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Abstract: The super connectivity κ′(G) of a graph G is the minimum cardinality of vertices, if any,
whose deletion results in a disconnected graph that contains no isolated vertex. G is said to be r-super
connected if κ′(G) ≥ r. In this note, we establish some asymptotic almost sure results on r-super
connectedness for classical Erdős–Rényi random graphs as the number of nodes tends to infinity.
The known results for r-connectedness are extended to r-super connectedness by pairing off vertices
and estimating the probability of disconnecting the graph that one gets by identifying the two vertices
of each pair.
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1. Introduction

The topology of an interconnection network is usually modelled by a simple connected graph
G = (V(G), E(G)), where V(G) is the vertex set representing the set of processors and E(G) is the
set of edges, i.e., communication links in the network. A modern multiprocessor network typically
contains tens of thousands of processors, and the reliability and fault-tolerance of such systems are of
critical importance, as a local breakdown may cause the fragmentation of the whole network [1,2].

The first graph-theoretic measure of reliability is perhaps the connectivity of G, denoted by κ(G),
which is the minimum number of vertices whose removal results in a disconnected graph or a single
vertex. A graph is said to be k-connected if κ(G) ≥ k. Evidently, the larger κ(G) is, the more reliable
the network becomes. The concept of super connectivity was introduced in [3,4] as a more realistic and
refined index of reliability as the probability that all processors directly connected to a processor fail at
the same time is very small in large-scale communication networks. Specifically, a subset S ⊆ V(G) is
called a super vertex-cut if G\S is not connected and every component contains at least two vertices.
The super connectivity κ′(G) is the minimum cardinality over all super vertex-cuts in G, if there is any,
and is set to be +∞ otherwise. We say that a graph G is k-super connected if κ′(G) ≥ k. The super
connectivity has been investigated extensively for a variety of graphs; see, e.g., [5–10] and the references
therein. Super connectivity provides a more realistic measure of reliability for multiprocessor systems
since an isolated node has very limited influence on the system performance [4], which also echoes the
idea of considering the giant components in network resilience, while ignoring isolated nodes or small
components [2,11].

In this letter, we study the super connectivity of two classical Erdős–Rényi random graphs of
order n, namely the uniform model Gn,M and the binomial model Gn,p [12]. The graph Gn,M can be
obtained by starting with an empty graph on n vertices and inserting M edges in such a way that all
possible ((

n
2)

M ) choices are equally likely, while the graph Gn,p with p ∈ [0, 1] is obtained by including
each possible edge with probability p independently of others. Since the introduction of Erdős–Rényi
random graphs in the 1950s, they have been developed into an extremely prolific and highly active field
in mathematics. We refer the readers to the monographs [12,13] for a variety of results and the recent
textbook [11] for some additional variant models in relation to complex networks. The connectivity of
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Erdős–Rényi random graphs has been well understood so far. The following result due to Erdős and
Rényi is well known (see [14]; [12], Thm7.7).

Theorem 1 ([14]). Let M = n
2 (ln n + r ln ln n + c), r = 0, 1, 2, · · · , and c ∈ R. Then:

lim
n→∞

P (κ(Gn,M) = r) = 1− exp
(
− e−c

r!

)
,

and:

lim
n→∞

P (κ(Gn,M) = r + 1) = exp
(
− e−c

r!

)
.

Basically, in this letter, we manage to derive threshold-like results (see Theorem 2 below) for super
connectivity in Erdős–Rényi random graphs based on Theorem 1. To our knowledge, this is the first
attempt to deal with super connectivity in the setting of random graphs. Here, we are interested in the
limit of a large graph size, i.e., as n tends to infinity, which is customary in the theory of random graphs.

Remark 1. In [15], a graph G is said to be super connected, or simply super-κ, if every minimum vertex cut
is the neighbourhood of a vertex in G, that is every minimum vertex cut isolates a vertex. We clarify that a
graph is super-κ does not mean that it is one-super connected. A triangle having a dangling vertex attached is
a counterexample. On the other hand, a graph is one-super connected does not imply that it is super-κ either
(consider the bow-tie graph on five vertices).

2. Main Results

The following lemma on the existence of perfect matchings in Gn,M is useful.

Lemma 1 ([16]; [12], Cor.7.21). If n is even, ω(n)→ ∞, and M = n
2 (ln n + ω(n)), then:

lim
n→∞

P (Gn,M has a 1- f actor) = 1.

Let δ(G) be the minimum degree of a graph G. The property that “δ(G) is less than a constant” is
a monotone graph property. Therefore, the “asymptotic equivalence” (see [13], Cor. 1.16) between the
two models Gn,M and Gn,p for monotone properties and Theorem 3.2 in [11] (or Exercise 3.2 in [12]),
which was originally stated for Gn,p model, readily give rise to the following estimate.

Lemma 2. Suppose that k ≥ 0 is an integer, M = n
2 (ln n + k ln ln n + ω(n)), where ω(n) = o(ln ln n),

as n→ ∞. Then:
lim

n→∞
P (δ(Gn,M) ≤ k + 1) = 1.

Our main result reads as follows.

Theorem 2. Let r ≥ 1 be an integer, c ∈ R, and ω(n) = o(ln ln n) as n→ ∞.

(i) If M ≤ n
2
(
ln n +

(
d r

2e − 2
)

ln ln n + ω(n)
)
, then:

lim
n→∞

P (Gn,M is r-super connected) = 0;

(ii) If M ≥ n
2 (ln n + r ln ln n + c), then:

lim
n→∞

P (Gn,M is r-super connected) = 1.
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Note that r-super connectedness is an increasing graph property in the sense that adding edges will
never violate the property. It follows immediately from the “asymptotic equivalence” ([13], Cor. 1.16)
between the two models Gn,M and Gn,p that the following corollary holds for the binomial model.

Corollary 1. Let r ≥ 1 be an integer, c ∈ R, and ω(n) = o(ln ln n) as n→ ∞.

(i) If p ≤ 1
n
(
ln n +

(
d r

2e − 2
)

ln ln n + ω(n)
)
, then:

lim
n→∞

P
(
Gn,p is r-super connected

)
= 0;

(ii) If p ≥ 1
n (ln n + r ln ln n + c), then:

lim
n→∞

P
(
Gn,p is r-super connected

)
= 1.

We observe from the above results that there is still a gap, namely 2M−n ln n
n ln ln n ∈ (d r

2e − 2, r) for the

Gn,M model and np−ln n
ln ln n ∈ (d r

2e − 2, r) for the Gn,p model, to pinpoint the sharp threshold for r-super
connectedness. It would be very interesting to determine the asymptotic probability distribution of
r-super connectedness within these parameter windows (perhaps in a similar flavour as Theorem 1).

Proof of Theorem 2. To show (i), it suffices to show the statement when M =
n
2
(
ln n +

(
d r

2e − 2
)

ln ln n + ω(n)
)
. For r = 1, 2, the result follows from the fact that

P(Gn,M is connected)→ 0 as n goes to infinity (see Theorem 1). In the following, we assume that r ≥ 3.
First, we assume that n is even. Lemma 1 implies that Gn,M has a one-factor asymptotically almost

surely (a.a.s.) as n → ∞. For a given one-factor, we contract Gn,M by shrinking each edge in the
one-factor to a single vertex and reducing (possible) multiple edges into a single edge. The resulting
graph is denoted by G̃ n

2 ,N , which has n
2 vertices and N edges. Theorem 1 implies that Gn,M is connected

a.a.s., and hence, N ≤ M
2 . Indeed, this can be easily seen by noting that the above construction

procedure removes at least half of the edges in Gn,M (see Figure 1 for an illustration). Thus, G̃ n
2 ,N can

be viewed as a subgraph (in the sense of graph instance) of G n
2 , M

2
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Figure 1. Four situations of two independent edges {v1, v2} and {v3, v4} in a graph of n = 4

vertices. The construction process will reduce 3 edges to 1 edge for (a) (3 → 1 for short).
Similarly, 4 → 1, 5 → 1, and 6 → 1 for (b), (c), and (d), respectively. Clearly, (a) is the
“worst” case. It is straightforward to verify that, in general, in a graph of 2k vertices, we
have 2k − 1 → k − 1 for such worst cases, but k−1

2k−1
≤ 1

2
.

By our construction, if Gn,M is r-super connected, then G̃n
2

,N is d r
2
e-connected. Since r-super

connectedness is an increasing property, it remains to show

lim
n→∞

P
(
κ

(
Gn

2
, M

2

)
≥

⌈r

2

⌉)
= 0 for r ≥ 3,

if M =
n

2

(
ln n +

(⌈r

2

⌉
− 2

)
ln ln n + ω(n)

)
.

(1)

In view of Lemma 2, we obtain limn→∞ P
(
δ
(
Gn

2
, M

2

)
≤ d r

2
e − 1

)
= 1. Recall that δ(G) ≥ κ(G)75

holds for any graph G. We hence arrive at limn→∞ P
(
κ

(
Gn

2
, M

2

)
≤

⌈
r
2

⌉
− 1

)
= 1, which yields (1).76

Now if n is odd, the probability that the nth vertex is isolated turns out to be o(1) (when M =77

n
2

(
ln n +

(
d r

2
e − 2

)
ln ln n + ω(n)

)
). Hence, the above proof strategy still works.78

To prove (ii), we note that P (Gn,M is r-super connected) ≥ P (Gn,M is r-connected) → 1 as n →79

∞ by using Theorem 1. 280

3. Concluding remarks81

In this letter, we have obtained some asymptotic almost sure results on the r-super connectivity for82

Erdős-Rényi models Gn,M and Gn,p. A more general concept of conditional connectivity with respect to83

a graph property P proposed by Harary [14] is defined as the minimum cardinality of a set of vertices,84

if any, whose deletion disconnects the graph and every remaining component has property P . From85

this viewpoint, the super connectivity here is the special case where P is the property of having more86

than 2 vertices. On the other hand, connectivity properties of varied random graph models (including87

both relational models e.g. Erdős-Rényi graphs and geometric models) have been reported recently; see88

e.g. [11,12,15,20]. It is hoped this work could stimulate further research effort in these interesting (yet89

demanding) topics in the realm of random graphs.90
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Figure 1. Four situations of two independent edges {v1, v2} and {v3, v4} in a graph of n = 4 vertices.
The construction process will reduce three edges to one edge for (a) (3→ 1). Similarly, 4→ 1, 5→ 1,
and 6→ 1 for (b–d), respectively. Clearly, (a) is the “worst” case. It is straightforward to verify that,
in general, in a graph of 2k vertices, we have 2k− 1→ k− 1 for such worst cases, but k−1

2k−1 ≤ 1
2 .

By our construction, if Gn,M is r-super connected, then G̃ n
2 ,N is d r

2e-connected. Since r-super
connectedness is an increasing property, it remains to show:

lim
n→∞

P
(

κ
(

G n
2 , M

2

)
≥
⌈ r

2

⌉)
= 0 for r ≥ 3,

if M =
n
2

(
ln n +

(⌈ r
2

⌉
− 2
)

ln ln n + ω(n)
)

.
(1)



Mathematics 2019, 7, 267 4 of 5

In view of Lemma 2, we obtain limn→∞ P
(

δ
(

G n
2 , M

2

)
≤ d r

2e − 1
)
= 1. Recall that δ(G) ≥ κ(G)

holds for any graph G. We hence arrive at limn→∞ P
(

κ
(

G n
2 , M

2

)
≤
⌈ r

2
⌉
− 1
)
= 1, which yields (1).

Now if n is odd, the probability that the nth vertex is isolated turns out to be o(1) (when M =
n
2
(
ln n +

(
d r

2e − 2
)

ln ln n + ω(n)
)
). Hence, the above proof strategy still works.

To prove (ii), we note that P (Gn,M is r-super connected) ≥ P (Gn,M is r-connected) → 1 as n →
∞ by using Theorem 1. 2

3. Concluding Remarks

In this letter, we have obtained some asymptotic almost sure results on the r-super connectivity
for Erdős–Rényi models Gn,M and Gn,p. A more general concept of conditional connectivity with
respect to a graph property P proposed by Harary [17] is defined as the minimum cardinality of a set
of vertices, if any, whose deletion disconnects the graph, and every remaining component has property
P . From this viewpoint, the super connectivity here is the special case where P is the property of
having more than two vertices. On the other hand, connectivity properties of varied random graph
models (including both relational models, e.g., Erdős–Rényi graphs and geometric models) have been
reported recently; see, e.g., [18–21]. It is hoped that this work will stimulate further research effort in
these interesting (yet demanding) topics in the realm of random graphs.
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14. Erdős, P.; Rényi, A. On the strength of connectedness of a random graph. Acta Math. Acad. Sci. Hungar. 1961,

12, 261–267. [CrossRef]
15. Boesch, F.; Tindell, R. Circulants and their connectivities. J. Graph Theory 1984, 8, 487–499. [CrossRef]
16. Bollobás, B.; Frieze, A. On matchings and hamiltonian cycles in random graphs. Ann. Discrete Math. 1985,

28, 23–46.
17. Harary, F. Conditional connectivity. Networks 1983, 13, 347–357. [CrossRef]

http://dx.doi.org/10.1038/35019019
http://www.ncbi.nlm.nih.gov/pubmed/10935628
http://dx.doi.org/10.1103/PhysRevE.89.012813
http://www.ncbi.nlm.nih.gov/pubmed/24580287
http://dx.doi.org/10.1109/TR.1986.4335424
http://dx.doi.org/10.1016/j.ipl.2016.03.003
http://dx.doi.org/10.1016/j.tcs.2005.02.007
http://dx.doi.org/10.1016/j.amc.2012.06.077
http://dx.doi.org/10.1016/j.dam.2018.03.077
http://dx.doi.org/10.1007/BF02066689
http://dx.doi.org/10.1002/jgt.3190080406
http://dx.doi.org/10.1002/net.3230130303


Mathematics 2019, 7, 267 5 of 5

18. Federico, L.; van der Hofstad, R. Critical window for connectivity in the configuration model. Comb. Prob.
Comput. 2017, 26, 660–680. [CrossRef]

19. Fountoulakis, N.; Müller, T. Law of large numbers for the largest component in a hyperbolic model of
complex networks. Ann. Appl. Prob. 2018, 28, 607–650. [CrossRef]

20. Iyer, S.K. The random connection model: Connectivity, edge lengths, and degree distributions. Rand. Struct.
Algor. 2018, 52, 283–300. [CrossRef]
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