1≤i≤N |εi|)

max1≤i≤N |εi|
>

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1 .

Moreover, if for some t̄ ∈ [1, T]Z, F(t̄, 0, · · · , 0) 6= 0 the obtained solution clearly non-zero.

Example 1. Assume that p = 2, T = 2, L = 0.005 and suppose that −→ε = (2, 2.1) and α = 0.8

F(t, u1, u2) = sin2(u1) + 2u2 cos2(u2) + 2u2
2, H(u1, u2) = 0.005 sin(u1 + u2)

F(t, ξ1, ξ2) = sin2(ξ1) + 2ξ2 cos2(ξ2) + 2ξ2
2.

Consider the following system for the case of N = 2.
−∆φ2(∆

−−−−→
u(t− 1)) = λ

(
2 sin(u1) cos(u1), 2u2

2(2− sin(u2) + 4u2 cos2(u2)4u2)
)

+ (0.005 cos(u1 + u2), 0.005 cos(u1 + u2)) , t ∈ [1, 2]Z−−→
u(1) =

−−→
u(2), ∆

−−→
u(1) = ∆

−−→
u(2)

(11)

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1 = 0.643,
∑2

t=1 max|ξi |≤2.1 F(t, ξ1, ξ2)

max1≤i≤N |εi|p
= 8.97

for every λ ∈ (0, 5.768) the system in Equation (11) has at least one nontrivial solution by Theorem 3.

4. Existence of Three Solutions

In this section, our goal is to obtain the existence of three distinct weak solutions for the problem in
Equation (1). The following result is obtained by applying Theorem 2. We introduce the suitable
hypothesis for calculating of the critical points of the system in Equation (1) and give some auxiliary
lemmas used in the proof of the main results.

Lemma 1. The functional J is sequentially weakly lower semi-continuous.

Proof. From the continuity of H, we observe that the functional J Gâteaux differentiable whose
Gâteaux derivative of the point −→u ∈W is the functional J

′
(−→u ) ∈W∗ given by

J(−→u ) =
T

∑
t=1

{
Φp(∆

−−→
u(t))− H(

−−→
u(t))

}
.
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(∇J(−→u )|−→v ) =
T

∑
t=1

{
φp(∆

−−→
u(t))∆

−−→
v(t)−∇H(

−−→
u(t))

−−→
v(t)

}
,

for every −→v ∈W
We can assert that J is sequentially weakly lower semi-continuous. As a matter of fact, owing to

∑T
t=1 H(

−−→
u(t)) is continuous for all −→u ∈ W. For any −→um ∈ W, −→um → −→u weakly in W. Since the inner

product is sequentially weakly lower semi-continuous in Banach space, we have

lim inf
m→+∞

J(−→um) = lim inf
m→+∞

T

∑
t=1

Φp(∆
−−→
u(t))− lim

m→+∞

T

∑
t=1

H(
−−−→
um(t)) = J(−→u ).

Lemma 2. The functional Ψ′ is a compact operator.

Proof. We want to prove that the Gâteaux derivative of Ψ is compact operator. Indeed, it is enough
to show that Ψ

′
is strongly continuous on W. Let (−→um) be a bounded sequence in W. Since W is

reflexive and since the embedding (W, ‖ · ‖) in C([1, T]Z,RN) is compact, there exist a subsequent
(−→um) that converge in C([1, T]Z,RN). Without any loss of generality, we assume that (−→um) converge
in C([1, T]Z,RN) to an element (−→u ) ∈ C([1, T]Z,RN). According to Equation (3), the functional Ψ′

belongs to W. By Equation (3), the following inequality holds

‖ Ψ′(−→um)−Ψ′(−→u ) ‖ ≤ α
T

∑
t=1
|
−−→
v(t)|

∣∣∣∇F(t,−→um)−∇F(t,
−−→
u(t))

∣∣∣
≤ α|

−−→
v(t)|

T

∑
t=1

∣∣∣∇F(t,−→um)−∇F(t,
−−→
u(t))

∣∣∣ .

Using the Lebesgue dominated convergence theorem, we conclude that J′(−→um) converge to J′(u)
in W∗, thus J′ is compact operator.

Theorem 4. Assume that there exists two positive real vectors
−→
β , −→ε and two positive constants α and ζ with

max
1≤i≤N

|εi|p <
N

∑
i=1

β
p
i ,

where α < ζ and 0 < ζ < 1. Suppose that L satisfies the condition in (H1) with

Tp−1 > pL(T − 1)2p−1

such that the following conditions are satisfied.

(H3)

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤max1≤i≤N |εi | F(t, x1, · · · , xN)

max1≤i≤N |εi|p

<
pζ p(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 F(t,

−→
β
ζ )

∑N
i=1 β

p
i

,

where (t,−→x ) ∈ [1, T]Z ×RN .
(H4) Suppose that

lim sup
|−→x |−→+∞

F(t,−→x )

|−→x |p
> 0,
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for t ∈ [1, T]Z and −→x ∈ RN .
(H5) Suppose that the

lim sup
|−→x |−→+∞

F(t,−→x )

|−→x |p
<

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤max1≤i≤N |εi | F(t, x1, · · · , xN)

max1≤i≤N |εi|p
,

for t ∈ [1, T]Z and (x1, · · · , xN) ∈ RN .

Then, for each

λ ∈ Λ2 =


Tp−1−pL(T−1)2p−1

ζ p(T−1)2p−1 p
∑N

i=1 β
p
i

∑T
t=1 F(t,

−→
β
ζ )

,

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1
max1≤i≤N |εi |p

∑T
t=1 max|xi |≤max1≤i≤N |εi |

F(t,x1,··· ,xN)


the system in Equation (1) at least three nontrivial weak solutions.

Proof. For each −→u ∈W, the functionals J, Ψ : W −→ R are given by Equations (6) and (7). Now, we
set the functional Iλ := J(−→u )− λΨ(−→u ) for each λ ∈ R. To apply Theorem 2 to our problem, let us
prove that the functionals J,Ψ satisfy the required conditions in Theorem 2.

It follow from Lemma 1 that the functional J is sequentially weakly upper semi-continuous. Using
Lemma 2, we get that the functional Ψ′ is a compact operator.

Now, set
−−→
u0(t) = (0, · · · , 0) for each t ∈ [1, T]; it is easy to check that −→u0 ∈W and

J(−→u0) = Ψ(−→u0) = (0, · · · , 0).

Taking (H5) into account and from (H4) there exists ε > 0 such that

lim sup
|−→x |−→+∞

F(t,−→x )

|−→x |p
< ε <

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤max1≤i≤N |εi | F(t, x1, · · · , xN)

max1≤i≤N |εi|p

Then, there exists a positive constant θε such that

F(t,−→x ) ≤ ε|−→x |p + θε.

It follows that for each −→u ∈W,

I(
−−→
u(t)) =

T

∑
t=1

{
Φp(∆

−−→
u(t))− H(

−−→
u(t))− λF(t,

−−→
u(t))

}
≤

T

∑
t=1

{
|∆
−−→
u(t)|p

p
− L|
−−→
u(t)|p − λ

(
ε|
−−→
u(t)|p − θε

)}

≥ Tp−1 − pL(T − 1)2p−1

(T − 1)2p−1 p
‖−→u ‖p − λ

{
ε‖−→u ‖p − Tθε

}
Thus, we obtain that lim‖−→u ‖−→∞(J(−→u )− λΨ(−→u )) = ∞ for all λ ∈ [0, ∞). Hence, the functional

I is coercive.
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Suppose that

r =
Tp−1 − pL(T − 1)2p−1

pαp(T − 1)2p−1 max
1≤i≤N

|εi|p

To prove the other conditions of Theorem 2, for each r > 0 and for any −→u ∈ W. In fact, taking
into account that J−1((−∞, r))

w
= J−1((−∞, r]) and by the definition of r, it follows that

J−1((−∞, r]) = {−→u ∈W; J(−→u ) ≤ r} ⊆ {−→u ∈W; ‖−→u ‖∞ ≤ max
1≤i≤N

|εi|},

hence

Ψ(−→u ) =
T

∑
t=1

F(t,
−−→
u(t)) ≤

T

∑
t=1

max
|xi |≤max1≤i≤N |εi |

F(t, x1, · · · , xN),

for every −→u ∈W such that J(−→u ) ≤ r. Thus,

sup
J(−→u )<r

Ψ(−→u ) ≤
T

∑
t=1

max
|xi |≤max1≤i≤N |εi |

F(t, x1, · · · , xN).

By considering the above computations and since
−→
0 ∈ J−1(−∞, r) and

J(0, · · · , 0) = Ψ(0, · · · , 0),

one has

ϕ(r) = inf−→u ∈J−1(−∞,r)

Ψ(−→u )− inf−→u ∈J−1((−∞,r))
w Ψ(−→u )

r− J(−→u )

≤
− inf−→u ∈J−1((−∞,r))

w Ψ(−→u )

r

≤
supJ(−→u )≤r ∑T

t=1 F(t,
−−→
u(t))

r

≤ pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤max1≤i≤N |εi | F(t,

−→x )

max1≤i≤N |εi|p
<

1
λ

, (12)

and

Ψ(−→v )

J(−→v )

=
∑T

t=1 F(t,
−−→
v(t))

J(
−−→
v(t))

=
(T − 1)2p−1 p

Tp−1 − pL(T − 1)2p−1
∑T

t=1 F(t,
−−→
v(t))

‖−→v ‖p . (13)

Set
−−→
v(t) = (v1(t), · · · , vN(t)) =


1
ζ
(β1, · · · , βN) , t ∈ [1, T]Z,

(0, · · · , 0) , otherwise.
(14)

It is clear that −→v ∈W and

‖−→v ‖ = ‖
−→
β

ζ
‖ =

(
1
ζ p

N

∑
i=1
|βi|p

) 1
p

,



Mathematics 2019, 7, 276 11 of 14

J(−→v ) =
Tp−1 − pL(T − 1)2p−1

(T − 1)2p−1 p
‖−→v ‖p =

Tp−1 − pL(T − 1)2p−1

(T − 1)2p−1 pζ p

N

∑
i=1

β
p
i ,

Ψ(−→v ) =
T

∑
t=1

F(t,
−→
β

ζ
).

Since ε < β, Tp−1 > pL(T − 1)p−1, for −→v ∈ W with J(−→v ) ≥ r, by assumption (H7), we
obtain that

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤max1≤i≤N |εi | F(t, x1, · · · , xN)

max1≤i≤N |εi|p

<
(T − 1)2p−1 p

Tp−1 − pL(T − 1)2p−1
∑T

t=1 F(t,
−−→
v(t))

‖−→v ‖p

(15)

Hence, the conditions of Theorem 4 are fulfilled. The proof is complete.

Example 2. Assume that p = 4 and T = 4 and suppose that −→ε = (1.7, 1.8, 1.9, 2),
−→
β = (2.7, 2.8, 2.9, 3),

L = 0.004, ζ = 0.9, and α = 0.45

F(t, u1, u2, u3, u4) = sin2(u1) + 2u2 cos2(u2) + 2u2
2 + cos(u3) + sin(u4),

H(u1, u2, u3, u4) = 0.004 cos(u1 + u2 + u3 + u4)

F(t, x1, x2, x3, x4) = sin2(x1) + 2ξ2 cos2(x2) + 2x2
2 + cos(x3) + sin(x4).

Consider the following system for the case of N = 4.

−∆φ4(∆
−−−−→
u(t− 1)) = λ(2 sin(u1) cos(u1),

2u2
2(2− sin(u2) + 4u2 cos2(u2)4u2),− sin(u3), cos(u4))

+(−0.004 sin(u1 + u2 + u3 + u4),−0.004 sin(u1 + u2 + u3 + u4),
−0.004 sin(u1 + u2 + u3 + u4),−0.004 sin(u1 + u2 + u3 + u4)), t ∈ [1, 4]Z−−→
u(1) =

−−→
u(4), ∆

−−→
u(1) = ∆

−−→
u(4)

(16)

(T − 1)2p−1ζ p p
Tp−1 − pL(T − 1)2p−1

∑T
t=1 F(t,

−→
β
ζ )

∑N
i=1 β

p
i

= 72.151

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|xi |≤2 F(t, x1, x2, x3, x4)

max1≤i≤N |εi|p
= 26.881

for every λ ∈ (0.0138, 0.0372) by Theorem 4 the system in Equation (16) has at least three nontrivial solutions.

Remark 4. In Theorem 4, if the functional F = F(t, u1(t), · · · , ui(t)), for i = 1, · · · , N is nonnegative,
hypothesis (H8) assumes a simpler form

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1
∑T

t=1 F(t, max1≤i≤N |εi|, · · · , max1≤i≤N |εi|)
max1≤i≤N |εi|p

<
pζ p(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 F(t,

−→
β
ζ )

∑N
i=1 β

p
i

.

Moreover, if for some t̄ ∈ [1, T]Z, F(t̄, 0, · · · , 0) 6= 0, the obtained solution is clearly non-zero.

Remark 5. We observe that, in our results, no asymptotic conditions on F is needed and only algebraic conditions
on F are imposed to guarantee the existence of solution. Moreover, in the conclusions of the above results, one of
the three solutions may be trivial since the values of F(t, 0, · · · , 0) for t ∈ [1, T]Z are not determined.
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Remark 6. Scalar case. As an application of Theorems 3 and 4, we consider the following problem:{
−φp(∆u(t− 1)) = λ f (t, u(t)) + h(u(t)), t ∈ [1, T]Z
u(1) = u(T), ∆u(1) = ∆u(T)

(17)

where φ : R −→ R is a homeomorphism such that φ(0) = 0, ∆ denotes the forward difference operator defined
by ∆u(t) = u(t + 1)− u(t), ∆nu(t) = ∆(∆n−1u(t)), T > 1, f : [1, T]Z ×R → R is continuous function
and h : R→ R is a strictly monotone Lipschitz continuous function of order p− 1 with Lipschitzian condition
L > 0 and

|h(t1)− h(t2)| ≤ L|t1 − t2|p−1 ∀ t1, t2 ∈ R,

and h(0) = 0. F : [1, T]Z ×R→ R, H : R→ R respectively, as follows

F(t, x) :=
∫ x

0
f (t, s) ds, ∀ (t, x) ∈ [1, T]Z ×R,

and
H(x) :=

∫ x

0
h(s) ds, ∀ x ∈ R.

I(u) =
T

∑
t=1
{Φ(∆u(t))− H(u(t))− λF(t, u(t))} .

All amputations of 3 and 4 are satisfied for the scalar case.

We here present the following consequence of Theorems 3 and 4.

Theorem 5. Assume that (H1) holds and suppose that there exists two positive constant α and ε with 0 < α < 1
and Tp−1 > pL(T − 1)2p−1.

(H6)

∑T
t=1 max|ξ|≤ε F(t, ξ)

εp >
pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1 ,

where (t, ξ) ∈ [1, T]Z ×R

such that for each

λ ∈
(

0,
pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|ξi |≤ε F(t, ξ)

εp

)
.

Then, the problem in Equation (17) has at least one nontrivial solution.

Theorem 6. Assume that there exists four positive constants β, ε, α and ζ with ε < β, 0 < ζ < 1, and α < ζ.
Suppose that L satisfies the condition (H1) with Tp−1 > pL(T − 1)2p−1 such that the following conditions
are satisfied.

(H7)

pαp(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 max|x|≤ε F(t, x)

εp

<
pζ p(T − 1)2p−1

Tp−1 − pL(T − 1)2p−1

∑T
t=1 F(t, β

ζ )

βp ,

where (t, x) ∈ [1, T]Z ×R
(H8) Suppose that

lim sup
|x|−→+∞

F(t, x)
|x|p > 0,
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for t ∈ [1, T]Z and x ∈ R,
(H9) Suppose that

lim sup
|x|−→+∞

F(t, x)
|x|p <

pαp(T − 1)2p−1

Tp−1 − pL(T + 1)2p−1

∑T
t=1 max|x|≤ε F(t, x)

εp ,

for t ∈ [1, T]Z and x ∈ R.

Then, for each

λ ∈ Λ =


Tp−1−pL(T−1)2p−1

(T−1)2p−1ζ p p
βp

∑T
t=1 F(t, β

ζ )
,

Tp−1−pL(T−1)2p−1

pαp(T−1)2p−1
εp

∑T
t=1 max|x|≤ε F(t,x)

 .

the problem in Equation (17) has at least three nontrivial weak solutions.

Now, we have the following example to illustrate the results of Theorems 5 and 6.

Example 3. Consider the following nonlinear discrete problem{
−∆φ2(∆u(t− 1)) = λ

√
1 + u + arctan(0.005u) t ∈ [1, 2]Z

u(1) = u(2), ∆u(1) = ∆u(2)
(18)

F(t, ξ) =
∫ ξ

0
f (t, u) dx =

∫ ξ

0

√
(1 + x) dx =

(1 + ξ)
3
2

3
2

≤ 2
3
(1 + ξ)

3
2 ,

2

∑
t=2

max
|ξ|≤2.1

F(t, ξ) = 7.27,

By considering L = 0.005, ζ = 0.9, α = 0.5, ε = 2.1 and β = 3.1 By using Theorems 5 and 6, we
get that the problem in Equation (18) has at least one nontrivial solution for every λ ∈ (0, 0.414) and for all
λ ∈ (0.944, 2.411) the problem has at least three solutions.
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