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Abstract: In the paper, we give some new improvements of the Kantorovich type inequalities by
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1. Introduction

The Pélya-Szegd’s inequality can be stated as follows ([1] or ([2], p. 62)).
If uy and vy are non-negative real sequences, and 0 < my < up < My, and 0 < my < v < M, for
k=1,2,...,n, then
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The Pélya-Szegd’s inequality was studied extensively and numerous variants, generalizations,
and extensions appeared in the literature (see [3—6] and the references cited therein). The integral forms
of Pélya-Szegd’s inequality were recently established in [7-10]. The weighted version of inequality (1)
was proved in papers of Watson [11] and Greub and Rheinboldt [12]:
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where wy, is a nonnegative n-tuple.
An interesting generalization of Kantorovich type inequality was given by Hao ([13], p. 122),
so we shall give his result:

n Vr /o /4 n
(Z wk“i) <Z wkvi> <t <Z wkukvk> , 3)
k=1 k=1

k=1

where0<%§ <1and%+%=l,and
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We recall that, with the name “Kantorovich”, we also usually refer to some integral-type extension
of classical inequalities, classical pointwise operators, and other mathematical tools—see, e.g., [14-17].

Mathematics 2019, 7, 259; d0i:10.3390/math7030259 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/3/259?type=check_update&version=1
http://dx.doi.org/10.3390/math7030259
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 259 20f6

The first aim of this paper is to give a new improvement of the Kantorovich type inequality (3).
We combine organically Popoviciu’s, Holder’s, and Hao’s inequalities to derive a new inequality,
which is a generalization of Label (3).

Corresponding to (3), we can obtain a reverse Minkowski’s inequality as follows:

k=1

. 1/p n 1/p " 1/p
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where p, g, wy, ug, vx are as in (3), and £ is definied in (4).

Another aim of this paper is to give a new reverse Minkowski’s inequality. We combine organically
Bellman’s and Minkowski’s inequalities to derive a new inequality, which is generalization of the
reverse Minkowski’s inequality (5).

2. Results

We need the following Lemmas to prove our main results.

Lemma 1. (Popoviciu’s inequality) ([18], p. 58) Let p > 0,9 > 0, % + % =l anda={ay,...,an}and b =
{b1,..., bn} be two series of positive real numbers and such that a} — Y" , a? > 0and b] — Y1, b > 0. Then,

no \VP n A\ n
<a§’ — 24’) (bj - b?) <aby — ) ajb;, (6)
i=2 i=2 i=2
with equality if and only if a = ub, where y is a constant.

Lemma 2. (Bellman’s inequality) ([19], p. 38) Let a = {ay,...,an} and b = {by,...,b,} be two series of
positive real numbers and p > 1 such that af — Y1 ,al > 0and b — Y1, bl > 0, then

" 1/p " 1/p . 1/p
<af — g@’) + (bf — gz{) < <(a1 +b1)P =Y (a; +bi)7’> , 7)

i=2
with equality if and only if a = vb, where v is a constant.

Lemma 3. (Holder’s weighted inequality) ([13], p. 100) Let p > 0,q > 0, % + % =1, and ay, by and wy be
non-negative real numbers, then

" n Vr /o 1/q
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Lemma 4. Let 0 < % < % < 1 and % + % = 1. If uy, v(k) and wy are non-negative real sequences,

and 0 <mq < up < My, and0 < mp < v < Mpfork=1,2,...,n, then
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where ¢ is as in Label (4).
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Proof. From (3), we have
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Hence,

This proof is complete. [J

Our main results are given in the following theorems.

Theorem 1. Let m,n € Nt,0 < % < % < land % + % = 1. Let uy, v, ay, by, wy and py be non-negative

real sequences such as wku% > myka,f and wkv% > mykbz, wherek =1,2,...,n. If0 < my <up < Mjand
0 < my <o < My, then

n n 1/p n 1/q
Y (bwogugvr — mpugaghy) > (Z (wkui - ka’hf)) (Z (wkvﬁ - mﬂkb2)> , (10)

k=1 k=1 k=1

where £ is as in (4).

Proof. Let’s prove this theorem by mathematical induction for m. First, we prove that (10) holds for
m = 1. From (3) and (8), we obtain
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From (11), (12) and, in view of the Popoviciu’s inequality, we have
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This shows (10) right for m = 1.
Suppose that (10) holds when m = r — 1; we have
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From (6), (12) and (13), we obtain

Vv
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This shows that (10) is correct if m = r — 1, then m = r is also correct. Hence, (10) is right for any
m e Nt.
This proof is complete. [J

Taking m = 1 and wy = p in Theorem 1, we have the following result.

Corollary 1. Let p, q, uy, vg, ax, by and wy, are as in Theorem 1, then

1/p " 1/q
Z (wi (Lugog — agby)) (Z wi(ug; — af)) (Z - b‘f ) ,

k=1

where { is as in (4).
Taking m =1, p = g = 2 and wy = yy = 1 in Theorem 1, we have the following result.

Corollary 2. Let uy, vy, ay and by are as in Theorem 1, then

1/2 1/2
= ([ MyMp +mymy ) S0 S0 o
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Taking for a; = 0 and by = 0 in (14), we get the following interesting reverse Cauchy’s inequality.
1/2 1/2
MMy + mymy = ) o
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Theorem 2. Let m,n € N*,0 < % < % < land % + % = 1. Let uy, vy, ax, by, wy and yy be non-negative

real sequences such as wku% > ma,’; and wiv, > mbz, wherek =1,2,...,n. If 0 <my < up < My and
0 < my <vp < My, then

y U
<Z (”wk(uk‘ka)z—m(ﬂk+bk)p)> > (

~
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-
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where £ is as in (4).
Proof. First, we prove that (15) holds for m = 1. From (9) and in view of Minkowski’s inequality, it is

easy to obtain
n 1/p " 1/p . 1/p
4 (Z wi(ug + vk)2> > <Z a)ku,%> + <Z ww,%) , (16)
k=1 k=1

k=1
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and

. 1/p " 1/p " 1/p
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From (16), (17) and the Bellman's inequality, we have
(£
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(B (E0) ][0
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> (k (wwi—ai)) + <Z(wkvi—b£)> .

k=1
This shows that (15) holds for m =1
Supposing that (15) holds when m = r — 1, we have
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From (17), (18) and by using the Bellman’s inequality again, we obtain
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This shows that (15) is correct if m = r — 1, then m = r is also correct. Hence, (15) is right for any
me Nt
This proof is complete. O

Taking for m = 1, p = 2 and wy = 1, we have the following result.

Corollary 3. Let uy, vy, ag, by, my, my, My, and M, be as in Theorem 2, then

" 1/2 - 1/2 n 1/2
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