

  mathematics-07-00260




mathematics-07-00260







Mathematics 2019, 7(3), 260; doi:10.3390/math7030260




Article



q-Rung Orthopair Fuzzy Hypergraphs with Applications



Anam Luqman 1, Muhammad Akram 1,*[image: Orcid] and Ahmad N. Al-Kenani 2[image: Orcid]





1



Department of Mathematics, University of the Punjab, New Campus, Lahore 4590, Pakistan






2



Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80219, Jeddah 21589, Saudi Arabia









*



Correspondence: m.akram@pucit.edu.pk







Received: 13 January 2019 / Accepted: 6 March 2019 / Published: 13 March 2019



Abstract

:

The concept of q-rung orthopair fuzzy sets generalizes the notions of intuitionistic fuzzy sets and Pythagorean fuzzy sets to describe complicated uncertain information more effectively. Their most dominant attribute is that the sum of the qth power of the truth-membership and the qth power of the falsity-membership must be equal to or less than one, so they can broaden the space of uncertain data. This set can adjust the range of indication of decision data by changing the parameter q, q≥1. In this research study, we design a new framework for handling uncertain data by means of the combinative theory of q-rung orthopair fuzzy sets and hypergraphs. We define q-rung orthopair fuzzy hypergraphs to achieve the advantages of both theories. Further, we propose certain novel concepts, including adjacent levels of q-rung orthopair fuzzy hypergraphs, (α,β)-level hypergraphs, transversals, and minimal transversals of q-rung orthopair fuzzy hypergraphs. We present a brief comparison of our proposed model with other existing theories. Moreover, we implement some interesting concepts of q-rung orthopair fuzzy hypergraphs for decision-making to prove the effectiveness of our proposed model.
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1. Introduction


Zadeh’s [1] fuzzy set (FS) has acquired greater attention by researchers in a wide range of scientific areas, including management sciences, robotics, decision theory. and many other disciplines. FSs were further generalized to intuitionistic fuzzy sets (IFSs) by Atanassov [2] in 1983. An IFS is distinguished by a truth-membership (T) and falsity-membership (F) satisfying the condition that the sum of both membership degrees should not exceed one. IF values play an important role in both theoretical and practical progress of IFSs. Applications of IFSs appear in various fields, including medical diagnosis, optimization problems, and decision-making. Recently, Liu et al. [3] introduced and explored various types of centroid transformations of IF values. Furthermore, Feng et al. [4] defined two different types of generalized IF soft subsets and various new operations for generalized IF soft sets. However, in many practical decision-making problems, the sum of truth-membership and falsity-membership may not be less than one, but the sum of their squares may be less than one. To handle such types of difficulties, Yager [5,6] introduced the novel concept of Pythagorean fuzzy sets (PFSs), which is the generalization of IFSs. Compensating the constraint that the summation of both membership degrees does not exceed one and that the sum of squares of the membership degrees should not be greater than one makes PFSs more powerful, generalizable, and effective. Naz et al. [7] proposed a novel approach to decision-making with Pythagorean fuzzy information. PFSs can deal with various real-life problems more effectively, still there are cases that cannot be handled using PFSs. Take an example: The truth-membership and falsity-membership values suggested by a decision-maker are 0.8 and 0.9, respectively. Then, the problem can never be handled by means of PFSs, as 0.82+0.92=1.45>1. In order to deal with such types of cases, Yager [8] submitted the idea of q-rung orthopair fuzzy sets (q-ROFSs). A q-ROFS is represented by means of two membership degrees; one is the truth and the other is falsity, with the characteristic that the summation of the qth power of truth-membership and the qth power of falsity-membership should not be greater than one. Thus, q-ROFSs extend the concepts of IFSs and PFSs, so that the uncertain information can be dealt with in a widened range. After that, Liu and Wang [9] developed and applied certain simple weighted operators to aggregate q-ROFSs in decision-making. Certain applications of q-ROFSs in decision-making have been discussed in [10,11]. This set can adjust the range of indication of decision data by changing the parameter q, q≥1. Wei et al. [12] defined q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision-making.



The ambiguousness in the representation of different objects or in the relationships between them generates the essentiality of fuzzy graphs, which were originally studied and developed by Kaufmann [13] in 1977. A valuable contribution to fuzzy graphs and fuzzy hypergraphs was presented in [14]. Akram and Naz [15] discussed the energy of Pythagorean fuzzy graphs with applications. Recently, certain operations on PFGs and IFG of the three-type and n-type were discussed by Akram et al. [16]. The same authors discussed certain Pythagorean fuzzy graphs and also defined q-rung orthopair fuzzy competition graphs with applications in [17]. Kaufmann [13], in 1977, defined fuzzy hypergraphs. Fuzzy hypergraphs were redefined and generalized by Lee-Kwang and Keon-Myung [18]. Parvathi et al. [19] originated the notion of IF hypergraphs. Later on, this idea was generalized by Akram and Dudek [20]. They studied the various features of IF hypergraphs and proposed the applicability of IF hypergraphs in radio coverage networks and clustering problems. Akram and Sarwar [21] introduced the transversals and minimal transversals of m-polar fuzzy hypergraphs and investigated their certain properties. Akram and Luqman [22] studied the transversals of bipolar neutrosophic hypergraphs. They developed and implemented an algorithm to find minimal bipolar neutrosophic transversals.



In this paper, we propose certain novel concepts, including q-rung orthopair fuzzy hypergraphs, (α,β)-level hypergraphs, transversals, and minimal transversals of q-rung orthopair fuzzy hypergraphs. Further, we implement some interesting concepts of q-rung orthopair fuzzy hypergraphs for decision-making. This paper is arranged as follows: In Section 2, some basic and necessary concepts are reviewed and q-rung orthopair fuzzy hypergraphs are defined. Section 3 deals with some interesting concepts, including q-rung orthopair fuzzy transversals, minimal transversals, and locally-minimal transversals of q-rung orthopair fuzzy hypergraphs. We explain the method for finding the minimal transversal of q-rung orthopair fuzzy hypergraphs. In Section 4, we discuss how the concept of q-rung orthopair fuzzy hypergraphs can be applied to decision-making to analyze real-life phenomena. Section 5 presents a detailed comparison of q-ROFSs with other existing theories. The last section deals with the conclusions.




2. q-Rung Orthopair Fuzzy Hypergraphs


Definition 1.

A q-rung orthopair fuzzy set (q-ROFS) Q in the universe X is an object having the representation [5]:


Q=⟨x,TQ(x),FQ(x)|x∈X⟩,








where the function TQ:X→[0,1] defines the truth-membership and FQ:X→[0,1] defines the falsity-membership of the element x∈X, and for every x∈X,


0≤TQq(x)+FQq(x)≤1, q≥1.








Furthermore, πQ(x) = 1−TQq(x)−FQq(x)q is called a q-ROF index or indeterminacy degree of x to the set Q.





For convenience, Liu and Wang [9] called the pair (TQq(x),FQq(x)) as a q-rung orthopair fuzzy number (q-ROFN), which is denoted as (TQq,FQq).



Remark 1.


	
When q=1, one-ROFS is called an IFS.



	
When q=2, two-ROFS is called a PFS.










Definition 2.

An intuitionistic fuzzy graph (IFG) on a non-empty set X is an ordered pair G=(V,E) [23], where V is an IFS on X and E is an IFR on X such that:


TE(x1x2)≤min{TV(x1),TV(x2)} , FE(x1x2)≤max{FV(x1),FV(x2)},








and 0≤TE(x1x2)+FE(x1x2)≤1, where TE:X×X→[0,1] and FE:X×X→[0,1] represent the truth-membership and falsity-membership degrees of E, respectively. Here, V is the vertex set and E is the edge set of G.





Definition 3.

A Pythagorean fuzzy graph (PFG) on a non-empty set X is an ordered pair G˜=(V˜,E˜) [7], where V˜ is a PFS on X and E˜ is a PFR on X such that:


TE˜(x1x2)≤min{TV˜(x1),TV˜(x2)} , FE˜(x1x2)≤max{FV˜(x1),FV˜(x2)},








and 0≤TE˜2(x1x2)+FE˜2(x1x2)≤1, where TE˜:X×X→[0,1] and FE˜:X×X→[0,1] represent the truth-membership and falsity-membership degrees of E˜, respectively. Here, V˜ is the vertex set and E˜ is the edge set of G˜.





Definition 4.

A q-rung orthopair fuzzy relation (q-ROFR) R on X is defined as:


R={x1x2,TR(x1x2),FR(x1x2)|x1,x2∈X×X},








where TR:X×X→[0,1] and FR:X×X→[0,1] represent the truth-membership and falsity-membership function of R, respectively, such that 0≤TRq(x1x2)+FRq(x1x2)≤1, q≥1, for all x1x2∈X×X.





Example 1.

Let X = {x1, x2, x3} be a non-empty set and R be a subset of X×X such that R = {(x1x2,0.9,0.7), (x1x3,0.7,0.9), (x2x3,0.6,0.8)}. Note that, 0≤TR5(x1x2)+FR5(x1x2)≤1, for all x1x2∈X×X. Hence, R is a five-ROFR on X.





Definition 5.

A q-rung orthopair fuzzy graph (q-ROFG) on a non-empty set X is defined as an ordered pair G=(V,E), where V is a q-ROFS on X and E is a q-ROFR on X such that:


TE(x1x2)≤min{TV(x1),TV(x2)} , FE(x1x2)≤max{FV(x1),FV(x2)},








and 0≤TEq(x1x2)+FEq(x1x2)≤1, q≥1 for all x1,x2∈X, where TE:X×X→[0,1] and FE:X×X→[0,1] represent the truth-membership and falsity-membership degrees of E, respectively.





Example 2.

Let G=(V,E) be a five-ROFG, where V = (v1,0.8,0.6),(v2,0.5,0.6),(v3,0.9,0.6),(v4,0.7,0.6) is a five-ROFS on X and E = {(v1v2,0.5,0.6),(v3v2,0.5,0.6),(v1v4,0.7,0.6)} is a five-ROFR on X. The corresponding five-ROFG is shown in Figure 1.





Remark 2.


	
When q=1, one-ROFG is called an IFG.



	
When q=2, two-ROFG is called a PFG.










Definition 6.

The support of a q-ROFS Q=⟨x,TQ(x),FQ(x)|x∈X⟩ is defined as supp(Q) = {x|TQ(x)≠0,FQ(x)≠1}.



The height of a q-ROFS Q=⟨x,TQ(x),FQ(x)|x∈X⟩ is defined as h(Q) = (maxx∈XTQ(x),minx∈XFQ(x)).



If h(Q) = (1,0), then q-ROFS Q is called normal.





Definition 7.

Let X be a non-empty set. A q-rung orthopair fuzzy hypergraph (q-ROFH) H on X is defined in the form of an ordered pair H=(Q,ζ), where Q = {Q1,Q2,Q3,…Qn} is a finite collection of non-trivial q-ROF subsets on X and ζ is a q-ROFR on q-ROFSs Qi such that:

	1. 

	


Tζ(Ek)=Tζ(x1,x2,x3,…,xm)≤min{Qi(x1),Qi(x2),Qi(x3),…,Qi(xm)},










Fζ(Ek)=Fζ(x1,x2,x3,…,xm)≤max{Qi(x1),Qi(x2),Qi(x3),…,Qi(xm)},








for all x1, x2, x3, ⋯, xm∈X.




	2. 

	
⋃isupp(Qi) = X, for all Qi∈Q.











Definition 8.

The height of a q-ROFH H = (Q,ζ) is defined as h(H)= {max(ζl),min(ζm)}, where ζl = maxTζj(xi) and ζm = minFζj(xi). Here, Tζj(xi) and Fζj(xi) denote the truth-membership degree and falsity-membership degree of vertex xi to the hyperedge ζj, respectively.





Definition 9.

Let H = (Q,ζ) be a q-ROFH. The order of H, which is denoted by O(H), is defined as O(H) = ∑x∈X∧Qi(x). The size of H, which is denoted by S(H), is defined as S(H) = ∑x∈X∨Qi(x).





In a q-ROFH, adjacent vertices xi and xj are the vertices that are the part of the same q-ROF hyperedge. Two q-ROF hyperedges ζi and ζj are said to be adjacent hyperedges if they possess the non-empty intersection, i.e., supp(ζi)∩supp(ζi)≠∅.



We now define the adjacent level between two q-ROF vertices and q-ROF hyperedges.



Definition 10.

The adjacent level between two vertices xi and xj is denoted by γ(xi,xj) and is defined as γ(xi,xj) = (maxkmin[Tk(xi),Tk(xj)],minkmax[Fk(xi),Fk(xj)]).



The adjacent level between two hyperedges ζi and ζj is denoted by σ(ζi,ζj) and is defined as σ(ζi,ζj) = (maxjmin[Tj(x),Tk(x)],minjmax[Fj(x),Fk(x)]).





Definition 11.

A simple q-ROFH H = (Q,ζ) is defined as a hypergraph, which has no repeated hyperedges contained in it, i.e., if ζi,ζj∈ζ and ζi⊆ζj, then ζi=ζj.



A q-ROFH H = (Q,ζ) is support simple if ζi,ζj∈ζ, supp(ζi)=supp(ζj) and ζi⊆ζj, then ζi=ζj.



A q-ROFH H = (Q,ζ) is strongly support simple if ζi,ζj∈ζ and supp(ζi)=supp(ζj), then ζi=ζj.





Definition 12.

A q-ROFS Q:X→[0,1] is called an elementary set if TQ and FQ are single-valued on the support of Q.



A q-ROFH H = (Q,ζ) is elementary if all its hyperedges are elementary.





Proposition 1.

A q-ROFH H = (Q,ζ) is the generalization of the fuzzy hypergraph and IF hypergraph.





An upper bound on the cardinality of hyperedges of a q-ROFH of order n can be achieved by using the following result.



Theorem 1.

Let H = (Q,ζ) be a simple q-ROFH of order n. Then, |ζ| acquires no upper bound.





Proof. 

Let X={x1,x2}. Define ζN = {Qj,j=1,2,3,⋯,N}, where:


TQj(x1)=11+j,FQj(x1)=1−11+j,








and


TQj(x2)=11+j,FQj(x2)=1−11+j.











Then, HN = (Q,ζN) is a simple q-ROFH having N hyperedges. □





Theorem 2.

Let H = (Q,ζ) be an elementary and simple q-ROFH on a non-empty set X having n elements. Then, |ζ|≤2n−1. The equality holds if and only if {supp(ζj)|ζj∈ζ, ζ≠0} = P(X)\∅.





Proof. 

Since H is elementary and simple, then at most one ζi∈ζ can have each non-trivial subset of X as its support; therefore, we have |ζ|≤2n−1.



To prove that the relation satisfies the equality, consider a set of mappings ζ={(TA,FA)|A⊆X} such that


TA(x)=1|A|ifx∈A,0otherwise. , FA(x)=1|A|ifx∈A,0otherwise.











Then, each set containing a single element has height (1,1), and the height of the set having two elements is (0.5,0.5), and so on. Hence, H is simple and elementary with |ζ|=2n−1. □





Definition 13.

The cut level set of a q-ROFS Q is defined to be a crisp set of the following form: Q(α,β) = {x∈X|TQ(x)≥α,FQ(x)≤β}, where α,β∈[0,1] and 0≤αq+βq≤1, q≥1.





Definition 14.

Let H = (Q,ζ) be a q-ROFH. The (α,β)-level hypergraph of H is defined as H(α,β) = (Q(α,β),ζ(α,β)), where:

	1. 

	
ζ(α,β) = {ζi(α,β):ζi∈ζ} and ζi(α,β) = {x∈X|Tζi(x)≥α,Fζi(x)≤β},




	2. 

	
Q(α,β) = ⋃ζi∈ζζi(α,β).











Example 3.

Let H = (Q,ζ) be a four-ROFH as shown in Figure 2, where ζ = {ζ1,ζ2,ζ3,ζ4,ζ5}. The incidence matrix of H is given in Table 1.



By direct calculations, it can be seen that it is a four-ROFH. All the above-mentioned concepts can be well explained by considering this example. Here, h(H) = {max(ζl),min(ζm)} = (0.6,0.2). Since H does not contain repeated hyperedges, it is a simple four-ROFH. Furthermore, H is support simple and strongly support simple, i.e., whenever ζi,ζj∈ζ and supp(ζi)=supp(ζj), then ζi=ζj. The adjacency level between x1, x2 and between two hyperedges ζ1, ζ2 is given as follows:


γ(x1,x2)=(maxkmin[Tk(x1),Tk(x2)],minkmax[Fk(x1),Fk(x2)]),k=1,2,3,4,5.=(0.1,0.3),σ(ζ1,ζ2)=(maxmin[T1(x),T2(x)],minmax[F1(x),F2(x)])=(0.2,0.6).











For α = 0.1, β=0.4∈[0,1], the (0.1,0.4)-level hypergraph of H is H(0.1,0.4) = (Q(0.1,0.4),ζ(0.1,0.4)), where:


ζ(0.1,0.4)={ζ1(0.1,0.4),ζ2(0.1,0.4),ζ3(0.1,0.4),ζ4(0.1,0.4),ζ5(0.1,0.4)}={{x1,x2,x3},{x5},{x4},{x8,x9},{x3,x6,x9}},Q(0.1,0.4)={x1,x2,x3}∪{x5}∪{x4}∪{x8,x9}∪{x3,x6,x9}={x1,x2,x3,x4,x5,x6,x8,x9}.











Note that the (0.1,0.4)-level hypergraph of H is a crisp hypergraph as shown in Figure 3.





Remark 3.

If α≥μ and β≤ν and Q is a q-ROFS on X, then Q(α,β)⊆Q(μ,ν). Thus, we can have ζ(α,β)⊆ζ(μ,ν), for level hypergraphs of H, i.e., if a q-ROFH has distinct hyperedges, its (α,β)-level hyperedges may be the same, and hence, (α,β)-level hypergraphs of a simple q-ROFHs may have repeated edges.





Definition 15.

Let H = (Q,ζ) be a q-ROFH and H(α,β) be the (α,β)-level hypergraph of H. The sequence of real numbers ρ1 = (Tρ1,Fρ1), ρ2 = (Tρ2,Fρ2), ρ3 = (Tρ3,Fρ3), ⋯, ρn = (Tρn,Fρn), 0<Tρ1<Tρ2<Tρ3<⋯<Tρn, Fρ1>Fρ2>Fρ3>⋯>Fρn>0, where (Tρn,Fρn) = h(H), such that:

	(i) 

	
if ρi−1 =(Tρi−1,Fρi−1)<ρ = (Tρ,Fρ)≤ρi =(Tρi,Fρi), then ζρ = ζρi,




	(ii) 

	
ζρi⊆ζρi+1,






is called the fundamental sequence of H, denoted by fS(H). The set of ρi-level hypergraphs {Hρ1, Hρ2, Hρ3, ⋯, Hρn} is called the core hypergraphs of H or simply the core set of H and is denoted by c(H).





Definition 16.

A q-ROFH H1 = (Q1,ζ1) is called a partial hypergraph of H2 = (Q2,ζ2) if ζ1⊆ζ2 and is denoted as H1⊆H2.





Definition 17.

Let H = (Q,ζ) be a q-ROFH having fundamental sequence fS(H) = {ρ1,ρ2,ρ3,⋯,ρn}, and let ρn+1=0; if for all hyperedges ζk∈ζ, k=1,2,3,⋯,n and for all ρ∈(ρi+1,ρi], we have ζiρ = ζiρi, then H is called sectionally elementary.





Theorem 3.

Let H = (Q,ζ) be an elementary q-ROFH. Then, the necessary and sufficient condition for H = (Q,ζ) to be strongly support simple is that H is support simple.





Proof. 

Suppose that H is support simple, elementary, and supp(ζi) = supp(ζj), for ζi,ζj∈ζ. Let h(ζi)≤h(ζj). Since H is elementary, we have ζi≤ζj, and since H is support simple, we have ζi = ζj. Hence, H is strongly support simple. On the same lines, the converse part may be proven. □





Definition 18.

A q-ROFH H = (Q,ζ) is said to be a B = (TB,FB) a tempered q-rung orthopair fuzzy hypergraph if for H = (X,ξ), a crisp hypergraph, and a q-ROFS B = (TB,FB):X→[0,1] such that ζ = {DA = (TDA,FDA)|A⊂X}, where


TDA(x)=min(TB(y)):y∈Aifx∈A,0otherwise.,










FDA(x)=max(FB(y)):y∈Aifx∈A,0otherwise.













Example 4.

Consider a three-ROFH H = (Q,ζ) as shown in Figure 4. The incidence matrix of H = (Q,ζ) is given in Table 2.



Define a three-ROFS B = {(x1,0.6,0.7), (x2,0.7,0.6), (x3,0.8,0.7), (x4,0.6,0.5), (x5,0.7,0.8)}. By direct calculations, we have:

	
TD{x1,x3,x5}(x1) = min{0.6,0.8,0.7} = 0.6,



	
FD{x1,x3,x5}(x1) = max{0.7,0.8,0.7} = 0.8,



	
TD{x2,x3,x4}(x2) = min{0.7,0.8,0.6} = 0.6,



	
FD{x2,x3,x4}(x2) = max{0.6,0.5,0.7} = 0.7,



	
TD{x1,x4}(x4) = min{0.6,0.6} = 0.6,



	
FD{x1,x4}(x4) = max{0.7,0.7} = 0.7,



	
TD{x2,x5}(x5) = min{0.7,0.7} = 0.7,



	
FD{x2,x5}(x5) = max{0.6,0.8} = 0.8. Similarly, all other values can be calculated by using the same method. Thus, we have ζ1 = (TD{x1,x3,x5},FD{x1,x3,x5}), ζ2 = (TD{x2,x3,x4},FD{x2,x3,x4}), ζ3 = (TD{x1,x4},FD{x1,x4}), ζ4 = (TD{x2,x5},FD{x2,x5}). Hence, H is a B-tempered three-ROFH.











3. Transversals of q-Rung Orthopair Fuzzy Hypergraphs


Definition 19.

Let H = (Q,ζ) be a q-ROFH on X. A q-ROF subset τ of X, which satisfies the condition τh(ζi)∩ζih(ζi)≠∅, for all ζi∈ζ, is called a q-rung orthopair fuzzy transversal(q-ROFT) of H.



τ is called the minimal transversal of H if τ1⊂τ, τ1 is not a q-ROFT. tr(H) denotes the collection of minimal transversals of H.





We now discuss some results on q-ROFTs.



Remark 4.

Although τ can be regarded as a minimal transversal of H, it is not necessary for τ(α,β) to be the minimal transversal of H(α,β), for all α,β∈[0,1]. Furthermore, it is not necessary for the family of minimal q-ROFTs to form a hypergraph on X. For those q-ROFTs that satisfy the above property, we have:





Definition 20.

A q-ROFT τ with the property that τ(α,β) is a minimal transversal of H(α,β), for α,β∈[0,1], is called the locally-minimal q-ROFT of H. The collection of locally-minimal q-ROFTs of H is denoted by tr*(H).





Lemma 1.

Let fS(H) = {ρ1, ρ2, ρ3, ⋯, ρn} be the fundamental sequence of a q-ROFH H and τ be the q-ROFT of H. Then, h(τ)≥h(ζi), for each ζi∈ζ, and if τ is minimal, then h(τ) = max{h(ζi)|ζi∈ζ} = ρ1.





Proof. 

Since τ is a q-ROFT of H, then τh(ζi)∩ζih(ζi)≠∅. Consider an arbitrary element of supp(τ), then ζi(x)>h(ζi), and we have h(τ)≥h(ζi). If τ is a minimal transversal, then h(ζi) = {maxTζi(x),minFζi(x)|x∈Xandζi∈ζ} = ρ1. Hence, h(τ) = max{h(ζi)|ζi∈ζ} = ρ1. □





Theorem 4.

Let H = (Q,ζ) be a q-ROFH, then the statements:

	(i) 

	
τ is a q-ROFT of H,




	(ii) 

	
For all ζi∈ζ and for each ρ={Tρ,Fρ}∈[0,1] satisfying 0<(Tρ,Fρ)<h(ζi), τρ∩ζρ≠∅,




	(iii) 

	
τρ is a transversal of Hρ, for all ρ∈[0,1], 0<ρ<ρ1,






are equivalent.





Proof. 

(i) ⇒ (ii). Suppose τ is a q-ROFT of H. For any ρ∈[0,1], which satisfies 0<(Tρ,Fρ)<h(ζi), τρ⊇τh(ζi) and ζiρ⊇ζih(ζi). Hence, τρ∩ζρ⊇τh(ζi)∩ζih(ζi)≠∅, because τ is a transversal.



(ii) ⇒ (iii). Let τρ∩ζiρ≠∅, for all ζ)i∈ζ and 0<Tρ<Tρ1, 0>Fρ<Fρ1, which implies that τρ is a transversal of Hρ.



(iii) ⇒ (i). This part can be proven trivially. □





Theorem 5.

Let H = (Q,ζ) be a q-ROFH. For each x∈X such that τ(x)∈fS(H) and for all τ∈tr(H), the fundamental sequence of tr(H)⊂fS(H).





Proof. 

Let the fundamental sequence of H be fS(H) = {ρ1,ρ2,ρ3,⋯,ρn} and τ∈tr(H), for τ(x)∈(ρi+1,ρi]. Consider a mapping ψ defined by:


ψ(u)=ρiifx=u,τ(u)otherwise.











Thus, from the definition of ψ, it follows that ψρi = τρi, and the definition of fundamental sequence of H implies that Hρ = Hρi, for all ρ∈(ρi+1,ρi]. Since τ is a q-ROFT of H and ψρ = τρ, for all ρ∉(ρi+1,ρi], ψ is a q-ROFT. Now, ψ≤τ, and the minimality of τ both implies that ψ = τ. Thus, τ(x) = ψ(x) = ρ1 and τ(x)∈fS(H). Hence, we conclude that fS(tr(H))⊆fS(H). □





Theorem 6.

The collection of all minimal transversals tr(H) is sectionally elementary.





Proof. 

Let the fundamental sequence of tr(H) be fs(tr(H)) = {ρ1,ρ2,ρ3,⋯,ρn}. Consider an element τ of tr(H) and some ρ∈(ρi+1,ρi] such that τρi⊂τρ. In consideration of [tr(H)]ρ = [tr(H)]ρi, we have ψ∈tr(H) satisfying ψρ = τρi. Then, the condition ψρ⊃τρi implies the existence of a q-rung orthopair fuzzy set R such that:


R(x)=ρ,ifx∈ψρi\τρi,ψ(x),otherwise.








is the q-ROFT of H. Now, ρ<ψ yields a contradiction to the minimality of ψ. □





Lemma 2.

Let H = (Q,ζ) be a q-ROFH. Consider an element x of supp(τ), where τ∈tr(H), then there exists a q-rung orthopair fuzzy hyperedge ζ of H such that:

	(i) 

	
τ(x) = h(ζ) = ζ(x)>0,




	(ii) 

	
τh(ζ)∩ζh(ζ) = {x}.











Proof. 

(i) Let τ(x)>0 and Q denote the set of all q-rung orthopair fuzzy hyperedges of H such that for each element ζ of Q, ζ(x)≥τ(x). Then, this set is non-empty because ττ(x) is a transversal of Hτ(x) and x∈ττ(x). Additionally, each element ζ of Q satisfies the inequality h(ζ)≥ζ(x)≥τ(x). Suppose, on the contrary, that (i) is false, then for each ζ∈Q, h(ζ)>τ(x), and we have an element xζ≠x, where xζ∈ζh(ζ)∩τh(ζ). Here, we define a q-ROFS Q′ as:


Q′(v)=τ(v)ifx≠v,max{h(ζ)|h(ζ)<τ(x)}ifx=v.











Note that Q′ is a q-ROFT of H and Q′<τ, which is a contradiction to the fact that τ is minimal. Hence, (i) holds for some ζ. (ii) Suppose each element of Q satisfies (i) and also has an element xζ≠x, where xζ∈ζh(ζ)∩τh(ζ). Following the same arguments as used in (i) above completes the proof. □





Theorem 7.

Let H = (Q,ζ) be an ordered q-ROFH with fS(H) = {ρ1, ρ2, ρ3, ⋯, ρn}, and c(H) = {Hρ1, Hρ2, Hρ3, ⋯, Hρn}. Then, tr⭑(H) is non-empty. Further, if τn is a minimal transversal of Hρn, then there exists T∈tr⭑(H) such that supp(T) = τn.





Proof. 

Let τn be a minimal transversal of Hρn; Hρn−1 is a partial hypergraph of Hρn because H is ordered, and consequently, τn−1 is a minimal transversal of Hρn−1 such that τn−1⊆τn. By continuing the same argument, we establish a nested sequence of minimal transversals τ1⊆τ2⊆τ3⊆⋯⊆τn, where every τi is a minimal transversal of Hρi. Let ηj = ηj(τj,ρj) be an elementary q-ROF set having height ρj and support τj. Then, T = max{ηj|1≤j≤n} is the locally-minimal transversal of H having support τn. □





We now present a construction for finding tr(H) as follows.



Construction 1.

Let H = (Q,ζ) be a q-ROFH having the set of core hypergraphs c(H) = {Hρ1, Hρ2, Hρ3, ⋯, Hρn}. An iterative procedure to find the minimal transversal τ of H is as follows:

	1. 

	
Find a crisp minimal transversal τ1 of Hρ1.




	2. 

	
Find a minimal transversal τ2 of Hρ2 that satisfies τ1⊆τ2, i.e., formulate a new hypergraph H2 having hyperedges ζρ2, which is augmented having a loop at each x∈τ1. In accordance with this, we can say that ζ(H2) = ζρ2∪{{x}|x∈τ1}. Let τ2 be an arbitrary minimal transversal of H2.




	3. 

	
By continuing the same procedure repeatedly, we have a sequence of minimal transversals τ1⊆τ2⊆τ3⊆⋯⊆τj such that τj is the minimal transversal of Hρj with the property τj−1⊆τj.




	4. 

	
Consider an elementary q-rung orthopair fuzzy set μj having the support τj and h(μj) = ρj, 1≤j≤n. Then, τ = ⋃j=1n{μj|1≤j≤n} is a minimal q-ROFT of H.











Example 5.

Consider a five-ROFH H = (Q,ζ), as shown in Figure 5, where ζ = {ζ1,ζ2,ζ3}. Incidence matrix of H = (Q,ζ) is given in Table 3. By routine calculations, we have h(ζ1) = (0.8,0.6), h(ζ2) = (0.8,0.5) and h(ζ3) = (0.8,0.5). Consider a q-rung orthopair fuzzy subset τ1 of X such that τ1 = {(x1,0.8,0.6), (x2,0.7,0.9), (x3,0.8,0.5)}. Note that, ζ1h(ζ1) = {x1}, ζ2h(ζ2) = {x3}, and ζ3h(ζ3) = {x3}. Furthermore, τ1(0.8,0.6) = {x1}, τ2(0.8,0.5) = {x3}, and τ3(0.8,0.5) = {x3}. It can be seen that τ1h(ζi)∩ζih(ζi)≠∅, for all ζi∈ζ. Thus, τ1 is a five-ROFT of H. Similarly, τ2 = {(x1,0.8,0.6), (x3,0.8,0.5)}, τ3 = {(x1,0.8,0.6), (x3,0.8,0.5), (x4,0.6,0.8)}, τ4 = {(x1,0.8,0.6), (x3,0.8,0.5), (x5,0.7,0.5),} are other transversals of H. The minimal transversal is τ2, i.e., whenever τ⊆τ2, τ is not a five-ROFT.



Let α=0.8, β=0.5, then ζ1(0.8,0.5) = {∅}, ζ2(0.8,0.5) = {x3}, ζ3(0.8,0.5) = {x3} show that τ2(0.8,0.5) is not a minimal transversal of H(0.8,0.5).





Theorem 8.

Let H = (Q,ζ) be a q-ROFH and x∈X. Then, there exists an element τ of tr(H) such that x∈supp(τ) if and only if there is a hyperedge ζ1∈ζ, which satisfies:

	(i) 

	
ζ1(x) = h(ζ′),




	(ii) 

	
For every ξ∈ζ with h(ξ)>h(ζ1), ξh(ζi)⊄ζ1h(ζ1),




	(iii) 

	
The h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge of Hh(ζ1).











Proof. 


	(i)

	
Let us suppose that τ(x)>0 and τ is an element of tr(H), then the first condition directly follows from Lemma 2.




	(ii)

	
To prove the second condition, suppose that for every ζ1 that satisfies the first condition, there is ξ∈ζ such that h(ξ)>h(ζ1) and ξh(ξ)⊆ζ1h(ζ1). Then, there exists an element v≠x, where v∈ξh(ξ)∩τh(ξ)⊆ζ1h(ζ1)∩τh(ζ1), which is a contradiction.




	(iii)

	
To prove that the h(ζ1) level cut of ζ1 is not a proper subset of any other hyperedge of Hh(ζ1), suppose that for every ζ1 that satisfies the above two conditions, there is ξ∈ζ with ∅⊂ξh(ξ)⊂ζ1h(ζ1), as ξh(ξ)≠∅, and from second condition, we have h(ξ) = ζ1(x) = τ(x). If h(ξ) = ζ1(x), our supposition accommodates ξ′∈ζ such that ∅⊂ξ′h(ζ1)⊂ξh(ζ1)⊂ζ1h(ζ1). This recursive procedure must end after a finite number of steps, so assume that ξ(x)<h(ξ), which implies the existence of an element v≠x, where v∈ξh(ζ1)∩τh(ζ1)⊆ζ1h(ζ1)∩τh(ζ1), which is again a contradiction.









The sufficient condition is proven by using the construction given in Algorithm 1. By using the first condition, we have h(ζ1) = ρ1, ρ1∈fS(H), and from the other two conditions, we have yξ∈ξh(ξ)\ζ1h(ζ1) such that ξ≠ζ1 and h(ξ)≥h(ζ1). Then, Q∩ζ1h(ζ1), where Q is the collection of all such vertices. An initial sequence of transversals is constructed in a way that τj⊆Q, for 1≤j≤n and τi⊆Q∪{x}. Continuing the construction 1 will give a minimal q-ROFT with τ(x) = ζ1(x) = h(ζ1). □





Definition 21.

Let Q be a q-ROFS and α,β∈[0,1]. The lower truncation of Q at level α,β is a q-ROFS Q⟨α,β⟩ given by:


Q⟨α,β⟩(x)=Q(x)ifx∈Q(α,β),(0,1)otherwise.











The upper truncation of Q at level α,β is a q-ROFS Q⟨α,β⟩ given by:


Q⟨α,β⟩(x)=(α,β)ifx∈Q(α,β),Q(x)otherwise.













Definition 22.

Let E be a collection of q-ROFSs of X and:


E⟨α,β⟩={q⟨α,β⟩|q∈E},E⟨α,β⟩={q⟨α,β⟩|q∈E}.











Then, the upper and lower truncations of a q-ROFH H = (Q,ζ) at α,β level are a pair of q-ROFHs, H⟨α,β⟩ and H⟨α,β⟩, defined by H⟨α,β⟩ = (X,E⟨α,β⟩) and H⟨α,β⟩ = (X,E⟨α,β⟩).





Definition 23.

Let Q be a q-ROFS on X, then each (μ,ν)∈(0,h(Q)) for which:


Q(α,β)⊈Q(μ,ν),(μ,ν)<(α,β)≤h(Q),








is called the transition level of Q.





Definition 24.

Let Q be a non-trivial q-ROFS of X. Then:

	(i) 

	
the sequence S(Q) = {t1Q,t2Q,t3Q,⋯,tnQ} is called the basic sequence determined by Q, where:

	
t1Q>t2Q>t3Q>⋯>tnQ>0,



	
t1Q = h(Q),



	
{t2Q,t3Q,⋯,tnQ} is the set of transition levels of Q.









	(ii) 

	
The set of cuts of Q, C(Q), is defined as C(Q) = {Qt|t∈S(Q)}.




	(iii) 

	
The join max{η(Qt,t)|t∈S(Q)} of basic elementary q-ROFSs E(Q) = {η(Qt,t)|t∈S(Q)} is called the basic elementary join of Q.











Lemma 3.

Let H be a q-ROFH with fS(H) = {ρ1,ρ2,ρ3,⋯,ρn}. Then:

	(i) 

	
if t=(μ,ν) is a transition level of τ∈tr(H), then there is an ϵ>0 such that, ∀(α,β)∈(t,t+ϵ], τ(μ,ν) is a minimal H(μ,ν)-transversal extension of τ(α,β), i.e., if τ(α,β)⊆τ′⊆τ(μ,ν), then τ′ is not a transversal of H(μ,ν).




	(ii) 

	
tr(H) is sectionally elementary.




	(iii) 

	
fS(tr(H)) is properly contained in fS(H).




	(iv) 

	
τ(α,β) is a minimal transversal of H(α,β), for each τ∈tr(H) and ρ2<(α,β)≤ρ1.











Proof. 


	(i) 

	
Let t~=(μ,ν) be a transition level of τ∈tr(H). Then, by definition, we have τ(α,β)⊈τ(μ,ν), (μ,ν)<(α,β)≤h(H), for all α,β. Since τ possesses a finite support, this implies the existence of an ϵ>0 such that τ(α,β) is constant on (t~, t~+ϵ]. Assume that there is a transversal T of H(μ,ν) such that τ(α′,β′)⊆T⊆τ(μ,ν), for α′,β′∈(t~, t~+ϵ]. We claim that this supposition is false. To demonstrate the existence of this claim, we suppose that the assumption is true and consider the collection of basic elementary q-ROFSs E(τ) = {η(τt,t)|t∈S(τ)} of τ. Note that a nested sequence of X is formed by c(τ)∪T, where c(τ) is used to denote the basic cuts of τ. Since H = (Q,ζ) is defined on a finite set X and Q is a finite collection of q-ROFSs of X, then each ρ∈(0,h(H)) corresponds to a number ϵρ>0 such that:

	
H(α,β) is constant on (ρ,ρ+ϵρ],



	
H(α,β) is constant on (ρ−ϵρ,ρ].








It follows from these considerations that level cuts of τ⭑(α,β) of the join τ⭑= max{max{E(τ)\η(τt˜,t˜),η(τt˜,t˜−ϵt˜),η(T,t˜)}} persuade:


τ˜(α,β)=Tif(α,β)∈(t˜−ϵt˜,t˜),τ(α,β)if(α,β)∈(0,h(H))\(t˜,t˜−ϵt˜)].











This relation is derived because of the supposition that ϵt˜ is so small that the open interval (t˜−ϵt˜,t˜) does not contain any other transition level of τ.



Since it is assumed that T is a transversal of Ht˜, T is a transversal of H(α,β), for all (α,β)∈(t˜−ϵt˜,t˜), and H(α,β) is constant on (t˜−ϵt˜,t˜). Note that τ(α,β) is a transversal of H(α,β), for all (α,β)∈(0,h(H)]; therefore, it follows that τ˜ is a q-ROF transversal of H, as τ˜<τ implies that τ∉tr(H), which leads to a contradiction. Hence, the supposition is false, and the claim is satisfied.




	(ii) 

	
Let τ∈tr(H), then τ(α,β) is a transversal of H(α,β) for 0<(α,β)<h(H). Suppose that a transition level t of τ corresponds to an interval (t,t+ϵ], ϵ>0, on which τ(α,β) is constant. Then, for (α′,β′)∈(t,t+ϵ], τ(α′,β′) is not a transversal of Ht, which implies that τ(α′,β′)∉(tr(H))t, where tr(H))t denotes the t-cut of tr(H). However, the definition of the fundamental sequence of tr(H) implies that t∈fS(tr(H)).




	(iii) 

	
To prove (iii), we suppose that if t = (μ,ν) is a transition level of some τ∈tr(H), then t belongs to fS(H). On the contrary, suppose that the transition level t of some τ∈tr(H) does not belong to fS(H). Then, for some ρj∈fS(H), we have ρj+1<t<ρj, where ρn+1 = 0, as H(α,β) = Hρj, for all (α,β)∈(ρj+1,ρj], and it follows that τt is a transversal of Ht = Hρj. Furthermore, there exists an ϵ>0, such that τ(α,β) is constant on (t,t+ϵ]. Without loss of generality, we assume that t+ϵ≤ρj and (α′,β′)∈(t,t+ϵ]. Since t is a transition level of τ, then τ(α′,β′)⊊τt, and τ(α′,β′) is not a transversal of Ht (from i), which is not possible, as H(α′,β′) = Hρj = Ht; this proves our claim. Along with this result and the fact that h(τ) = ρ1∈fS(H), it follows that fS(tr(H))⊆fS(H), for all τ∈tr(H).




	(iv) 

	
First, we will show that τρ1 is a minimal transversal of Hρ1. Suppose on the contrary that there is a minimal transversal T of Hρ1 such that T⊆τρ1. Let τ˜ = max{τρ2,η1}, where η1 is the basic elementary q-ROFS having support T and height ρ1. τρ2 is considered as the upper truncation of τ at level ρ2. It is obvious that τ˜ is a transversal of H with τ˜<τ, which is a contradiction to the fact that τ is minimal. From the (ii) and (iii) parts, it follows that τ(α,β)∈tr(H)(α,β), for ρ2<(α,β)<ρ1. □











Theorem 9.

At least one minimal q-ROFT is contained in every q-ROFT of a q-ROFH H.





Proof. 

Let fS(H) = {ρ1,ρ2,ρ3,⋯,ρn} be the fundamental sequence of H and suppose that ξ is a transversal of H, which is not minimal. Let τ be a minimal transversal of H, τ≤ξ, which is constructed in such a way {qi∈Q(X)|i=0,1,2,⋯,n} satisfying τ = qn≤⋯≤q1≤q0≤ξ, where Q(X) is the collection of q-ROFSs on X. It can be noted that h(ξ)≥h(H) = ρ1 and ξ(α,β) is a transversal of H(α,β), for 0<(α,β)≤ρ1. Therefore, the reduction process is started as q0 = ξ⟨ρ1⟩, where ξ⟨ρ1⟩ represents the upper truncation level of ξ at ρ1. Since the top level cut ξρ1 of ρ0 comprises a crisp minimal transversal T1 of Hρ1, we have q1 = max{ξ⟨ρ2⟩,λT1}, where λT1 is an elementary q-ROFS having height ρ1 and support T1. Note that q1≤q2≤ξ. The same procedure will determine all the other remaining members. For instance, we have q2 = max{ξ⟨ρ3⟩,λT1,λT2}, where λT2 is an elementary q-ROFS having height ρ2 and support T2, such that:


T2=T1ifT1isatransversalofHρ2,B2,otherwise,








where B2 is the minimal transversal extension of T1, i.e., if T1⊆B⊆B2, then B2 is not considered as a transversal of Hρ2, and B2 is contained in the ρ-level of ξ because ξρ2 contains a transversal of Hρ2. Further, as T2⊆ξρ2, it is obvious that q2≤q1. When this process is finished, we certainly have qn=τ, a q-ROF transversal of H and included in ξ. We now claim that τ is a minimal transversal of H, i.e., τ∈tr(H). On the contrary, suppose that τ1 is a transversal of H such that τ1<τ. Then, we have:

	(i) 

	
τ1(α,β)⊆τ(α,β) for all α,β∈(0,h(H)],




	(ii) 

	
τ1(α′,β′)⊆τ(α′,β′) for some α′,β′∈(0,h(H)].









However, no such α′,β′ exist. To prove this, let α,β∈(ρ2,ρ1], then as τ1(α,β)⊆τ(α,β), τ1(α,β) is a transversal of H(α,β) = Hρ1 and τ(α,β)∈tr(Hρ1), which implies that τ1(α,β)=τ(α,β) on (ρ2,ρ1]. Moreover, suppose that α,β∈(ρ3,ρ2], then by using τ1(α,β)=τ(α,β), we have τ1(α,β)⊇τρ1 on (ρ3,ρ2], and if T2 = T1 = τρ1, then by the previous arguments, τ1(α,β)=τ(α,β) on (ρ3,ρ2]. Furthermore, if T1⊆T2 and T1⊆τ1(α,β)⊊T2, then τ1(α,β) is not a transversal of H(α,β) = Hρ2, which is a contradiction to the fact that τ1 is a transversal of H. Hence, we have τ1(α,β)=τ(α,β) on (ρ3,ρ2]. In general, we have τ1(α,β)=τ(α,β) on (0,h(H)], which completes the proof. □






4. Applications to Decision-Making


Decision-making is considered as an abstract technique, which results in the selection of an opinion or a strategy among a couple of elective potential results. Every decision-making procedure delivers a final decision, which may or may not be appropriate for our problem. We have to make hundreds of decisions everyday; some are easy, but others may be complicated, confusing, and miscellaneous. This leads to the process of decision-making. Decision-making is the foremost way to choose the most desirable alternative. It is essential in real-life problems, when there are many possible choices. Thus, decision-makers evaluate numerous merits and demerits of every choice and try to select the most fitting alternative.



4.1. Selection of the Most Desirable Appliance


Here, we consider a decision-making problem of selecting the most appropriate product from different brands or organizations. Suppose that a person wants to purchase a product, which is available of many brands. Let he/she consider the following nine organizations or brands O = {O1, O2, O3, ⋯, O9}, from which a product can be chosen to purchase. We will discuss how the (α,β)-level cuts can be applied to q-ROFH to make a good decision. The method adopted in this application is given in Algorithm 1.



A six-ROFH model depicting the problem is shown in Figure 6.








	Algorithm 1: A decision-making method—applying the (α,β)-level cuts to q-ROFH



	
	
Input the truth-membership and falsity-membership degrees of all q-ROF vertices O1, O2, O3,⋯,Ok such that 0≤Tq(Oj)+Fq(Oj)≤1, q≥1, j=1,2,⋯,k.



	
Calculate the truth-membership and falsity-membership degrees of q-ROF hyperedges using the formula


Tζ(El)=Tζ(O1,O2,O3,…,Ok)≤min{Qi(O1),Qi(O2),Qi(O3),…,Qi(Ok)},Fζ(El)=Fζ(O1,O2,O3,…,Ok)≤max{Qi(O1),Qi(O2),Qi(O3),…,Qi(Ok)},








for all O1, O2, O3, ⋯, Ok representing the organizations as vertices.



	
Calculate the (α,β)−levels of q-rung orthopair fuzzy hyperedges by using:


ζi(α,β)={Oj∈O|Tζi(Oj)≥α,Fζi(Oj)≤β},








for i=1,2,3,⋯,l, j=1,2,3⋯,k and α,β∈[0,1].



	
Find out the crisp sets describing the most suitable organization according to the customer’s satisfaction levels.











The truth-membership degrees and falsity-membership degrees of vertices (which represent the organizations) depict how much that organization fulfills the costumer’s requirements and up to what percentage the product is not suitable. The hyperedges of our graph represent the characteristics of those organizations, which are (as vertices) contained in that hyperedge. This is shown in Table 4.



The attributes, which we have considered as hyperedges {ζ1,ζ2,ζ3,ζ4,ζ5,ζ6} to describe the characteristics of different organizations, are delivery and service, durability, affordability, quality, functionality, and marketability Note that, if ζ2 is considered as durability, then the membership degrees (0.9,0.5) of O3 describe that the product manufactured by organization O3 is 90% durable and 50% lacking in the requirements of the customer. Similarly, O4 is 60% durable and 40% lacking the condition. In the same way, we can describe the characteristics of all products manufactured by different organizations. Now, to select the most appropriate product, we will find out the (α,β)-level cuts of all hyperedges. We choose the values of α and β in such a manner that they will be fixed according to the customer’s demand. Let α = 0.7 and β = 0.4; this means that the customer will consider that product, which will satisfy 70% or more of the characteristics mentioned above and will have a deficiency less than or equal to 40%. The (α,β)-levels of all hyperedges are given as follows:


ζ1(0.7,0.4)={O1,O2},ζ2(0.7,0.4)={O6},ζ3(0.7,0.4)={O1,O5,O9},ζ4(0.7,0.4)={O2,O8},ζ5(0.7,0.4)={∅},ζ6(0.7,0.4)={O6,O8,O9}.











Note that the ζ1(0.7,0.4) level set represents that O1 and O2 are the organizations that provide the best delivery services among all other organizations, and the ζ2(0.7,0.4) level set represents that O6 is the organization whose products are more durable as compared to all other organizations. Similarly, ζ4(0.7,0.4) indicates that the products proposed by the O2 and O8 organizations, are more affordable in comparison to the others. Thus, if a customer wants some specific specialty product, for example he/she wants to purchase a product with good marketability, then the organizations O6, O8, and O9 are more suitable. Similarly, if the satisfaction and dissatisfaction level of a customer are taken as α = 0.8 and β = 0.3, respectively, then (0.8,0.3)-level cuts are given as:


ζ1(0.8,0.3)={O1},ζ2(0.8,0.3)={∅},ζ3(0.8,0.3)={O1,O9},ζ4(0.8,0.3)={O8},ζ5(0.8,0.3)={∅},ζ6(0.8,0.3)={O8,O9}.











Here, ζ4(0.8,0.3)= {O8} indicates that the products proposed by organization O8 satisfy the customer’s requirement by 80%, which is affordability and so on. For α = 0.7 and β = 0.3, we have:


ζ1(0.7,0.3)={O1,O2},ζ2(0.7,0.3)={∅},ζ3(0.7,0.3)={O1,O9},ζ4(0.7,0.3)={O2,O8},ζ5(0.7,0.3)={∅},ζ6(0.7,0.3)={O8,O9}.











Hence, by considering different (α,β)-levels corresponding to the satisfaction and dissatisfaction levels of customers, we can conclude which organization fulfills the actual demands of a customer. The flowchart describing the procedure of above application is given in Figure 7.




4.2. Adaptation of the Most Alluring Residential Scheme


The essential factors for any purchase of property is the budget and location for a purchaser in particular. However, it is a complicated procedure to select a residential area for buying a house. In addition to scrutinizing the further details such as the pricing, loan options, payments, and developer’s credentials, a customer must examine closely some other facilities that should be possessed by every housing community. Now, to adopt a favorable housing scheme, an obvious initial step is to compare different societies. After analyzing the characteristics of different societies, one will be able to make a wise decision. We will investigate the problem of adopting the most alluring residential scheme using seven-ROFH. The method adopted in our application is explained through Algorithm 2.



Let the set of vertices of seven-ROFH be taken as representative of those attributes’ characteristics that one considers to make a comparison between different housing societies. The hyperedges of seven-ROFH represent some housing schemes that will be compared. The portrayal of our problem is illustrated in Figure 8.



The description of the hyperedges {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7} and vertices {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} of the above hypergraph is given in Table 5 and Table 6, respectively.



Note that each hyperedge represents a distinct housing scheme. and the vertices contained in hyperedges are those attributes that will be provided by the societies represented through hyperedges. This means that the Senate Avenue housing society provides 80% of the basic facilities of life, such as water, gas, and electricity, and 20% is not provided. Similarly, the same society accommodates its residents with easy accessibilityby 90% and only 10% lacking. In the same way, taking into account the truth-membership and falsity-membership degrees of all other attributes, we can identify the characteristics of all societies.








	Algorithm 2: The investigation of the most alluring residential scheme using seven-ROFH



	
	
Input the truth-membership and falsity-membership degrees of all q-ROF vertices x1, x2, x3, ⋯, xj such that 0≤Tq(xi)+Fq(xi)≤1, q≥1, 1≤i≤j.



	
Calculate the truth-membership and falsity-membership degrees of q-ROF hyperedges using the formula:


Tζ(Ek)=Tζ(x1,x2,x3,…,xj)≤min{Qi(x1),Qi(x2),Qi(x3),…,Qi(xj)},Fζ(Ek)=Fζ(x1,x2,x3,…,xj)≤max{Qi(x1),Qi(x2),Qi(x3),…,Qi(xj)},








for all x1, x2, ⋯, xj representing the attributes of housing societies.



	
Calculate the heights of all q-rung orthopair fuzzy hyperedges by using:


h(ζj)=(maxTζj(xi),minFζj(xi)),








j=1,2,⋯,k and i=1,2,⋯,j.



	
Input the different q-ROFSs.



	
Determine the q-ROFTs using the formula:


τh(ζi)∩ζih(ζi)≠∅,forallζi∈ζ.











	
Find the most alluring residential area having maximum truth-membership and minimum falsity-membership degrees as obtained in Step 3.



	
Find the more advantageous schemes, satisfying the relation of minimal transversals and that will contain the attributes of all other societies.











In order to determine the overall comfort of each society, we will calculate the heights of all hyperedges, and the society having the maximum truth-membership and minimum falsity-membership will be considered as the most comfortable society in which to live. The calculated heights of all schemes are given in Table 7.



It can be noted from Table 7 that there are three societies that have the maximum membership and minimum non-membership degrees, i.e., Senate Avenue, Paradise City, and RP Corporation are those housing societies that will provide 90% facilities to their habitants, and only 10% amenities will be lacking. Thus, it is more beneficial and substantial to select one of these three housing schemes.



The same problem can be extrapolated to a more extended idea of someone wanting to build a new housing scheme, which will provide the facilities of all the above societies. The concept of seven-ROFHs can be utilized to extrapolate such housing scheme. Consider a seven-rung orthopair fuzzy set of vertices given as follows:


τ1={(x1,0.8,0.2),(x2,0.9,0.1),(x5,0.9,0.3),(x6,0.8,0.2),(x10,0.9,0.3)}.











By applying the definition of seven-ROFT, it can be seen that:


ζ1(0.9,0.1)∩τ1(0.9,0.1)={x2},ζ2(0.9,0.3)∩τ1(0.9,0.3)={x5},ζ3(0.9,0.3)∩τ1(0.9,0.3)={x10},ζ4(0.9,0.2)∩τ1(0.9,0.2)={x5},ζ5(0.9,0.1)∩τ1(0.9,0.1)={x2},ζ6(0.9,0.1)∩τ1(0.9,0.1)={x2},ζ7(0.8,0.2)∩τ1(0.8,0.2)={x6}.











That is the q-rung orthopair fuzzy subset τ1 satisfies the condition of the transversal, and the housing society that will be represented through this hyperedge will contain at least one attribute of each scheme mentioned above. Similarly, some other societies can be figured out by following the same method. Hence, some other seven-rung orthopair fuzzy subsets are:


τ2={(x1,0.8,0.2),(x2,0.9,0.1),(x3,0.7,0.2),(x5,0.9,0.3),(x6,0.8,0.2),(x10,0.9,0.3)},τ3={(x2,0.9,0.1),(x4,0.6,0.3),(x5,0.9,0.3),(x6,0.8,0.2),(x10,0.9,0.3)},τ4={(x2,0.9,0.1),(x5,0.9,0.3),(x6,0.8,0.2),(x10,0.9,0.3)},τ5={(x2,0.9,0.1),(x5,0.9,0.3),(x6,0.8,0.2),(x7,0.5,0.5),(x8,0.6,0.7),(x10,0.9,0.3)}.











The graphical description of these schemes is displayed in Figure 9 with the dashed lines.



Thus, the schemes shown through dashed lines will contain the attributes of all other societies and may be more advantageous to their dwellers.





5. Comparison Analysis of the Proposed Model with IF and PF Models


Orthopair fuzzy sets are defined as those fuzzy sets in which the membership degrees of an element are taken as the pair of values in the unit interval [0,1], given as (T(x),F(x)). T(x) indicates support for membership (truth-membership), and F(x) indicates support against membership (falsity-membership) to the fuzzy set. IFSs and PFSs are examples of orthopair fuzzy sets. Atanassov’s [2] IFS has been studied widely by various researchers, but the range of applicability of IFS is limited because of its constraint that the sum of truth-membership and falsity-membership must be equal to or less than one. Under this condition, IFSs cannot express some decision evaluation information effectively; because a decision-maker may provide information for a particular attribute such that the sum of the degrees of truth-membership and the degrees of falsity-membership become greater than one. In order to solve such types of problems, PFSs were defined by Yager [5], whose prominent characteristic is that the square sum of the truth-membership degree and the falsity-membership degree is less than or equal to one. Thus, a PFS can solve a number of practical problems that cannot be handled using IFS and is a generalization of IFS. Due to the more complicated information in society and the development of theories, q-ROFSs were proposed by Yager [8]. A q-ROFS is characterized in such a way that the sum of the qth power of the truth-membership degree and the qth power of the degrees of falsity-membership is restricted to less than or equal to one. Note that IFSs and PFSs are particular cases of q-ROFSs. The flexibility and the effectiveness of a q-ROF model can be proven as follows. Suppose that (x,y) is an IF grade, where x∈[0,1], y∈[0,1], and 0≤x+y≤1, since xq≤x, yq≤y, q≥1, so we have 0≤xq+yq≤1. Thus, every IF grade is also a PF grade, as well as a q-ROF grade. However, there are q-ROF grades that are not IF nor PF grades. For example, (0.9,0.8), here (0.9)5+(0.8)5≤1, but 0.9+0.8=1.7>1 and (0.9)2+(0.8)2=1.45>1. This implies that the class of q-ROFSs extends the classes of IFSs and PFSs. It is worth noting that as the parameter q increases, the space of acceptable orthopairs also increases, and thus, the bounding constraint is satisfied by more orthopairs. Thus, a wider range of uncertain information can be expressed by using q-ROFSs. We can adjust the value of the parameter q to determine the expressed information range; thus, q-ROFSs are more effective and more practical for the uncertain environment. Based on these advantages of q-ROFSs, we proposed q-ROFHs to combine the benefits of both theories. A wider range of uncertain information can be expressed using the methods proposed in this paper, and they are closer to real decision-making. Our proposed models are more general as compared to the IF and PF models, as when q=1, the model reduces to the IF model, and when q=2, it reduces to the PF model. Hence, our approach is more flexible and generalized, and different values of q can be chosen by decision-makers according to the different attitudes.




6. Conclusions


A q-ROF model is an extension of the IF and PF models. This model deals with real-life phenomena more precisely and efficiently. Since q-ROFSs are based on a parameter q, as the parameter q increases, the space of acceptable orthopairs also increases, and thus, the bounding constraint is satisfied by more orthopairs. Thus, q-ROFSs can express the vague information more widely and can determine a larger range for the boundary. However, the IFSs and PFSs are all good ways to deal with fuzzy information, but q-ROFSs are more general as compared to these classical models, because when q=1, the model reduces to the IF model, and when q=2, it reduces to the PF model. In this research article, we have applied the more generalized and powerful concept of q-ROFSs to the most productive theory of hypergraphs. After a concise review of q-ROF theory and crisp hypergraphs, we have described the novel concept of q-ROFHs and some of their properties, including height, size, elementary and sectionally elementary, and B-tempered and transversals. We have illustrated some interesting applications of q-ROFHs in decision-making to explain the flexibility of the model when the given data possess uncertain behavior and compared our proposed models to other existing theories. We aim to broaden our study to (1)q-rung orthopair fuzzy directed hypergraphs, (2) interval valued bipolar neutrosophic hypergraphs, (3) fuzzy rough soft directed hypergraphs, and (4) fuzzy rough neutrosophic hypergraphs.
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Figure 1. A five-rung orthopair fuzzy graph. 
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Figure 2. Four-rung orthopair fuzzy hypergraph. 
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Figure 3. The (0.1,0.4)-level hypergraph of H. 
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Figure 4. B-tempered three-rung orthopair fuzzy hypergraph. 
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Figure 5. Five-rung orthopair fuzzy hypergraph (ROFH). 
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Figure 6. Six-rung orthopair fuzzy model to select the most appropriate appliance. 
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Figure 7. The flowchart of application. 
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Figure 8. Seven-ROFH model for the housing schemes under consideration and their attributes. 
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Figure 9. Seven-ROFTs. 
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Table 1. Incidence matrix of H.
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	I
	ζ1
	ζ2
	ζ3
	ζ4
	ζ5





	x1
	(0.1,0.2)
	(0.1,0.2)
	(0.1,0.2)
	(0,1)
	(0,1)



	x2
	(0.2,0.3)
	(0,1)
	(0,1)
	(0,1)
	(0,1)



	x3
	(0.3,0.4)
	(0,1)
	(0,1)
	(0,1)
	(0.3,0.4)



	x4
	(0,1)
	(0,1)
	(0.4,0.5)
	(0,1)
	(0,1)



	x5
	(0,1)
	(0.5,0.6)
	(0,1)
	(0,1)
	(0,1)



	x6
	(0,1)
	(0,1)
	(0,1)
	(0,1)
	(0.5,0.4)



	x7
	(0,1)
	(0,1)
	(0.4,0.3)
	(0.4,0.3)
	(0,1)



	x8
	(0,1)
	(0,1)
	(0,1)
	(0.6,0.5)
	(0,1)



	x9
	(0,1)
	(0,1)
	(0,1)
	(0.6,0.7)
	(0.6,0.7)
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Table 2. Incidence matrix of H.
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	I
	ζ1
	ζ2
	ζ3
	ζ4





	x1
	(0.6,0.7)
	(0,1)
	(0.6,0.7)
	(0,1)



	x2
	(0,1)
	(0.7,0.6)
	(0,1)
	(0.7,0.6)



	x3
	(0.8,0.7)
	(0.8,0.7)
	(0,1)
	(0,1)



	x4
	(0,1)
	(0.6,0.5)
	(0.6,0.7)
	(0,1)



	x5
	(0.7,0.8)
	(0,1)
	(0,1)
	(0.7,0.8)
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Table 3. Incidence matrix of H.
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	I
	ζ1
	ζ2
	ζ3





	x1
	(0.8,0.6)
	(0.8,0.6)
	(0,1)



	x2
	(0.7,0.9)
	(0,1)
	(0.7,0.9)



	x3
	(0,1)
	(0.8,0.5)
	(0.8,0.5)



	x4
	(0.6,0.8)
	(0.6,0.8)
	(0,1)



	x5
	(0,1)
	(0,1)
	(0.7,0.5)
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Table 4. Incidence matrix.
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	I
	ζ1
	ζ2
	ζ3
	ζ4
	ζ5
	ζ6





	O1
	(0.8,0.2)
	(0,1)
	(0.8,0.2)
	(0,1)
	(0,1)
	(0,1)



	O2
	(0.7,0.3)
	(0,1)
	(0,1)
	(0.7,0.3)
	(0,1)
	(0,1)



	O3
	(0.9,0.5)
	(0.9,0.5)
	(0,1)
	(0,1)
	(0.9,0.5)
	(0,1)



	O4
	(0.6,0.4)
	(0.6,0.4)
	(0,1)
	(0,1)
	(0,1)
	(0,1)



	O5
	(0,1)
	(0.7,0.5)
	(0.7,0.5)
	(0.7,0.5)
	(0.7,0.5)
	(0,1)



	O6
	(0,1)
	(0.8,0.4)
	(0,1)
	(0,1)
	(0,1)
	(0.8,0.4)



	O7
	(0.6,0.5)
	(0,1)
	(0,1)
	(0,1)
	(0.6,0.5)
	(0.6,0.5)



	O8
	(0,1)
	(0,1)
	(0,1)
	(0.8,0.3)
	(0,1)
	(0.8,0.3)



	O9
	(0,1)
	(0,1)
	(0.8,0.2)
	(0,1)
	(0,1)
	(0.8,0.2)
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Table 5. Description of hyperedges.






Table 5. Description of hyperedges.





	Set of Hyperedges
	Corresponding Housing Scheme
	Provision of Facilities
	Lack of Facilities





	ζ1
	Senate Avenue
	70%
	20%



	ζ2
	Soan Gardens
	50%
	50%



	ζ3
	CBRTown
	60%
	70%



	ζ4
	OPFHousing Scheme
	80%
	50%



	ζ5
	Paradise City
	60%
	70%



	ζ6
	RP Corporation
	80%
	50%



	ζ7
	Tele Gardens Housing Scheme
	70%
	50%
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Table 6. Description of attributes.






Table 6. Description of attributes.





	
Set of Attributes

	
Depicting the Facility

	
Provision Level of

	
Lack of




	
the Corresponding Facility

	
the Corresponding Facility






	
x1

	
Basic amenities of life

	
0.8

	
0.2




	
x2

	
Easily Accessible

	
0.9

	
0.1




	
x3

	
Land ownership

	
0.7

	
0.2




	
x4

	
Power back-up

	
0.6

	
0.3




	
x5

	
Eco-friendly construction

	
0.9

	
0.4




	
x6

	
Social infrastructure

	
0.8

	
0.5




	
x7

	
Drainage system

	
0.5

	
0.6




	
x8

	
Security

	
0.6

	
0.7




	
x9

	
Regular sanitation

	
0.8

	
0.5




	
x10

	
Parking area

	
0.9

	
0.3
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Table 7. Heights of hyperedges.






Table 7. Heights of hyperedges.





	Heights of Hyperedges
	(max(ζl),min(ζm))





	h(Senate Avenue)
	(0.9,0.1)



	h(Soan Gardens)
	(0.9,0.3)



	h(CBR Town)
	(0.9,0.3)



	h(OPF Housing Scheme)
	(0.9,0.2)



	h(Paradise City)
	(0.9,0.1)



	h(RP Corporation)
	(0.9,0.1)



	h(Tele Gardens Housing Scheme)
	(0.8,0.2)











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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