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Abstract: Given a multivariate complex centered Gaussian vector Z = (Z1, . . . , Zp) with non-singular
covariance matrix Σ, we derive sufficient conditions on the nullity of the complex moments and we
give a closed-form expression for the non-null complex moments. We present conditions for the
factorisation of the complex moments. Computational consequences of these results are discussed.
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1. Introduction

The p-variate Complex Gaussian Distribution (CGD) is defined by [1] to be the image under the
complex affine transformation z 7→ µ + Az of a standard CGD. In the Cartesian representation this
class of distributions is a proper subset of the general 2p-variate Gaussian distribution and its elements
are also called rotational invariant Gaussian Distribution. Statistical properties and applications are
discussed in [2].

As it is in the real case, CGD’s are characterised by a complex covariance matrix Σ = E (ZZ∗),
which an Hermitian operator, Σ∗ = Σ. In some cases, we assume Σ to be positive definite, z∗Σz > 0 if
z 6= 0. This assumption is equivalent to the existence of a density. We assume zero mean everywhere
and we use the notation CN p (Σ).

When the complex field C is identified with R2 it becomes a R-vector space, and the monomials
must be replaced by complex monomials. The object of this paper is the computation of the moments
of a CGD, i.e., the expected values of the complex monomials ∏

p
j=1 z

nj
j z

mj
j under the distribution

CN p (Σ).
The computation of Gaussian moments is a classical subject that relies on a result usually called

Wick’s (or Isserlis’) theorem, see ([3], Ch. 1). The real and the complex cases are similar, but the
complex case has a peculiar combinatorics. Actually, from many perspectives, the complex case is
simpler, as observed in Section 2.3.

The paper is organised as follows. In Section 2 we offer a concise but complete overview of the
basic results concerning the CGD. In particular we give a proof of Wick’s theorem based on a version
of the Faà di Bruno formula. In Section 3 we present recurrence relations for the moments and apply
them to derive a new closed-form equation for the moments. Other results are sufficient conditions
for the nullity of a moment, which is a feature where the complex case is different from the real case.
The presentation is supported by a small running example. In Section 4 we present conditions on the
moment of interest and on the sparsity of the correlation matrix that ensure the factorisation of that
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moment into a product of lower degree moments. Both the results on the closed form of the moment
formula and the factorisation are expected to produce computational algorithm of interest. This issue
is discussed in the final Section 5. The standard version of the Wick’s theorem reduces the computation
of the moments to the computation of the permanent of a matrix for which optimised algorithms
have been designed. We have not performed this optimisation for the algorithms suggested by our
results so that a full comparison is not possible by now. Some technical combinatorial computations
are presented in the Appendix A.

2. The Multivariate Complex Gaussian Distribution and Its Moments

The identification C 3 z = x + iy ↔ (x, y) ∈ R2 turns C into a 2-dimensional real vector space
with inner product 〈z1, z2〉 = z1z2. The image of the Lebesgue measure dxdy is denoted dz.

If C is seen as a real vector space of dimension 2, then the space of linear operators has dimension 4.
It is easy to verify that a generic linear operator A has the form

A : z 7→ αz + βz , α, β ∈ C . (1)

Notice that the linear operator z 7→ αz is just a special case. A generic R-multilinear operator is of
the form

(z1, . . . , zk) 7→ ∑
L⊂{1,...,k}

αL ∏
i∈L

zi ∏
j∈{1,...,k}\L

zj . (2)

A general complex monomial ∏
p
j=1 z

nj
j z

mj
j is obtained from a suitable multilinear form by

identifying some of the variables e.g., z1z1z2 = t1t2t3, with t1 = t2 = z1, t3 = z2 and L = {1, 3}.
The set of p-variate complex monomials characterise probability distributions on Cp.

2.1. Calculus on C

If f : C → C is differentiable, the derivative at z in the direction h is expressed in the form in
Equation (1) as

d f (z)[h] = D− f (z)h + D+ f (z)h

and the derivative operators D− and D+ are related with the Cartesian derivatives by the equations

D− =
1
2

[
∂

∂xj
− i

∂

∂yj

]
j=1,...,k

and D+ =
1
2

[
∂

∂xj
+ i

∂

∂yj

]
j=1,...,k

. (3)

The operators appearing in the equation above are sometimes called Wirtinger derivatives and
denoted by D− = ∂/∂z and D+ = ∂/∂z. The Wirtinger derivatives act on complex monomials as
follows

D−znzm = nzn−1zm , D+znzm = mznzm−1 .

If f is k-times differentiable, the the k-th derivative at z in the direction h1, . . . , hk is

dk f (z)[h1 ⊗ · · · ⊗ hk] = ∑
c∈{−,+}k

k

∏
j=1

Dc(j) f (z)
k

∏
j=1

hc(j)
j , (4)

where h−j = hj and h+j = hj.
We are going to use the following form of the Faà di Bruno formula, see [4].

Proposition 1. Let f : C→ C and g : Rh → C. For each set of commuting derivative operators D1, . . . , Dk,

D1 · · ·Dk f ◦ g(x) = ∑
π∈Π(k)

(d#π f ) ◦ g(x)
⊗
B∈π

DBg(x) (5)
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where Π(k) is the set of partitions of {1, . . . , k}, d#π is defined in Equation (4) and DB = ∏b∈B Db.

Proof. The proof easily follows by induction on k by using the fact that each partition of {1, . . . , k}
is derived by a partition of {1, . . . , (k− 1)} by adding the singleton {k} as a new element of the
k-partition, and by adding k to each element of the (k− 1)-partition.

Remark 1. The formula applies either when each derivation is a different partial derivation Dj =
∂

∂xj
or when

Di = Dj, for some i, j. In case of repeated derivations, some terms in the RHS appear more than once. If equal
factors are collected, combinatorial counts appear. In the following, first we use the basic formula, then we switch,
in the general case, to a different approach, based on the explicit use of recursion formulæ instead of closed form
equations.

2.2. Complex Gaussian

The p-variate Complex Gaussian Distribution (CGD) is, when expressed in the real space R2p,
a special case of a 2p-variate Gaussian Distribution. The definition is given below.

The univariate CGD is the distribution of a complex random variable Z = X + iY were the
real and imaginary part form a couple of independent identically distributed centered Gaussian X
and Y. As x2 + y2 = zz, the density of Z is ϕ(z) = 1

2πσ exp
(
− 1

2σ2 zz
)

. The complex variance is

γ = E
(
ZZ
)
= 2σ2 and we write Z ∼ CN 1 (γ). Notice that the standard Complex Gaussian has γ = 1

that is, σ2 = 1/2. The complex moments of U ∼ CN 1 (1) are

E
(

UnUm
)
=

1
π

∫
C

unum exp (−uu) du =
1
π

∫ ∞

0
ρn+m+1e−ρ2

dρ
∫ 2π

0
e(n−m)θ dθ ,

hence 0 if n 6= m, otherwise

E
(

UnUn
)
= E

(
|U|2n

)
= 2

∫ ∞

0
ρ2n+1e−ρ2

dρ = n! . (6)

If Z ∼ CN 1 (γ) and α ∈ C, then it is easy to prove that αZ ∼ CN 1 (ααγ). The univariate complex
Gaussian is sometimes called “circularly symmetric” because eiθZ ∼ Z. Moreover, Z ∼ Z.

Consider d independent standard Complex Gaussian random variables, Uj, j = 1, . . . , d and let
C = [cij] be a p× d complex matrix. As in the real case, the distribution of Z = CU, U = (U1, . . . , Ud),
is a multivariate Complex Gaussian Z ∼ CN p (Σ), with covariance matrix Σ = CC∗. In the special
case of a non singular covariance matrix Σ, the density exists and is obtained by performing the change
of variable V = Σ−1/2Z ∼ CN p (I), to get

ϕ(z; Σ) =
1

πp det Σ
exp

(
−z∗Σ−1z

)
, (7)

see [2].
Our aim is to discuss various methods to compute the value of a given complex moment of a

normal random vector Z ∼ CN p (Σ) namely,

ν(n1, . . . , np; m1, . . . , mp) = E
(

Zn1
1 · · · Z

np
p Zm1

1 · · · Z
mp
p

)
,

where n1, . . . , mp are non-negative integers. In the case of independent standard CG’s, i.e., identity
covariance matrix, we have

E
(

Un1
1 · · ·U

np
p Um1

1 · · ·U
mp
p

)
= E

(
Un1

1 Um1
1

)
· · ·E

(
U

np
p Ump

p

)
which is zero unless mj = nj for all j = 1, . . . , p. In the general case, each component Zj is a C-linear
combination of independent standard Uj’s, so that each moment is the result of C-multilinear and
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C-anti-multilinear computations. The result will be a sum of products hence, one should expect
numerically hard computations.

Various approaches are available and their respective merits depend largely on the setting of the
problem: number of variables, total degree of the complex monomial, sparsity of the covariance matrix.
All this issues will be discussed in the following.

2.3. Wick’s Theorem

Let us first consider the case where all the exponents in the complex monomial are 1. The general
case is a special case of that one, where some of the variables are equal. The unity case is solved
by the classical Wick’s theorem (or Isserlis’ theorem). In real case, for example in ([3], [Th. 1.28]),
if
(
X1, . . . , Xq

)
is a centered (real) Gaussian vector with covariance matrix Σ = [σij]

q
i,j=1, then, if q

is even
E
(
X1 · · ·Xq

)
= ∑

π∈P(q)
∏
{i,j}∈π

E
(
XiXj

)
= ∑

π∈P(q)
∏
{i,j}∈π

σi,j

where P(q) is the set of all partitions of {1, . . . , q} into subsets of two elements. If q is odd,
then E

(
X1 · · ·Xq

)
= 0.

The moment can be zero even in special cases depending on the sparsity of the covariance matrix.
For example,

E(X1X2X3X4) = E(X1X2) E(X3X4) + E(X1X3) E(X2X4) + E(X1X4) E(X2X3) ,

and, if E(X1, X2) = E(X2, X4) = E(X1, X4) = 0, then E(X1X2X3X4) = 0, even if the variables are
not independent.

A similar equation applies to the complex case, see e.g., ([5], [Lemma 4.5]). For sake of
completeness, we give here a proof based on the Faà di Bruno formula.

Let us recall that the permanent of the q× q complex matrix A = [ai,j]
q
i,j=1 is

per (A) = ∑
π∈S(q)

q

∏
i=1

ai,π(i) ,

where S(q) is the symmetric group of permutations on {1, . . . , q}. The properties of the permanent are
discussed in [6].

Theorem 1 (Wick’s theorem). Given a 2q-variate complex Gaussian (Z1, . . . , Zq, T1, . . . , Tq), then

E
(
Z1 · · · ZqT1 · · · Tq

)
= per (Σ) , Σ = [E

(
ZiT j

)
]
q
i,j=1 . (8)

In particular,
E
(
Z1 · · · ZqZ1 · · · Zq

)
= per (Σ) , Σ = [E

(
ZiZj

)
]
q
i,j=1 . (9)

Proof. Let us consider first the case where Z = Z1 = · · · = Zq and T = T1 = · · · = Tq. There are two
standard independent U1, U2 ∼ CN 1 (1) such that Z ∼ c11U1 + c12U2 and T ∼ c21U1 + c22U2. From
straightforward algebra, the independence of U1, U2 and Equation (6), we get

E
(

ZqTq
)
= q!E

(
ZT
)q .

Second, we apply a typical Gaussian argument. For each real λ = (λ1, . . . , λq) and µ =

(µ1, . . . , µq), we define the jointly complex Gaussian random variables Z = λ1Z1 + · · ·+ λqZq and
T = µ1T1 + · · ·+ µ + qTq to get
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E
(
(λ1Z1 + · · ·+ λqZq)

q(µ1T1 + · · ·+ µqTq)
q) =

q!E
(
ZT
)q

= q!
(
λtΣ µ

)q , Σ =
[
E
(
ZiT j

)]q
i,j=1 .

The LHS ν̃(λ; µ) is an homogeneous polynomial in λ and µ namely,

ν̃(λ; µ) = (q!)2 ∑
a1 + · · ·+ aq = q
b1 + · · ·+ bq = q

E
(

Za1
1 · · · Z

aq
q Tb1

1 · · · T
bq
q

) λa1
1 · · · λ

aq
q µb1

1 · · · µ
bq
q

a1! · · · aq! b1! · · · bq!
.

We have proved that for exponents such that a1 + · · ·+ aq = b1 + · · ·+ bq = q it holds

q!E
(

Za1
1 · · · Z

aq
q Tb1

1 · · · T
bq
q

)
=

∂2q

∂λa1
1 · · · ∂λ

aq
q ∂µb1

1 · · · ∂µ
bq
q

(λtΣµ)q .

Finally, we can use the Faà di Bruno formula to compute the derivative in the RHS. Assume all
exponents are equal 1, 1 = a1 = · · · = bq. The k-derivative of the power z 7→ zq is q!zq−k/k!, so that,
if we write λi = α1 and µj = αj+q

∂2q

∂λ1 · · · ∂λq ∂µ1 · · · ∂µq
(λtΣµ)q = ∑

π∈Π(2q)

q!
#π

(
q

∑
i,j=1

αiαj+qσij)
q−#π ∏

B∈π

∂#B

∂αB
(

q

∑
i,j=1

αiαj+qσij) .

The factor ∏B∈π
∂#B

∂αB
(∑

q
i,j=1 αiαj+qσij) is zero unless the partition is of the form π =

{B = {i, j}|1 ≤ i ≤ q, q + 1 ≤ j ≤ 2q}. In such a case, the factor is equal to ∏i=1 σi,π(i) for some
permutation π ∈ S(q). Cancellation of q! concludes the proof.

Remark 2. We note that the same argument shows that unequal lengths of the real and complex part give zero.
In case of repeated components, i.e., non-unit exponent, the condition for nullity is the fact the sum of the two
blocks of exponent are different.

Remark 3. We observe that the complex case can be considered, in some perspective, more simpler than the real
one. In fact, for example, when summing over Wick pairings, the former case considers only pairings matching
Zi to T j variables; while the real case considers all pairings (and thus the sums involved are more complicated).

3. Computation of the Moments via Recurrence Relations

In the previous section we have offered a compact review of Wick’s theorem which is a tool for
the computation of the moments of the CGD.

The case were there exponents in the complex moment are not all equal 1 is reduced to the case of
the theorem by considering repeated components. However, repeated components lead to identities
between terms in the expansion of the permanent, which is always an homogeneous polynomial in
the covariances. In this section we derive expressions of the permanent where all the monomials
appear once, presented as a system of recurrence relations among the moments of a Z ∼ CN p (Σ).
In conclusion, we present an explicit formula for the moments, which is an homogeneous polynomial
in the elements of Σ in standard form.

Let us first introduce some definitions.

Definition 1. Let α = (n1, . . . , np; m1, . . . , mp) ∈ Z2p
≥0 be a multi-index, let Z ∼ CN p (Σ), and let

ν(α) = E(Zn1
1 · · · Z

np
p Zm1

1 · · · Z
mp
p ) be the α-moment of Z.
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1. The sets N = {h = 1, . . . , p|nh 6= 0} and M = {k = 1, . . . , p|mk 6= 0} are the supporting sets of the
multi-index α.

2. Each element of the matrix Σ is an elementary moment, σhk = ν(βhk), with βhk = eh + ep+k,
h, k = 1, . . . , p and {ej}j=1,...,2p the canonical basis of R2p.

3. Given h ∈ N and k ∈ M, α−hk is the multi-index (n1, . . . , nh − 1, . . . , np; m1, . . . , mk − 1, . . . , mp):
α−hk = α− βhk.

We derive the recurrence relations among the moments, explicitly computing the integrals by part.
Our proof of Proposition 2 requires the following lemma. Recall that D− and D+ are the Wirtinger
derivatives, as in Equation (3).

Lemma 1. Let us assume that the covariance matrix Σ is not degenerate and let ϕ be the associated density
of Equation (7). For each bounded function f : C → C with Wirtinger derivatives bounded by a polynomial,
the following relations hold:

1.
∫

D+ f (z) ϕ(z) dz = −
∫

f (z) D+ϕ(z) dz, and analogously for D−.
2. zϕ(z; Σ) = −ΣtD−ϕ(z; Σ) and zϕ(z; Σ) = −ΣD+ϕ(z; Σ).

Proof of 1. We prove the thesis component-wise, dropping the index j.

∫
D+ f (z)ϕ(z) dz =

∫ 1
2

(
∂

∂x
f (x, y) + i

∂

∂y
f (x, y)

)
ϕ(x, y) dxdy =

−
∫

f (x, y)
1
2

(
∂

∂x
+ i

∂

∂y

)
ϕ(x, y) dxdy = −

∫
f (z)D+ϕ(z) dz .

Proof of 2. Let g(z) = z∗ Σ−1 z so that ϕ(z; Σ) = 1
πp det Σ exp (−g). We prove that z = ΣtD−g and

z = ΣD+g, and so the thesis follows trivially. We have ∂
∂xk

z = ek and ∂
∂yk

z = iek, with {e1, . . . , ep} the

canonical basis of Rp. As the directional derivative of g in the direction r is drg(z) = r∗Σ−1z + z∗Σ−1r,
then

∂

∂xk
g(z) = ek

∗Σ−1z + z∗Σ−1ek and
∂

∂yk
g(z) = (iek)

∗Σ−1z + z∗Σ−1(iek) ,

and we have for each k = 1, . . . , p that

D+
k g(z) =

1
2

(
ek
∗Σ−1z + z∗Σ−1ek

)
+

i
2

(
(iek)

∗Σ−1z + z∗Σ−1(iek)
)
=

1
2

(
ek

tΣ−1z + z∗Σ−1ek + ek
tΣ−1z− z∗Σ−1ek

)
= ek

tΣ−1z ,

hence ΣD+g(z) = ΣΣ−1z = z.

3.1. Recurrence Relations

We prove in the following proposition recurrence relations in which a moment is expressed as a
linear combination of moments with total degree reduced by 2. The proof is based on Lemma 1, hence
it assumes that the covariance matrix is non-degenerate.

Proposition 2 (Recurrence relations for the moments). Given the multi-index α with supporting sets N
and M, there are #N + #M ≤ 2p recurrence relations for the moment ν(α)

ν(α) = ∑
k∈M

mk σhk ν(α−hk), h ∈ N, and ν(α) = ∑
h∈N

nh σhk ν(α−hk), k ∈ M . (10)
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As a consequence, the moment is zero unless ∑
p
h=1 nh = ∑

p
k=1 mk.

Proof. Let f (z, α) = ∏
p
j=1 z

nj
j z

mj
j be the complex monomial with exponent α, and let h ∈ N. We denote

by {e1, . . . , e2p}, the canonical basis of R2p.

ν(α) =
∫
Cp

f (z, α)ϕ(z; Σ)dz

=
∫
Cp

f (z, α− eh)zh ϕ(z; Σ)dz

= −
∫
Cp

f (z, α− eh)et
hΣD+ϕ(z; Σ)dz by Lemma 1.2

= −
p

∑
k=1

σhk

∫
Cp

f (z, α− eh)D+
k ϕ(z; Σ)dz

= ∑
k∈M

σhk

∫
Cp

D+
k f (z, α− eh)ϕ(z; Σ)dz by Lemma 1.1

= ∑
k∈M

σhkmk

∫
Cp

f (z, α− eh − ep+k)ϕ(z; Σ)dz

= ∑
k∈M

σhkmkν(α−rk) .

By considering zk instead of zh, we can prove that ν(α) = ∑h∈N nh σhk ν(α−hk) for each k ∈ M.
Notice that such the proof holds without requiring any conditions on ∑

p
h=1 nh and ∑

p
k=1 mk.

The stated sufficient condition for the nullity of the moment, ∑h∈N nh 6= ∑k∈M mk, is derived by
considering a linear combination of the recurrence relations. In fact,(

∑
h∈N

nhν(α)− ∑
k∈M

mkν(α)

)
= ∑

h∈N
nh

(
∑

k∈M
mk σhk ν(α−hk)

)
− ∑

k∈M
mk

(
∑

h∈N
nh σhk ν(α−hk)

)

implies ν(α) (∑h∈N nh −∑k∈M mk) = 0 hence, ν(α) = 0 if ∑h∈N nh 6= ∑k∈M mk.

Remark 4. If ∑
p
h=1 nh = ∑

p
k=1 mk = q, the recurrence relations in Proposition 2 coincide with the recurrence

formula for computing the permanent of a q× q matrix Γ, derived from Σ splitting the h-th row in nh copies and
the k-th column in mk copies.

The recursive formula for the permanent of a q× q matrix Γ, developed with respect to the r-th row is,
see [6]:

per(Γ) =
q

∑
j=1

γrj per(Γ−rj )

where Γ−rj is obtained from Γ deleting the r-th row and the j-th column. Suppose that the first n1 rows and
the first m1 columns of Γ are obtained repeating n1 times the first row of Σ and m1 times the first colum of Σ,
respectively. If 1 ≤ r ≤ n1 and 1 ≤ j ≤ m1, then γrj = σ11, and so

m1

∑
j=1

γrj per(Γ−1j) = σ11

m1

∑
j=1

per(Γ−1j) = m1σ11 per(Γ−11)

since the matrices Γ−1j are all the same between them for 1 ≤ j ≤ m1. The matrix Γ−11 is associated
to the multi-index α−11 = (n1 − 1, n2, . . . , np, m1 − 1, m2, . . . , mp). Then per(Γ−11) = ν(α−11) and so
∑m1

j=1 γ1j per(Γ−1j) = m1σ11ν(α−11). The thesis follows by considering the sums associated to successive blocks of
repeated columns.
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The nullity of a moment depends also on the sparsity of the covariance matrix. For example,
here is a simple sufficient condition.

Corollary 1. If there exists h ∈ N such that σhk = 0 for all k ∈ M or if there exists k ∈ M such that σhk = 0
for all h ∈ N then ν(α) = 0.

Proof. In such cases the recurrence relations in Proposition 2 consist of null addends.

3.2. Closed Form

The recurrence relations in Proposition 2 allow us to compute a complex moment as a linear
function of lower degree moments. Hence, each complex moment is a polynomial of the elementary
moments σhk, h ∈ N, k ∈ M. For example, in the simple case where α is proportional to a multi-index
of an elementary moment, α = n βhk, n ∈ Z≥0, βhk = eh + ep+k, h ∈ N, k ∈ M, then each recurrence
relation contains one term only, so that

ν(n βhk) = n! ν(βhk)
n = n! σn

hk .

In general, the value of ν(α), with α such that ∑h∈N nh = ∑k∈M mk, can be obtained considering
that α is generated by the vectors with integer coefficients:

α = ∑
h∈N, k∈M

ahk βhk with ahk ∈ Z≥0 .

The coefficient vector a = [ahk]h∈N
k∈M

is not uniquely determined. For instance, if α = (2, 2, 1, 3) then

(2, 2, 1, 3) = (1, 0, 1, 0) + (1, 0, 0, 1) + 2(0, 1, 0, 1) = 2(1, 0, 0, 1) + (0, 1, 1, 0) + (0, 1, 0, 1) .

Considering all the possible integer coefficient vectors a that produce the same α, leads to define

the subset I(α) ⊂ Zp2

≥0 associated to each α-moments.

Definition 2. Let p ∈ N and let α = (n1, . . . , np; m1, . . . , mp) be a multi-index. The set I(α) ⊂ Zp2

≥0

contains all integer vectors a = (a11, . . . , a1p, a21, . . . , a2p, . . . , ap1, . . . , app) ∈ Zp2

≥0 such that lij(α, a) ≤
aij ≤ Lij(α, a), i, j = 1, . . . , p, where the bounds are defined by

lij(α, a) = 0∨

 i

∑
h=1

nh −
p

∑
h=j+1

mh − ∑
h≤i; k≤j
(h,k) 6=(i,j)

ahk

 ,

Lij(α, a) =

(
ni −

j−1

∑
k=1

aik

)
∧
(

mj −
i−1

∑
h=1

ahj

)
.

Some elements of a ∈ I(α) are uniquely determined, as shown in the following Proposition.
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Proposition 3. Let α = (n1, . . . , np, m1, . . . , mp) be a multi-index.

1. The free elements of the vector a are (p− 1)2. In fact, for each h = 1, . . . , p− 1, the elements ahp, aph and
app are:

ahp = nh −
p−1

∑
j=1

ahj apk = mk −
p−1

∑
i=1

aik app = np −
p−1

∑
j=1

mj +
p−1

∑
i,j=1

aij .

2. If there exists an index r such that nr = 0, then ark = 0, for k = 1 . . . p. Analogously, if there exists an
index s such that ms = 0, then ahs = 0, for h = 1 . . . p.

For simplicity α and a are omitted. This proof is based on Proposition A1 in Appendix A that
states 0 ≤ lij ≤ Lij.

Proof of 1. We show, by induction, the thesis for aip.

Base step: n1 −∑
p−1
k=1 a1k = l1p ≤ L1p = m1 ∧ n1 −∑

p−1
k=1 a1k and so a1p = n1 −∑

p−1
k=1 a1k.

Induction step: assume ahp = nh −∑
p−1
k=1 ahk for h < i, that is nh = ∑

p
k=1 ahk. We obtain

lip =
i

∑
h=1

nh − ∑
h=1...i;k=1...p
(h,k) 6=(i,p)

ahk =
i−1

∑
h=1

(
nh −

p

∑
k=1

ahk

)
+ ni −

p−1

∑
k=1

aik = ni −
p−1

∑
k=1

aik

and so, since lip ≤ Lip = (ni −∑
p−1
k=1 aik) ∧ (mp −∑

p−1
h=1 ahp), we conclude that aip = ni −∑

p−1
k=1 aik.

The proof for apj is analogous. Finally, from aip and apj, we obtain, by direct computation, app.

Proof of 2. We have

0 ≤ Lrp ≤ nr −
p−1

∑
k=1

ark = −
p−1

∑
k=1

ark

and so, ark = 0, k = 1, . . . , (p− 1). Since arp = nr −∑
p−1
k=1 ark, we have arp = 0.

Analogously for ahs.

Example 1. If p = 3 we have

I(α) =
{

a = (a11, a12, a21, a22) ∈ Z4
≥0 | 0∨ (n1 −m2 −m3) ≤ a11 ≤ n1 ∧m1,

0∨ (n1 −m3 − a11) ≤ a12 ≤ (n1 − a11) ∧m2,

0∨ (n1 + n2 −m2 −m3 − a11) ≤ a21 ≤ n2 ∧ (m1 − a11),

0∨ (n1 + n2 −m3 − a11 − a12 − a21) ≤ a22 ≤ (n2 − a21) ∧ (m2 − a12)} .

The following theorem gives an explicit expression of the α-moment of CN p (Σ). The proof is
based on several propositions given in the Appendix A.

Theorem 2. Let α be a multi-index with N and M supporting sets. Assume that ∑h∈N nh = ∑k∈M mk.
Then the α-moment of CN p (Σ) is

ν(α) =
p

∏
h=1

nh!mh! ∑
a∈I(α)

p

∏
h,k=1

σ
ahk
hk

ahk!
(11)

by setting σ0
hk = 1 also when σhk = 0. The set I(α) is as in Definition 2.
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Proof. We denote by P(a) the product

P(a) =
p

∏
h,k=1

σ
ahk
hk

ahk!
(12)

First, we show that ∏
p
h=1 nh!mh! ∑a∈I(α) P(a) is the elementary moment σhk when α = βhk. Let

α = βhk. Since ni = mj = 0 for each i 6= h and j 6= k, Item 2 of Proposition 3 implies that air = arj = 0,
for i 6= h, j 6= k and r ≤ p, that is ahk is the unique element of the vector a different from zero.
Furthermore ahk = 1 since lhk = 1 and Lhk = 1 and the thesis follows.

Now, we show that ∏
p
h=1 nh!mh! ∑a∈I(α) P(a) satisfies the recurrence relations for a general α.

Let us consider ∑
p
k=1 mkσhkν(α−hk), with α−hk = α− eh − ep+k. Let a+hk be the vector a containing the

value ahk + 1 instead of ahk: a+hk = a + e(h−1)p+k. From Equation (12), for a ∈ I(α−hk), we have

σhkP(a) =
σ

ahk+1
hk
ahk!

p

∏
r,s=1

(r,s) 6=(h,k)

σars
rs

ars!
= (ahk + 1)

σ
ahk+1
hk

(ahk + 1)!

p

∏
r,s=1

(r,s) 6=(h,k)

σars
rs

ars!
= (ahk + 1) P(a+hk) . (13)

Let δ(α) = ∏
p
r=1 nr!mr! ∑a∈I(α) P(a). From Equations (12) and (13) it follows

p

∑
k=1

mkσhkδ(α−hk) =
p

∏
r=1

nr!mr!
p

∑
k=1

mkσhk
mknh

∑
a∈I(α−hk)

P(a) =
1

nh

p

∏
r=1

nr!mr!
p

∑
k=1

∑
a∈I(α−hk)

(ahk + 1) P(a+hk)

In Proposition A3 we have shown that ∑a∈I(α−hk)
(ahk + 1) P(a+hk) = ∑a∈I(α) ahk P(a). Then

p

∑
k=1

mkσhkδ(α−hk) =
1

nh

p

∏
r=1

nr!mr!
p

∑
k=1

∑
a∈I(α)

ahk P(a) =
p

∏
r=1

nr!mr! ∑
a∈I(α)

∑
p
k=1 ahk

nh
P(a) ,

and so, since Proposition 3 shows ∑
p
s=1 ahk = nh, we obtain ∑

p
k=1 mkσhkδ(α−hk) = δ(α). The thesis

follows because the function δ(α) satisfies the recurrence relations and coincides with the elementary
moments, so that δ(α) = ν(α).

Analogously if we consider ∑
p
h=1 nhσhkν(α−hk).

Remark 5. For each elementary moment σhk = 0, if ahk 6= 0, the corresponding addend of the sum on I(α) is
null. Then, in the sum on I(α) are present only the addends such that ahk = 0, since we assume 00 = 1.

Remark 6. It should be noted that Equation (11) of Theorem 2 contains the multinomial coefficients

p

∏
h=1

(
nh

ah1 . . . ahp

)
and

p

∏
h=1

(
mh

a1h . . . aph

)
that are related to the cardinality of the special permutations of equal terms in the permanent. This remark
prompts for a purely combinatorial proof of the equation for the moments. However, it should be noted that
the specific value of α induces on each ahk the constrains provided by the limits lhk and Lhk that are stated in
Definition 2 and Proposition 3. We do not follow here this line of investigation. We thank an anonymous referee
for suggesting this remark.

Example 2. Let us consider the case with p = 2 and p = 3.

• If p = 2 and n1 + n2 = m1 + m2, then ν(α) = n1!n2!m1!m2! ∑a∈I(α) P(a), where
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I(α) = {a11 ∈ Z≥0 | 0∨ (n1 −m2) ≤ a11 ≤ n1 ∧m1} and

P(a) =
σa11

11
a11!

σn1−a11
12

(n1 − a11)!
σm1−a11

21
(m1 − a11)!

σn2−m1+a11
22

(n2 −m1 + a11)!
.

• If p = 3 and n1 + n2 + n3 = m1 +m2 +m3, then ν(α) = n1!n2!n3!m1!m2!m3! ∑a∈I(α) P(a), where I(α)
is shown in Example 1 and

P(a) =
σa11

11
a11!

σa12
12

a12!
σa21

21
a21!

σa22
22

a22!
σ

n1−∑2
h=1 a1h

13

(n1 −∑2
h=1 a1h)!

σ
n2−∑2

h=1 a2h
23

(n2 −∑2
h=1 a2h)!

σ
m1−∑2

h=1 ah1
31

(m1 −∑2
h=1 ah1)!

σ
m2−∑2

h=1 ah2
32

(m2 −∑2
h=1 ah2)!

σ
n3−m1−m2+∑2

h,k=1 ahk
33

(n3 −m1 −m2 + ∑2
h,k=1 ahk)!

.

Example 3 (Running example). Let Z ∼ CN 5 (Σ), with Σ such that

σ13 = σ14 = σ24 = σ25 = σ35 = σ45 = 0 .

Let α = (1, 2, 0, 2, 1; 1, 1, 1, 1, 2), where ∑5
h=1 nh = ∑5

k=1 mk = 6, so that the condition of Theorem 2 is
satisfied. Here N = {1, 2, 4, 5} and M = {1, 2, 3, 4, 5}.

Since n3 = 0, from Proposition 3 it follows that a3k = 0, k = 1, . . . , 5. Denoting by Ri(j) = ∑
j−1
k=1 aik and

by Cj(i) = ∑i−1
h=1 ahj, with Ri(1) = 0 and Cj(1) = 0, the set I(α) is defined by:

0 ≤ a11 ≤ 1
0 ≤ a12 ≤ 1− R1(2)
0 ≤ a13 ≤ 1− R1(3)
0 ≤ a14 ≤ 1− R1(4)
a15 = 1− R1(5)



0 ≤ a21 ≤ 1− C1(2)
0 ≤ a22 ≤ (2− R2(2)) ∧ (1− C2(2))
0 ≤ a23 ≤ (2− R2(3)) ∧ (1− C3(2))
0∨ (1− R1(4)− R2(4)− C4(2)) ≤ a24 ≤ (2− R2(4)) ∧ (1− C4(2))
a25 = 2− R2(5)

0 ≤ a41 ≤ 1− C1(4)
0∨ (1− R1(2)− R2(2)− R4(2)− C2(4)) ≤ a42 ≤ (2− R4(2)) ∧ (1− C2(4))
0∨ (2− R1(3)− R2(3)− R4(3)− C3(4)) ≤ a43 ≤ (2− R4(3)) ∧ (1− C3(4))
0∨ (3− R1(4)− R2(4)− R4(4)− C4(4)) ≤ a44 ≤ (2− R4(4)) ∧ (1− C4(4))
a45 = 2− R4(5)

a51 = 1− C1(5) a52 = 1− C2(5) a53 = 1− C3(5) a54 = 1− C4(5) a55 =
4

∑
k=1

Ck(5)− 3

The moment is:

ν(α) = 8 ∑
a∈I(α)

σa11
11

a11!
σa12

12
a12!

σ
a13
13

a13!
σa14

14
a14!

σ
1−R1(5)
15

(1− R1(5))!
σa21

21
a21!

σa22
22

a22!
σa23

23
a23!

σa24
24

a24!
σ

2−R2(5)
25

(2− R2(5))!
σa41

41
a41!

σa42
42

a42!

σ
a43
43

a43!
σa44

44
a44!

σ
2−R4(5)
45

(2− R4(5))!
σ

1−C1(5)
51

(1− C1(5))!
σ

1−C2(5)
52

(1− C2(5))!
σ

1−C3(5)
53

(1− C3(5))!
σ

1−C4(5)
54

(1− C4(5))!
σ

∑4
k=1 Ck(5)−3

55

(∑4
k=1 Ck(5)− 3)!

where the null elementary moments are highlighted.
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As specified in Remark 5, we set ahk = 0 when σhk = 0. In this example we obtain a15 = a21 = a22 =

a43 = a44 = a55 = 1 and the other ahk = 0 and so the moment ν(α) is

ν(α) = 8 σ15 σ21 σ22 σ43 σ44 σ55 .

4. Factorisation

In this section we present a factorisation of the complex moments which depends on the null
elements of Σ and on the supporting sets N and M of the given moment. The argument we use is not
based on independence assumptions. Such a factorisation is possible when there exists a non trivial
partition of the supporting sets induced by the non null elements of covariance matrix Σ.

Definition 3. Let N and M be the supporting sets of a multi-index α. The graph induced by α is the bipartite
graph G = (N, M, E), where the edges are defined by E = {(h, k) ∈ N ×M| σhk 6= 0}. Let {Cs}Q

s=1 be the
connected components of G, Cs = (Ns, Ms, Es). The connected components of G define a partitions of N and M,
that we call the partition induced by Σ.

Notice that the partitions of M and N are uniquely defined and they can be the trivial partition.

Theorem 3. Let {Nr}Q
r=1 and {Mr}Q

r=1 be the partition induced by Σ. Let αr be the multi-index α restricted to
Nr ∪Mr, αr = (nh, mh)h∈Nr∪Mr . The moment ν(α) is given by

ν(α) = ν(α1)ν(α2) · · · ν(αQ) .

Proof. We use the notations of Theorem 2. Let Ar = Nr × Mr. There are no edges in G outside
each connected component, σhk = 0 if (h, k) /∈ ∪r Ar. According to the argument in Remark 5,
each ahk ∈ I(α) is zero unless (h, k) ∈ ∪r Ar. By cancelling trivial factors, we have

∑
a∈I(α)

p

∏
h,k=1

σ
ahk
hk

ahk!
= ∑

a∈I(α)

 Q

∏
r=1

∏
(h,k)∈Ar

σ
ahk
hk

ahk!

 .

It follows that

∑
a∈I(α)

p

∏
h,k=1

σ
ahk
hk

ahk!
= ∑

a∈I∗(α)
∏

(h,k)∈A1

σ
ahk
hk

ahk!
· · · ∏

(h,k)∈AQ

σ
ahk
hk

ahk!
, I∗(α) = {a ∈ I(α)| ahk = 0, (h, k) ∈ ∪r Ar} ,

so that

ν(α) =
Q

∏
r=1

(
∏

h∈Nr

nh! ∏
k∈Mr

mk!

)
∑

ahk ,(h,k)∈A1

· · · ∑
ahk ,(h,k)∈AQ

∏
(h,k)∈A1

σ
ahk
hk

ahk!
· · · ∏

(h,k)∈AQ

σ
ahk
hk

ahk!

=
Q

∏
r=1

 ∏
h∈Nr

nh! ∏
k∈Mr

mk! ∑
ahk ,(h,k)∈Ar

∏
(h,k)∈Ar

σ
ahk
hk

ahk!


= ν(α1)ν(α2) · · · ν(αQ) .

The factorisation of the previous theorem reduces the computational complexity for computing
ν(α), since each factor is a moment of lower order. The computation of the connected components of a
graph requires linear time, in terms of the numbers of its nodes and its edges, see [7].

In presence of a non-trivial induced partition of the supporting sets, the following corollary shows
necessary conditions for the nullity of the moment ν(α).
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Corollary 2. Under the hypothesis of Theorem 3, the moment ν(α) is null if there exists r ∈ {1, . . . , Q}
such that

∑
h∈Nr∪Mr

nh 6= ∑
k∈Nr∪Mr

mk .

Proof. If there exists r ∈ {1, . . . , Q} such that ∑h∈Nr∪Mr nh 6= ∑k∈Nr∪Mr mk, then ν(αr) is null and the
thesis follows.

Remark 7. If there exists an h ∈ N such that σhk = 0 for each k ∈ M or if there exists an k ∈ M such that
σhk = 0 for each h ∈ N, then Corollary 1 shows that ν(α) = 0. This is a degenerate case, where the bipartite
graph G has a connected component (∅, Mr) or (Nr, ∅), for some r. It follows that, for example, if there exists a
connected component (∅, Mr), then ∑k∈Nr∪Mr mk 6= 0 and ∑h∈Nr∪Mr nh = 0 since h ∈ Mr does not belong to
N. In such a case, we have ν(α) = 0.

Example 4 (Running example—continued). As in Example 3, let Z ∼ CN 5 (Σ) with Σ such that σ13 =

σ14 = σ24 = σ25 = σ35 = σ45 = 0.
Let N = {1, 2, 3, 4, 5} and M = {1, 4, 5}. Then there exist the non trivial induced partition of N and

M, given by N1 = {1, 2, 5} and M1 = {1, 5}, N2 = {3, 4} and M2 = {4}. In such a case the matrix
[σhk]h∈N, k∈M is

[σhk]h∈N, k∈M =


σ11 0 σ15

σ21 0 0
0 σ34 0
0 σ44 0

σ51 0 σ55

 =

(
by row/column
permutations

)
=


σ11 σ15 0
σ21 0 0
σ51 σ55 0
0 0 σ34

0 0 σ44

 .

The permuted matrix highlights the induced partitions. The conditions of Corollary 2 for the nullity of
ν(α) are

n1 + n2 + n5 6= m1 + m5 or n3 + n4 6= m4 .

We compute the moments with two different α.

1. Let α = (2, 2, 2, 2, 2; 2, 0, 0, 2, 6). In such a case ν(α) = 0 even if ∑h∈N nh = ∑k∈M mk = 10. In fact
n3 + n4 6= m4.

2. Let α = (2, 1, 1, 1, 1; 2, 0, 0, 2, 2). From Theorem 3 the moment ν(α) factorises in ν(α1) ν(α2), where
α1 = (n1, n2, n5; m1, m2, m5) = (2, 1, 1; 2, 0, 2) and α2 = (n3, n4; m3, m4) = (1, 1; 0, 2).

We compute, separately, ν(α1) and ν(α2) applying the restrictions on I(α1) and I(α2) specified in
Proposition 3 and in Remark 5, and the formulæ for p = 3 and p = 2 of Example 2:

ν(α1) = 4 σ2
15σ21σ51 + 8 σ11σ21σ55 and ν(α2) = 2 σ34σ44 .

5. Discussion

This piece of research about the moments of the CGD was originally motivated by the desire to
evaluate the approximation error of a cubature formula with nodes on a suitable subset of the complex
roots of the unity, first introduced in [8].

In this paper, we discussed particular cases of the Wick’s theorem for the CGD. When the exponent
α of the complex moment is not 0–1 valued, the permanent has repeated terms in the sum. By collecting
them, one obtains the form of Theorem 2, which is an homogeneous polynomial in the covariances.
By the way of this expression, cases of factorisation of the moments have been derived in Theorem 3.
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The relevance of Theorem 2 is mainly theoretical. On one side, it allows for the analysis of the
moment’s behaviour as function of the elementary moments σij. On the other side, our the proof of the
factorisation depends on it. The factorisation, if any, reduces the computational complexity of ν(α).

Let us discuss briefly the complexity of the computation of moments that do not factorise. We can
compare the method presented in this paper, based on Equation (11), with the method based on the
permanent, see Equation (9). For simplicity, we consider Z ∼ CN p (Σ), with Σ without null elements,
and all the exponents of the moment equal to n, i.e., α = (n, . . . , n; n, . . . , n).

The computation of the moment as the permanent of a np× np matrix requires (np)! products
using a raw algorithm and it requires (np)2np−1 products using the Ryser algorithm, see [6].

The optimisation of the algorithm for Equation (11) is outside the scope of this paper. The raw
implementation of such a formula requires first to compute, only once, j!, for j = 1, . . . , p. Then,
for each a ∈ I(α), the computation of P(a) which requires 2np products, since ∑

p
h,k=1 ahk = np.

A conservative upper bound of #I(α) is obtained by assuming that each aij ∈ [0, n]. It follows that

#I(α) < n(p−1)2
, and so the the complexity of Equation (11) is less than 2pn1+(p−1)2

. Actually, the #I(α)
is much smaller in most cases. For instance, if p = 5, n = 6 then the effective #I(α) = 1.6× 108, while
n(p−1)2

= 2.8× 1012.
Notice that the complexity of our formula, 2pn1+(p−1)2

, is much smaller than the complexity of the
raw version of the permanent, (np)!. Furthermore, comparing the complexity of the Ryser algorithm
to the upper bound of our algorithm, we find, by direct computation, that np2np−1 > 2npn(p−1)2

when p is small and n is large. For example our algorithm is less expensive for p = 5 and n ≥ 12.
We expect that the Ryser optimisation techniques applied to Equation (11) will lead to a further
reduction in complexity.
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Appendix A. Properties of the bounds lij and Lij

The following proposition states that the definition of I(α) in Definition 2 is consistent.

Proposition A1. Let α, a, lij(α, a) and Lij(α, a) be as in Definition 2. If the entries ahk of the vector a,
h ≤ i, k ≤ j, (h, k) 6= (i, j), satisfy the bounds lhk(α, a) ≤ ahk ≤ Lhk(α, a), then 0 ≤ lij(α, a) ≤ Lij(α, a),

Proof. For simplicity α and a are omitted. Obviously, for each i, j, we have lij ≥ 0 and so aij ≥ 0.
If (i, j) = (1, 1), l11 = 0 ∨ (n1 − ∑

p
k=2 mk) and L11 = n1 ∧ m1. The thesis follows straightforward.

The case with (ij) 6= (1, 1) is proved by induction.

• Base steps. We prove that l1,j ≤ L1,j, by induction on j. The inequalities hold for (i, j) = (1, 1).
We assume l1,j−1 ≤ a1,j−1 ≤ L1,j−1.

We have a1,j−1 ≤ L1,j−1 ≤ n1 − ∑
j−2
k=1 a1k, that is n1 − ∑

j−1
k=1 a1k ≥ 0 and so

L1j = (n1 − ∑
j−1
k=1 a1k) ∧ mj ≥ 0. We show that L1j ≥ n1 − ∑

p
k=j+1 mk − ∑

j−1
k=1 a1k and so, since

L1j ≥ 0, we conclude L1j ≥ l1j. If L1j = n1−∑
j−1
k=1 a1k, obviously, L1j ≥ n1−∑

p
k=j+1 mk −∑

j−1
k=1 a1k.

The case L1j = mj also implies l1j ≤ L1j. In fact, from the inductive hypothesis, we have

a1,j−1 ≥ l1,j−1 ≥ n1 −∑
p
k=j mk −∑

j−2
k=1 a1k, that is mj ≥ n1 −∑

p
k=j+1 mk −∑

j−1
k=1 a1k. Analogously,

the relation between li,1 and Li,1 can be shown.
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• Induction step. We show that lij ≤ Lij, by assuming that lhk ≤ ahk ≤ Lhk for h < i, k ≤ p, so that
li−1,j ≤ ai−1,j ≤ Li−1,j, and for h ≤ p, k < j, so that li,j−1 ≤ ai,j−1 ≤ Li,j−1. It follows that Lij ≥ 0
since the inequalities

ai−1,j ≤ mj −
i−2

∑
h=1

ahj and ai,j−1 ≤ ni −
j−2

∑
k=1

aik imply mj −
i−1

∑
h=1

ahj ≥ 0 and ni −
j−1

∑
k=1

aik ≥ 0 .

Furthermore, from li,j−1 ≤ ai,j−1 and from li−1,j ≤ ai−1,j it follows

i

∑
h=1

nh −
p

∑
k=j

mk − ∑
h=1...i

k=1...j−1

ahk ≤ 0 and
i−1

∑
h=1

nh −
p

∑
k=j+1

mk − ∑
h=1...i−1

k=1...j

ahk ≤ 0

and so, by adding mj −∑i−1
h=1 ahj and ni −∑

j−1
k=1 aik to both sides of the first and of second relation,

respectively,

mj −
i−1

∑
h=1

ahj ≥
i

∑
h=1

nh −
p

∑
k=j+1

mk − ∑
h=1...i;k=1...j
(h,k) 6=(i,j)

ahk

ni −
j−1

∑
h=1

aih ≥
i

∑
h=1

nh −
p

∑
k=j+1

mk − ∑
h=1...i;k=1...j
(h,k) 6=(i,j)

ahk

We conclude that Lij ≥ lij. In fact Lij ≥ 0 and

Li,j =

(
ni −

j−1

∑
k=1

aik

)
∧
(

mj −
i−1

∑
h=1

ahj

)
≥

i

∑
h=1

nh −
p

∑
h=j+1

mh − ∑
h=≤i; k≤j−1
(h,k) 6=(i,j)

ahk .

Proposition A1 also holds when some values nr and ms are equal to zero.

Proposition A2. Let α = (n1, m1, . . . , np, mp) ∈ Z2p
≥0 and let a = (a1,1, . . . , a1,p, . . . , ap,p) ∈ Zp2

≥0 be a
vector belonging to I(α). If aij coincides with a bound, then some ahk are uniquely determined.

1. Let aij = Lij(α, a) = mj −∑i−1
h=1 ahj. Then aqj = 0 for q = i + 1, . . . , p.

2. Let aij = Lij(α, a) = ni −∑
j−1
k=1 aik. Then ait = 0 for t = j + 1, . . . , p.

3. Let aij = lij(α, a) = ∑i
h=1 nh −∑

p
h=j+1 mh −∑ h≤i; k≤j

(h,k) 6=(i,j)
ahk.

Then ait = mt −∑i−1
h=1 aht, aqj = nq −∑

j−1
k=1 aqk and aqt = 0, for q = i + 1, . . . , p, t = j + 1, . . . , p.

Proof. For simplicity α and a are omitted.

1. Let aij = Lij = mj −∑i−1
h=1 ahj. Then mj = ∑i

h=1 ahj. We show, by induction, that aqj = 0 for q > i.

• Base step: q = i + 1. We have 0 ≤ a(i+1),j ≤ L(i+1),j ≤ mj −∑i
h=1 ahj = 0.

• Induction step: let ahj = 0 for h = (i + 1), . . . (q− 1). Then 0 ≤ aqj ≤ Lqj ≤ mj −∑
q−1
h=1 ahj =

mj −∑i
h=1 ahj = 0.

2. Analogously to previous Item.
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3. Since aij = ∑i
h=1 nh − ∑

p
k=j+1 mk − ∑ h≤i;k≤j

(h,k) 6=(i,j)
ahk then ∑i

h=1 nh − ∑
p
k=j+1 mk = ∑h≤i;

k≤j
ahk and so,

for each t > j it holds

li,t =
i

∑
h=1

nh −
p

∑
k=t+1

mk −
i

∑
h=1

t

∑
k=1

(h,k) 6=(i,t)

ahk =
i

∑
h=1

nh −
p

∑
k=j+1

mk +
t

∑
k=j+1

mk −
i

∑
h=1

t

∑
k=1

(h,k) 6=(i,t)

ahk

=
t

∑
k=j+1

mk +
i

∑
h=1

j

∑
k=1

ahk −
i

∑
h=1

t

∑
k=1

(h,k) 6=(i,t)

ahk =
t

∑
k=j+1

mk −
i−1

∑
h=1

t

∑
k=j+1

ahk −
t−1

∑
k=j+1

aik

=
t

∑
k=j+1

(mk −
i−1

∑
h=1

ahk)−
t−1

∑
k=j+1

aik (A1)

We show by induction that ait = mt −∑i−1
h=1 aht for each t > j.

• Base step: t = j + 1. By Equation (A1) with t = j + 1 we have

li,j+1 = mj+1 −
i−1

∑
h=1

ah,j+1 ≤ Li,j+1 ≤ mj+1 −
i−1

∑
h=1

ah,j+1 ,

that is li,j+1 = Li,j+1, and so the thesis follows since li,j+1 ≤ ai,j+1 ≤ Li,j+1.

• Induction step: let aik = mk −∑i−1
h=1 ahk for j + 1 ≤ k < t. By Equation (A1)

lit = mt −
i−1

∑
h=1

aht +
t−1

∑
k=j+1

(mk −
i−1

∑
h=1

ahk)−
t−1

∑
k=j+1

aik

= mt −
i−1

∑
h=1

aht +
t−1

∑
k=j+1

aik −
t−1

∑
k=j+1

aik = mt −
i−1

∑
h=1

aht ≥ Lit ≥ lit

and so lit = Lit, and the thesis follows since lit ≤ ait ≤ Lit.

Analogously, we can show aqj = nq −∑
j−1
k=1 aqk for q > i.

Furthermore, since aqj = Lqj = nq − ∑
j−1
k=1 aqk for q = i + 1, . . . , p, then from Item 1 it follows

aqt = 0 for t = j + 1, . . . , p and so, by varying q ≥ i + 1 we obtain the thesis.

Proposition A3. Let α be a multi-index, let α−hk = α− eh − ep+k, and let I(α) be as in Definition (2). Let P(a)
be as in Equation (12). Then

∑
a∈I(α−hk)

(ahk + 1) P(a11, . . . , ahk + 1, . . . , app) = ∑
a∈I(α)

ahk P(a) .

Proof. We define the set I∗hk =
{

b|bij = aij, (i, j) 6= (h, k); bhk = ahk + 1; a ∈ I(α−hk)
}

. We consider the
bounds for b ∈ I∗hk. Using nh − 1 and mk − 1 instead of nh and mk, by direct computation we obtain the
following conditions.

1. Let j < k. Since j + 1 < k + 1, that is j + 1 ≤ k, we have

0∨

 i

∑
r=1

nr −
p

∑
s=j+1

ms + 1− ∑
r≤i; s≤j; (r,s) 6=(i,j)

brs

 ≤ bij ≤
(

ni −
j−1

∑
s=1

bis

)
∧
(

mj −
i−1

∑
r=1

brj

)
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2. Let i = h and j < k. Since i = h and j + 1 < k + 1, that is j + 1 ≤ k, we have

0∨

 h

∑
r=1

nr −
p

∑
s=j+1

ms − ∑
r≤h; s≤j; (r,s) 6=(h,j)

brs

 ≤ bhj ≤
(

nh − 1−
j−1

∑
s=1

bhs

)
∧
(

mj −
h−1

∑
r=1

brj

)

3. Let i < h and j = k. Since i < h and j = k, i.e., j + 1 > k + 1, we have

0∨

 i

∑
r=1

nr −
p

∑
s=k+1

ms − ∑
r≤i; s≤k; (r,s) 6=(i,k)

brs

 ≤ bik ≤
(

ni −
k−1

∑
s=1

bis

)
∧
(

mk − 1−
i−1

∑
r=1

brk

)

4. Let i = h and j = k. Since bhk = ahk + 1, we have

1∨

 h

∑
r=1

nr −
p

∑
s=k+1

ms − ∑
r≤h; s≤k; (r,s) 6=(h,k)

brs

 ≤ bhk ≤
(

nh −
k−1

∑
s=1

bhs

)
∧
(

mk −
h−1

∑
r=1

brk

)

5. Let i > h or j > k. Analysing each case (i > h and j < k, j = k, j > k; j > k and i < h, i = h) as in
the previous items, we have

0∨

 i

∑
r=1

nr −
p

∑
s=j+1

ms − ∑
r≤i; s≤j; (r,s) 6=(i,j)

brs

 ≤ bij ≤
(

ni −
j−1

∑
s=1

bis

)
∧
(

mj −
i−1

∑
r=1

brj

)

It follows that the set I∗hk is strictly contained in I(α). The vectors b ∈ I(α) \ I∗hk are such that
bhk = 0 or at least a component coincides with a bound lij or Lij. This latter condition implies that
bhk = 0. In fact, if b ∈ I(α) \ I∗hk then

bij =
i

∑
r=1

nr −
p

∑
s=j+1

ms − ∑
r≤i; s≤j; (r,s) 6=(i,j)

brs = lij(α) if i < h, j < k or

bhj = nh −
j−1

∑
s=1

bhs = Lhj(α) if j < k or bik = mk −
k−1

∑
s=1

brk = Lik(α) if i < h .

From Proposition A2, we have bhk = 0, i.e., ahk + 1 = 0. We conclude that

∑
a∈I(α−hk)

(ahk + 1) P(a11, . . . , ahk + 1, . . . , app) = ∑
b∈I∗hk

bhk P(b) = ∑
b∈I(α)

bhk P(b)

since the coefficients b ∈ I(α) \ I∗hk correspond to null addends, since bhk = 0.
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