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Abstract: The �-homotopy analysis transform method (�-HATM) is employed to find the solution 

for the fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation in the present frame work. To 

ensure the applicability and efficiency of the proposed algorithm, we consider three distinct initial 

conditions with two of them having Jacobi elliptic functions. The numerical simulations have been 

conducted to verify that the proposed scheme is reliable and accurate. Moreover, the uniqueness 

and convergence analysis for the projected problem is also presented. The obtained results elucidate 

that the proposed technique is easy to implement and very effective to analyze the complex 

problems arising in science and technology. 

Keywords: �-homotopy analysis transform method; fractional Kolmogorov–Petrovskii–Piskunov 
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1. Introduction 

Integration and differentiation with arbitrary order is called fractional calculus (FC), and it is the 

general expansion of integer order calculus to arbitrary order. Derivatives of arbitrary order were 

invented by Leibnitz soon after the integer order derivatives. Recently, FC has become a powerful 

tool because of its favorable properties such as analyticity, linearity, and nonlocality. With the fast 

growth of digital computer knowledge, many researchers have started to work on the theory and 

applications of FC to present their view points.  

Moreover, many pioneering references are available for diverse definitions of fractional calculus, 

this has laid the groundwork for FC study [1-6]. The theory of fractional-order calculus has been 

related to practical projects, and it has been applied to study many interesting topics including chaos 

theory [7], biomathematics [8], financial models [9], optics [10], and other areas. The analytical and 

numerical solutions for differential equations of fractional order present in the above phenomena 

play a vital role in describing the characters of nonlinear complex problems as they exist in daily life. 

Fractional order models extend our concepts of differentiability, and they incorporate non-local 

and systematic memory effects through fractional order space and time derivatives [11]. These 

features allow us to model phenomena across multiple time and space scales without having to 

partition the problem into smaller and smaller compartments. The extent to which a fractional order 

model will span multiple scales is based on an underlying presumption that fractional derivatives 

can limit or capture salient features of complex phenomena. In interdisciplinary fields, many systems 

can be described more accurately and more conveniently by fractional differential equations. For 
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instance, fractional derivatives have been widely used in mathematical modeling of viscoelastic 

materials [12]. The anomalous diffusion phenomena in nonhomogeneous media can be explained by 

non-integer, derivative-based equations of diffusion [13]. Another example of an element with 

fractional order is fractance, which is an electrical circuit with non-integer order impedance that has 

both resistance and capacitance properties [14]. Moreover, it has been shown that the dynamic 

process of heat conduction can be modeled more adequately via fractional order calculus [15]. In 

biology, the membranes of biological cells are proven to have fractional order electrical conductance 

and are classified among non-integer order systems [16, 17]. In economics, it is known that some 

finance systems can display fractional order dynamics [18]. 

In [19], Kolmogorov, Petrovskii, and Piskunov initiated the traveling waves theory and derived 

an equation called Kolmogorov–Petrovskii–Piskunov (KPP) equation. The KPP equation initially 

arose from the study of genetic models in the increase of microorganisms. Later, it was applied to 

analyze various biological, physical, and chemical models. Mainly, it is used in biological models to 

elucidate the progression of microbiological population densities (cells or bacteria) in terms of space–

time, as a result of diffusion mechanisms. Particularly, nonlocal models are designed to elucidate the 

patterns of formation in bacterial regions [20]. This helps to analyze the micro-morphogenesis, which 

is of particular interest in the elementary phenomena of contemporary microbiology [21]. Now, we 

consider a nonlinear KPP equation [22]:  

��(�,�)

��
−

���(�,�)

��� + ��(�, �) + ���(�, �) + ���(�, �) = 0, � ∈ ℝ, � ∈ [0, ∞), (1) 

where �, �, and � are constants. The KPP equation contains various familiar nonlinear equations in 

mathematical physics. In the case of � = −1, � = 0, and � = 1, it reduces to the Newll–Whitehead 

equation; For � = �, � = −(� + 1), and � = 1, it is called the FitzHugh–Nagumo equation; and for 

� = −1, � = 1, and � = 0, it is a special case of the Fisher equation (i.e., �� − ��� = � − ��). In the 

present investigation, we consider the fractional KPP (FKPP) equation [23-24]: 

���(�,�)

��� −
���(�,�)

��� + 2��(�, �) = 0, 0 < � ≤ 1, (2) 

with the initial condition �(�, 0) = ℊ(�). Here, �(�, �) specifies the state evolution over the spatial-

temporal domain characterized by the coordinates �, �, respectively. 

Recently, a number of new and advanced schemes have been developed to study the differential 

systems of fractional orders. These schemes are in parallel to the formation of new computational 

algorithms and symbolic programming. Most of the complex phenomena, including chaos, solitons, 

asymptotic properties, singular formation, etc., remained undetected or were in feeble states in the 

pre-computer era. New mathematical theories and analytical techniques that have been combined 

with recent computational algorithms have precipitated this revolution in our understanding, and 

this aids us in our study of nonlinear phenomena.  

A Chinese mathematician, Liao Shijun, proposed the homotopy analysis method (HAM) [25-26] 

by employing the fundamental concept of differential geometry and topology, called homotopy. 

Recently, HAM has been efficiently employed to analyze and find the solution for problems arising 

in distinct areas of science and technology. In connection with this, the q-homotopy analysis 

transform method (�-HATM) was proposed by Singh et al. [27], which is an elegant amalgamation 

of � -HAM and the Laplace transform. The future scheme controls and manipulates the series 

solution, which quickly converges to the exact solution in a short, permissible region. As a result, 

many authors have recently analyzed the different phenomena situated in different areas with the 

help of �-HATM, including Srivastava et al. who studied models of vibration equations of arbitrary 

order [28], Singh et al. who were employed to find the solution to the fractional Drinfeld–Sokolov–

Wilson equation [29], Bulut et al. who analyzed HIV infection of CD4+T lymphocyte cells with a 

fractional model [30], Kumar et al. who analyzed the model of Lienard’s equation [31], and many 

others [32-35]. 

On employing the methods with perturbation, linearization, or discretization techniques, we 

obtained only approximate solutions for nonlinear complex problems. These problems were 

appraised by exerting different schemes having their own limitations and weakness, including more 
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time for evaluation, massive computational work, and obtaining divergent results. The classical 

technique (i.e., HAM) necessitates more time for computational work and a large computer memory. 

To overcome these limitations, there is a need to combine this technique with already available 

transform techniques. The enhancement of the proposed technique is its proficiency of amalgamating 

two strong algorithms to solve linear and nonlinear fractional differential equations, both 

numerically and analytically. The proposed method provides many strong properties, including 

nonlocal effect, a straightforward solution procedure, a large convergence region free from any 

assumptions, discretization, and perturbation. It is worth revealing that the Laplace transform with 

semi-analytical techniques requires less CPU time to evaluate solutions for nonlinear complex models 

and phenomena in science and technology. The � -HATM solution involves two auxiliary 

parameters, ℏ and �, which helps us to adjust and control the convergence of the solution. We can 

say that the proposed technique can decrease computation time and work compared to other 

traditional techniques while maintaining great efficiency of the obtained results. Therefore, in the 

present frame work we employ �-HATM to investigate the nonlinear FKPP equation. 

Analytical and numerical solutions for the nonlinear fractional differential equations are of 

fundamental importance since most complex phenomena are modelled mathematically by 

differential and integral equations, but actually require a fractional order. There are many methods 

available in the literature to solve these equations. The KPP equation is studied through distinct 

techniques like the discrimination algorithm [36], the (�’/�)-expansion method [37], the homotopy 

perturbation method (HMP) [23], the generalized two-dimensional differential transform method 

[24], and many others [22,38-42]. The rest of the paper is arranged as follows. In Section 2 the 

preliminaries of fractional order integrals and derivatives and the Laplace transform are presented. 

Section 3 concerns the fundamental procedure of the proposed algorithm for the fractional KPP 

equation. In Section 4 the convergence analysis of the technique is presented. In Section 5, a solution 

for the fractional KPP equation is investigated. In Sections 6 and 7, the numerical simulation and 

discussions and concluding remarks are cited. 

2. Preliminaries 

We recall the definitions and notations of FC and the Laplace transform, which shall be 

employed in the present frame work: 

Definition 1. The fractional integral of a function �(�) ∈ �� (� ≥ −1) and of order � > 0, initially 

defined by Riemann–Liouville, which is presented [1-2] as 

���(�) =
�

�(�)
∫ (� − �)����(�)��

�

�
,  

���(�) = �(�). 

(3) 

Definition 2. The fractional derivative of � ∈ ���
�  in the Caputo [3] sense is defined as 

��
�

�(�) =

⎩
⎪
⎨

⎪
⎧  

���(�)

���
,                         � = � ∈ ℕ ,           

1

Γ(� − �)
� (� − �)������(�)(�)��, � − 1 < � < � , � ∈ ℕ.

�

�

 (4) 

Definition 3. The Laplace transform (��) of a Caputo fractional derivative ��
�

�(�) is represented [4-

5] as 

�[��
�

�(�)] = ���(�) − ∑ ���������
��� �(�)(0�), (� − 1 < � ≤ �), (5) 

where �(�) symbolizes the LT of the function �(�). 

3. Proposed Algorithm for the fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation 
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In this segment, we applied a fundamental solution procedure of the proposed algorithm for the 

FKPP equitation. First, we consider a fractional order, nonlinear KPP equation: 

��
�

�(�, �) −
���(�,�)

��� + 2��(�, �) = 0,       0 < � ≤ 1, � > 0, (6) 

subjected to the initial condition 

�(�, 0) = ℊ(�), (7) 

where ��
�

�(�, �) denotes the fractional Caputo derivative of the function �(�, �). Here, �(�, �) is a 

bounded function (i.e., for a number � > 0 we have ‖�‖ ≤ �), Now, by performing the ��  on 

Equation (5) and make use of conditions provided in Equation (7), we get 

�[�(�, �)] −
�

�
[ℊ(�)] +

�

�� � �−
���

��� + 2��� = 0. (8) 

We define the nonlinear operator with the assistance of Equation (8), as  

�[�(�, �; �)] = �[�(�, �; �)] −
�

�
[ℊ(�)] +

�

�� � �−
���(�,�;�)

��� + 2��(�, �; �)�. (9) 

where � ∈ �0,
�

�
�, and �(�, �; �) is a real function of �, �, and �. For a non-zero auxiliary function, we 

construct a homotopy as follows [43]: 

(1 − ��)�[�(�, �; �) − ��(�, �)] = ℏ��[�(�, �; �)], (10) 

where � is a symbol of ��, ℏ ≠ 0 is an auxiliary parameter, � ∈ �0,
�

�
� (� ≥ 1) is the embedding 

parameter, and ��(�, �) is an initial guess of �(�, �). The following results hold respectively for � =

0 and � =
� 

�
: 

�(�, �; 0) = ��(�, �), � ��, �;
�

�
� = �(�, �). (11) 

Thus, by amplifying �  from 0  to  
�

�
, the solution �(�, �; �)  converges from ��(�, �)  to the 

solution �(�, �). Expanding the function �(�, �; �) in series form by applying the Taylor theorem [44] 

near to �, one can get 

�(�, �; �) = ��(�, �) + ∑ ��(�, �)��∞
��� , (12) 

Where 

��(�, �) =
�

�!

���(�,�;�)

��� |���. (13) 

On choosing the auxiliary linear operator, ��(�, �), � and ℏ, the series (11) converges at � =
�

�
 and 

then it yields one of the solutions for Equation (6): 

�(�, �) = ��(�, �) + ∑ ��(�, �)��

�
�

�∞
��� . (14) 

Now, the zero-th order deformation Equation (10) differentiates �-times with respect to �, is then 

divided by �! , and finally assigns � = 0, which gives 

�[��(�, �) − ������(�, �)] = ℏℜ�(�⃗���), (15) 

where  

�⃗� = {��(�, �), ��(�, �), … , ��(�, �)}. (16) 

Employing the inverse �� on Equation (15), it yields 

��(�, �) = ������(�, �) + ℏ���[ℜ�(�⃗���)]. (17) 

Then, we define ℜ�(�⃗���) for the cited equation as follows: 



Mathematics 2019, 7, 265 5 of 17 

 

ℜ�[�⃗���] = �[����(�, �)] − �1 −
��

�
�

1

�
[ℊ(�)] 

                 + 
�

�� � �−
������

��� + ∑ �∑ ������
�
��� ����

��� �������, 

(18) 

where  

�� =  �
0, � ≤ 1,
�, � > 1.

 (19) 

By Equation (17), Equation (18) is reduced to  

��(�, �) = (�� + ℏ)����(�, �) − �1 −
��

�
� ��� �

1

�
[ℊ(�)]� 

                + ℏ��� �
�

�� � �−
������

��� + ∑ �∑ ������
�
��� ����

��� ��������. 

(20) 

Finally, on solving Equation (20) we get the iterative terms of ��(�, �). The �-HATM series solution 

is presented by  

�(�, �) = � ��(�, �)

∞

���

. (21) 

4. Convergence Analysis of the Technique 

Here, we present the convergence analysis of the proposed algorithm for the FKPP equation 

Theorem 1. (Uniqueness theorem) The obtained solution for the FKPP Equation (6) with the aid of 

�-HATM is unique wherever 0 < � < 1, where � = (�� + ℏ) + ℏ��� + 2(�� + �� + ��)��. 

Proof. The solution for the FKPP equation defined in Equation (6) is presented as 

 �(�, �) = ∑ ��(�, �)∞
��� , 

where  

 ��(�, �) = (�� + ℏ)����(�, �) − �1 −
��

�
� ����ℊ(�)� +  ℏ��� �

�

�� � �−
���(�,�)

��� + 2��(�, �)��. 

If possible, let � and �∎ be the two distinct solutions for the FKKP equation such that |�| ≤ � and 

|�∎| ≤ �, then using the above relation, we have 

|� − �∎| = �(�� + ℏ)(� − �∎) + ℏ��� �
1

��
� �− �

���

���
−

���∎

���
� + 2��� − �∎�����. (22) 

By employing convolution theorem for LT, we obtained 

      |� − �∎| = (�� + ℏ)|� − �∎| + ℏ ∫ ��
���

��� −
���∎

��� � + �2��� − �∎����
�

�

(���)�

Γ(���)
��, 

              ≤ (�� + ℏ)|� − �∎| + ℏ ∫ (
��

���
|� − �∎| + 2�(� − �∎)(�� + �∎� + ��∎)�)

�

�

(���)�

Γ(���)
��, 

               ≤ (�� + ℏ)|� − �∎| + ℏ ∫ (��|� − �∎| + 2|(� − �∎)(�� + �� + ��)|)
�

�

(���)�

Γ(���)
��, 

where �� =
��

��� . By the help of the integral mean value, the above equation reduces to           

        |� − �∎| ≤ (�� + ℏ)|� − �∎| + ℏ(��|� − �∎| + 2|(� − �∎)(�� + �� + ��)|)� 

        |� − �∎| ≤ �|� − �∎| 
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  (1 − �)|� − �∎| ≤ 0 

Since 0 < � < 1, then |� − �∎| = 0, which gives � = �∎. This proves the uniqueness of the solution. 

Theorem 2 .  (Convergence theorem) Suppose �  is a Banach space and �: � → �  is mapping 

(nonlinear). Presume that 

‖�(�) − �(�)‖ ≤ �‖� − �‖, ∀ �, � ∈ �, (23) 

then by the aid of Banach’s fixed point theory [45, 46] there is a fixed point for �. Moreover, the 

sequence achieved with the solution obtained by �-HATM converges to a fixed point � with an 

arbitrary choice of ��, �� ∈ � and 

‖�� − ��‖ ≤
��

���
‖�� − ��‖, ∀ �, � ∈ �. (24) 

Proof. Let (�[�], ‖. ‖) be a Banach space of all continuous functions on � with the norm symbolized 

as ‖�(�)‖ = ���
�∈�

|�(�)|. First, we prove {��} is a Cauchy sequence in the Banach space. 

Now, consider 

                ‖�� − ��‖ = ���
�∈�

|�� − ��| 

                          = ���
�∈�

|(�� + ℏ)(���� − ����) 

                            + ℏ���(
�

�� �[−(
������

��� −
������

��� ) + 2(����
� − ����

� )])| 

                          ≤ ���
�∈�

{(�� + ℏ)|(���� − ����)| 

                            + ℏ���(
�

�� �[�
������

��� −
������

��� � + 2|����
� − ����

� |])} 

On employing a convolution theorem for LT, we get  

         ‖�� − ��‖ ≤ ���
�∈�

[(�� + ℏ)|(���� − ����)| 

                    + ℏ ∫ (�
������

��� −
������

��� � + 2|����
� − ����

� |)
�

�
]

(���)�

Γ(���)
��, 

                  ≤ ���
�∈�

[(�� + ℏ)|���� − ����| 

                   + ℏ ∫ (��|���� − ����| + 2|(���� − ����)(�� + �� + ��)|)
�

�
]

(���)�

Γ(���)
��. 

With the aid of the integral mean value theorem [44,45], the above relation reduced to 

             ‖�� − ��‖ ≤ ���
�∈�

[(�� + ℏ)|���� − ����| 

                        + ℏ(��|���� − ����| + 2|(���� − ����)(�� + �� + ��)|)�], 

             ‖�� − ��‖ ≤ �‖���� − ����‖. 

Setting � = � + 1, it yields: 

‖���� − ��‖ ≤ �‖�� − ����‖ ≤ ��‖���� − ����‖ ≤ ⋯ ≤ ��‖�� − ��‖. 

On using triangular inequality, we have 

             ‖�� − ��‖ ≤ ‖���� − ��‖ + ‖���� − ����‖ + ⋯ + ‖�� − ����‖ 

                       ≤ [�� + ���� + ⋯ + ����]‖�� − ��‖ 

                       ≤ ��[1 + � + �� + ⋯ + ������]‖�� − ��‖ 
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                       ≤ �� �
��������

���
� ‖�� − ��‖. 

As 0 < � < 1, so 1 − ������ < 1, then we have 

                   ‖�� − ��‖ ≤
��

���
‖�� − ��‖. 

But ‖�� − ��‖ < ∞, consequently as � → ∞ then ‖�� − ��‖ → 0, therefore, the sequence {��} is a 

Cauchy sequence in �[�]. It yields {��} and is a convergent sequence. This concludes our required 

results. 

5. Solution for the fractional KPP equation 

In this part, we consider two distinct initial conditions for the FKPP equation to validate the 

applicability and efficiency of the proposed algorithms.  

Case (�). 

ℊ(�) = �� �� �
√2����

2
,
√2

2
�, (25) 

where �� �
√�����

�
,

√�

�
� is the Jacobi elliptic function, and � and � are arbitrary constants. The exact 

solution for the classical KPP equation is given by 

�(�, �) = �� �� �
√2��(�� + 6t)

2
,
√2

2
�. 

On solving Equation (20) with the initial condition (24), we obtain 

 ��(�, �) = �� �� �
√�����

�
,

√�

�
�,  

 ��(�, �) =
ℏ��

�[���]
(���(−3√2 �� �

√����

√�
,

�

√�
�  �� �

√����

√�
,

�

√�
�  − √2���� �� �

√����

√�
,

�

√�
�

�

 

          ×  �� �
√����

√�
,

�

√�
� + ��� �� �

√����

√�
,

�

√�
� (−(−2 + √2)� �� �

√����

√�
,

�

√�
�

�

+  2 �� �
√����

√�
,

�

√�
�

�

))), 

 ��(�, �) =
(��ℏ)ℏ��

�[���]
(���(−3√2 �� �

√����

√�
,

�

√�
�  �� �

√����

√�
,

�

√�
� − √2���� �� �

√����

√�
,

�

√�
�

�

 

          ×  �� �
√����

√�
,

�

√�
� + ��� �� �

√����

√�
,

�

√�
� (−(−2 + √2)� �� �

√����

√�
,

�

√�
�

�

+ 2 �� �
√����

√�
,

�

√�
�

�

))) 

          +
ℏ���� ���

�[����]
(20�� �⁄ ��� �� �

√����

√�
,

�

√�
�

�

�� �
√����

√�
,

�

√�
� + 2�������� �

√����

√�
,

�

√�
�

�

�� �
√����

√�
,

�

√�
� 

          − 20√���� �� �
√����

√�
,

�

√�
� �� �

√����

√�
,

�

√�
� (�−1 + √2�� �� �

√����

√�
,

�

√�
�

�

+ (3√2 − 2(−2 

          + √2)�)�� �
√����

√�
,

�

√�
�

�

+ � �� �
√����

√�
,

�

√�
�

�

�� �
√����

√�
,

�

√�
� (15√2 − 4(6 + 7(−1 + √2)�)���� 

          × �� �
√����

√�
,

�

√�
�

�

+  4(−3√2 + (−2 + √2)�)������ �
√����

√�
,

�

√�
�

�

) +�� �
√����

√�
,

�

√�
� (2(3 − 

          ×  2√2)������ × �� �
√����

√�
,

�

√�
�

�

+ 12�� �
√����

√�
,

�

√�
�

�

�−1 + ������ �
√����

√�
,

�

√�
�

�

� 

          + � �� �
√����

√�
,

�

√�
�

�

 (15(−2 + √2) + 4(6 − 3√2 + (−4 + 3√2)�)������ �
√����

√�
,

�

√�
�

�

))), 

 ⋮ 

On continuing the same procedure, the remaining iterative terms can be found.  
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) Response of the q-homotopy analysis transform method (�-HATM) solution. (b) Nature 

of Exact solution. (c) Surface of Absolute error = ������� − �������� for case (�) at � = −0.5, � =

0.5, ℏ = −1, � = 1, and � = 1. 
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Figure 2 . Nature of the � -HATM solution �(�, �) in case (�) with respect to �  at  � = −0.5, � =

0.5, ℏ = −1, � = 1, and � = 1 for diverse �. 

Figure 3. ℏ-curves obtained for �(�, �) in case (�) with diverse �  when � = −0.5, � = 0.5, � = 1, 

and � = 0.01 at distinct �. 

Table 1 Numerical simulations for fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation in 

terms of absolute error �������� − ��������� considered in case (�) using �-HATM at � = −0.5, � =

0.5, ℏ = −1, and � = 1 with distinct � and � for different �. 

x t � = 0.8 � = 0.90 � = 1 

0.2 

0.02 0.004048 0.001614 4.33982 × 10�� 

0.04 0.006276 0.002612 8.27204 × 10�� 

0.06 0.007984 0.003405 7.14642 × 10�� 

0.08 0.009382 0.004070 2.92827 × 10�� 

0.1 0.010561 0.004641 9.24811 × 10�� 

0.4 

0.02 0.008131 0.003243 6.42643 × 10�� 

0.04 0.012647 0.005266 1.89783 × 10�� 

0.06 0.016140 0.006892 3.54655 × 10�� 

0.08 0.019029 0.008272 5.37359 × 10�� 

0.1 0.021493 0.009474 7.16866 × 10�� 

0.6 

0.02 0.012305 0.004914 3.08277 × 10�� 

0.04 0.019220 0.0080222 8.27743 × 10�� 

0.06 0.024642 0.010555 1.52659 × 10�� 

0.08 0.029180 0.012738 2.37386 × 10�� 

0.1 0.033108 0.014673 3.33966 × 10�� 

0.8 

0.02 0.016605 0.006656 8.82289 × 10�� 

0.04 0.026002 0.010896 2.05704 × 10�� 

0.06 0.033399 0.014373 3.48489 × 10�� 

0.08 0.039628 0.017386 5.12819 × 10�� 

0.1 0.045047 0.020072 6.95126 × 10�� 

1 0.02 0.020854 0.008402 1.44746 × 10�� 
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0.04 0.032340 0.013606 2.47111 × 10�� 

0.06 0.041138 0.017723 2.59702 × 10�� 

0.08 0.048301 0.021142 3.02914 × 10�� 

0.1 0.054307 0.024043 3.08285 × 10�� 

Case (��). 

ℊ(�) = ��. (26) 

On solving Equation (20) with the initial condition (25), we obtain 

 ��(�, �) = ��, 

 ��(�, �) =
ℏ��

Γ[���]
(−2 + 2��), 

 ��(�, �) =
(��ℏ)ℏ��

Γ[���]
(−2 + 2��) +

��ℏ�(�����)�����

Γ[����]
, 

 ��(�, �) =
(��ℏ)�ℏ��

Γ[���]
(−2 + 2��) +

��(��ℏ)ℏ�������������

Γ[����]
+

�������ℏ�

Γ[���]�Γ[����]
(3(12 − 21�� + ���)Γ[1 + �]� 

      + (−1 + ��)�Γ[1 + 2�]), 

 ⋮ 

On continuing the same procedure, the remaining iterative terms can be found.  

 
(a) 

 
(b) 
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(c) 

Figure 4. Surface of �-HATM solution for case (��) at (a) � = 0.50, (b) � = 0.75, and (c) � = 1   

when ℏ = −1 and � = 1. 

 
Figure 5. ℏ-curves obtained for �(�, �) in case (��) with diverse � when � = 0.1 and � = 0.01 at distinct �. 

Table 2 Numerical simulations for the ���� equation considered in case (��) using �-HATM at 

 ℏ = −1 and � = 1 with distinct � and � for different �. 

x t μ=0.7 μ=0.8 μ=0.9 μ=1 

0.01 

0.2 0.71354 0.59265 0.48863 0.40010 

0.4 1.15909 1.03179 0.91172 0.80012 

0.6 1.53948 1.42709 1.31320 1.20010 

0.8 1.88289 1.79638 1.70125 1.60010 

1 2.20119 2.14744 2.07961 2.00011 

0.05 

0.2 0.71591 0.59502 0.49101 0.40249 

0.4 1.16139 1.03412 0.91407 0.80246 

0.6 1.54170 1.42936 1.31549 1.20242 

0.8 1.88502 1.79856 1.70347 1.60236 

1 2.20323 2.14953 2.08174 2.00227 

0.1 

0.2 0.72283 0.60217 0.49829 0.40986 

0.4 1.16738 1.04053 0.92080 0.80942 

0.6 1.54654 1.43477 1.32138 1.20870 

0.8 1.88855 1.80275 1.70827 1.60769 

1 2.20530 2.15230 2.08521 2.00640 

Case (���). 

ℊ(�) =

2� �� ���,
1

√2
�

�� ���,
1

√2
�

, (27) 

where �� ���,
�

√�
� and �� ���,

�

√�
� are the Jacobi elliptic functions. 

On solving Equation (20) with the initial condition (26), we obtain 
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 ��(�, �) =
�� �����,

�

√�
�

�����,
�

√�
�

, 

 ��(�, �) = −
�ℏ���

�����,
�

√�
�
�

 �[���]
(2√2���� ���,

�

√�
�

�

�� ���,
�

√�
�

�

�� ���,
�

√�
� + 2�� ���,

�

√�
� �� ���,

�

√�
� 

         × �� ���,
�

√�
� �3�� ���,

�

√�
� + 2√2���� ���,

�

√�
� �� ���,

�

√�
�� + �� ���,

�

√�
� (3√2�� ���,

�

√�
� 

         × �� ���,
�

√�
� �� ���,

�

√�
� + 2���� ���,

�

√�
�

�

(√2�� ���,
�

√�
�

�

+ 2�� ���,
�

√�
�

�

)           

         + �� ���,
�

√�
�

�

((−2 + √2)�� ���,
�

√�
�

�

− √2�� ���,
�

√�
�

�

)))), 

 ��(�, �) = −
�(��ℏ)ℏ���

�����,
�

√�
�

�
 �[���]

(2√2���� ���,
�

√�
�

�

�� ���,
�

√�
�

�

�� ���,
�

√�
� + 2�� ���,

�

√�
� �� ���,

�

√�
� 

          × �� ���,
�

√�
� �3�� ���,

�

√�
� + 2√2���� ���,

�

√�
� �� ���,

�

√�
�� + �� ���,

�

√�
� 

          × (3√2�� ���,
�

√�
� �� ���,

�

√�
� �� ���,

�

√�
� + 2���� ���,

�

√�
�

�

(√2�� ���,
�

√�
�

�

+ 2�� ���,
�

√�
�

�

) 

          + 2��(−4�� ���,
�

√�
�

�

+ �� ���,
�

√�
�

�

(�−2 + √2��� ���,
�

√�
�

�

− √2�� ���,
�

√�
�

�

)))) 

          −
�����ℏ�

�����,
�

√�
�

�
�[����]

(−4���� ���,
�

√�
�

�

�� ���,
�

√�
�

�

�� ���,
�

√�
� −  4���� ���,

�

√�
�

�

�� ���,
�

√�
�

�

   

          × �� ���,
�

√�
� (5√2�� ���,

�

√�
� + 4���� ���,

�

√�
� �� ���,

�

√�
�) − 2�� ���,

�

√�
� �� ���,

�

√�
�   

          × �� ���,
�

√�
� (30���� ���,

�

√�
�

�

�� ���,
�

√�
� (√2 �� ���,

�

√�
�

�

+  2�� ���,
�

√�
�

�

) 

          + 8���� ���,
�

√�
�

�

�� ���,
�

√�
� (5�� ���,

�

√�
�

�

+ 3√2�� ���,
�

√�
�

�

) + 10���� ���,
�

√�
� 

        × (−12�� ���,
�

√�
�

�

+ �� ���,
�

√�
�

�

((−2 + √2)�� ���,
�

√�
�

�

−  4(−1 + √2)�� ���,
�

√�
�

�

 

          − 3√2�� ���,
�

√�
�

�

)) − �� ���,
�

√�
� �� ���,

�

√�
� (32√2���� ���,

�

√�
�

�

+ 96√2���� ���,
�

√�
�

�

 

          + �� ���,
�

√�
�

�

(−15√2 + 8(−1 + √2)���� ���,
�

√�
�

�

− 16(−2 + √2)���� ���,
�

√�
�

�

 

          + 40���� ���,
�

√�
�

�

))) + �� ���,
�

√�
�

�

�� ���,
�

√�
�

�

�� ���,
�

√�
� (−60���� ���,

�

√�
� �� ���,

�

√�
� 

          × �� ���,
�

√�
� + �� ���,

�

√�
�

�

(−15√2 − 24���� ���,
�

√�
�

�

+ 56(−1 + √2)���� ���,
�

√�
�

�

 

          + 16���� ���,
�

√�
�

�

− 8√2���� ���,
�

√�
�

�

+ 24���� ���,
�

√�
�

�

) + 24��(4�� ���,
�

√�
�

�

 

          + √2(2�� ���,
�

√�
�

�

− �� ���,
�

√�
�

�

�� ���,
�

√�
�

�

))) + �� ���,
�

√�
�

�

(4(−3 + 2√2)�� 

          × �� ���,
�

√�
�

�

 + 5�� ���,
�

√�
�

�

(3√2 − 4����[���,
�

√�
�

�

) + �� ���,
�

√�
�

�

(−8(−4 

           + 3√2)���� ���,
�

√�
�

�

+  3(−5(−2 + √2) − 8(−1 + √2)���� ���,
�

√�
�

�

))))) , 
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 ⋮ 

On continuing the same procedure, the remaining iterative terms can be found. Then, the �-

HATM series solution for Equation (20) is presented by 

�(�, �) = ��(�, �) + � ��(�, �) �
1

�
�

�∞

���

. (28) 

 
(a) 

 
(b) 

Figure 6. (a) Surface of �-HATM solution. (b) Nature of obtained solution at different times (� is 

from 0.1 �� 1) for case (���) at ℏ = −1, � = 1, and � = 1. 
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Figure 7. Response of �-HATM solution �(�, �) in case (���) with respect to � at ℏ = −1, � = 1, and 

� = 1 for diverse �. 

 

Figure 8. ℏ-curves obtained for �(�, �) in case (���) with diverse � when � = 0.1 and � = 0.01 at 

distinct �. 

Table 3 Numerical simulations for the ���� equation considered in case (���) using �-HATM at 

 ℏ = −1 and � = 1 with distinct � and � for different �. 

x t μ=0.8 μ=0.9 μ=1 

0.1 

0.02 0.39544 0.31857 0.25627 

0.04 0.73580 0.63051 0.53892 

0.06 1.07771 0.95890 0.84998 

0.08 1.42750 1.30632 1.18942 

0.1 1.78728 1.67345 1.55725 

0.2 

0.02 1.03187 0.79132 0.61147 

0.04 2.17367 1.76387 1.43330 

0.06 3.48467 2.94515 2.48151 

0.08 4.95178 4.32609 3.75607 

0.1 6.56361 5.89892 5.25702 

0.3 

0.02 2.14834 1.57388 1.16766 

0.04 4.99339 3.89101 3.03371 

0.06 8.49589 6.94886 5.65234 

0.08 12.5737 10.6995 9.02354 

0.1 17.1721 15.1092 13.1473 

0.4 

0.02 3.92819 2.79270 2.01364 

0.04 9.67310 7.36715 5.60298 

0.06 16.9775 13.6543 10.8974 

0.08 25.6269 21.5326 17.8969 

0.1 35.4848 30.9193 26.6014 

0.5 

0.02 6.27845 4.41081 3.14532 

0.04 15.8083 11.9311 8.98311 

0.06 28.0760 22.4336 17.7701 

0.08 42.6940 35.7006 29.5059 

0.1 59.4191 51.5854 44.1909 
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6. Numerical Results and Discussion 

In this section, we conduct a numerical simulation for the obtained solution of the fractional 

order KPP equation with the help of �-HATM. The error analysis has been presented in order to 

show the efficiency of the proposed technique for the solution to the FKPP equation with the initial 

conditions considered in case (�), which is presented in Table 1, for diverse values of � and � with 

distinct fractional Brownian motions and standard motions. From the table we can see that as � 

increases from � = 0.8 to  1 , the solution gets closer to the exact solution. Further, the solution 

obtained by the proposed method is more accurate compared to the solution obtained by the other 

techniques. For case (��) and case (���), the numerical simulations have been connected, which are 

presented in Tables 2 and 3, respectively. From the cited tables it is clear that the proposed problem 

noticeably depends on order (�).  

The nature of the solution �(�, �) obtained by �-HATM for the FKPP equation with the initial 

conditions considered in Equation (25) is presented in Figure 1a, and the corresponding nature of the 

exact solution and surface of absolute error are presented in Figures 1b and 1c, respectively. Figures 

2 and 7 are the responses of obtained solutions for cases (�)  and (���)  with distinct fractional 

Brownian motions and standard motions (� = 1). We can see that as time increases, the solution to 

the FKPP equation also increases in both the cases. Figures 3, 5, and 8 represent the ℏ-curves with 

diverse values of � and � obtained by �-HATM for cases (�), (��), and (���), respectively. This 

helps us to control and adjust the convergence region of the obtained solution. The nature of the FKPP 

equation with the initial conditions considered in Equation (26) for different � (i.e., 0.50, 0.75, and 1) 

is observed in Figure 4, which elucidates the rule of fractional derivatives in the projected problem. 

Further, the surface of the considered equation with the initial conditions cited in Equation (27) is 

presented in Figure 6a, and the corresponding plot for diverse time (�) is shown in Figure 6b. This 

helps us to understand the behavior of the KPP equation when spatial-temporal variables are 

changed. We can see from the obtained solution that the solution procedure of the proposed method 

is straightforward and simple to implement, whereas the solution obtained with the help of 

techniques presented in [24] is difficult, and it requires more computation in order to evaluate more 

terms in the series solution. The proposed technique provides us two parameters, namely, auxiliary 

parameter (ℏ) and embedding parameter � ∈ �0,
�

�
� (� ≥ 1), which helps to control and adjust the 

convergence region of the obtained solution. From the tables and plots obtained in the present 

investigation, we can say that the proposed technique effectively captures the behavior of the FKPP 

equation. Moreover, the future method is very efficient to analyze the fractional order differential 

equations with initial conditions that have Jacobi elliptic functions with the help of the mathematical 

software MATHEMATICA (Version-10.4, Wolfram Research, Champaign, Illinois, US). 

7. Conclusions 

In this paper, we profitably employed �-HATM to find the solution for the KPP equation of 

fractional order. We considered three cases with two distinct initial conditions having Jacobi elliptic 

functions, which were very difficult to solve with the aid perturbation, linearization, and 

discretization. The proposed algorithm was free from these difficulties. The novelty of the proposed 

technique is that it provides a nonlocal effect, a straightforward solution procedure, and a promising 

large convergence region. The convergence analysis is presented with the aid of Banach’s fixed point 

theory for the considered problem. In the present investigation we can see that the FKPP equation, 

having initial conditions analyzed with Jacobi elliptic functions, finds the approximated analytical 

solution in the series form. Further, the obtained solutions contain two parameters, which helps us 

to control the convergence of the obtained solution. Finally, we can conclude that the considered 

technique is highly coherent and it can be employed to examine wide classes of nonlinear 

mathematical models that have fractional orders. They can be applied for understanding the 

behaviors of complex phenomena in connected areas of science and technology. 
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