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Abstract: In the paper, we give some new improvements of the Kantorovich type inequalities by
using Popoviciu’s, Hölder’s, Bellman’s and Minkowski’s inequalities. These results in special case
yield Hao’s, reverse Cauchy’s and Minkowski’s inequalities.
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1. Introduction

The Pólya–Szegö’s inequality can be stated as follows ([1] or ([2], p. 62)).
If uk and vk are non-negative real sequences, and 0 < m1 ≤ uk ≤ M1, and 0 < m2 ≤ vk ≤ M2 for

k = 1, 2, . . . , n, then
n

∑
k=1

u2
k

n

∑
k=1

v2
k ≤

(M1M2 + m1m2)
2

4m1m2M1M2

(
n

∑
k=1

ukvk

)2

. (1)

The Pólya–Szegö’s inequality was studied extensively and numerous variants, generalizations,
and extensions appeared in the literature (see [3–6] and the references cited therein). The integral forms
of Pólya–Szegö’s inequality were recently established in [7–10]. The weighted version of inequality (1)
was proved in papers of Watson [11] and Greub and Rheinboldt [12]:

n

∑
k=1

ωku2
k ·

n

∑
k=1

ωkv2
k ≤

(M1M2 + m1m2)
2

4m1m2M1M2

(
n

∑
k=1

ωkukvk

)2

, (2)

where ωk is a nonnegative n-tuple.
An interesting generalization of Kantorovich type inequality was given by Hao ([13], p. 122),

so we shall give his result:(
n

∑
k=1

ωku2
k

)1/p ( n

∑
k=1

ωkv2
k

)1/q

≤ `

(
n

∑
k=1

ωkukvk

)
, (3)

where 0 < 1
q ≤

1
p < 1 and 1

p + 1
q = 1, and

` =
qM1M2 + pm1m2

pq(m1M1)1/q(m2M2)1/p . (4)

We recall that, with the name “Kantorovich”, we also usually refer to some integral-type extension
of classical inequalities, classical pointwise operators, and other mathematical tools—see, e.g., [14–17].
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The first aim of this paper is to give a new improvement of the Kantorovich type inequality (3).
We combine organically Popoviciu’s, Hölder’s, and Hao’s inequalities to derive a new inequality,
which is a generalization of Label (3).

Corresponding to (3), we can obtain a reverse Minkowski’s inequality as follows:

`

(
n

∑
k=1

ωk(uk + vk)
2

)1/p

≥
(

n

∑
k=1

ωku2
k

)1/p

+

(
n

∑
k=1

ωkv2
k

)1/p

, (5)

where p, q, ωk, uk, vk are as in (3), and ` is definied in (4).
Another aim of this paper is to give a new reverse Minkowski’s inequality. We combine organically

Bellman’s and Minkowski’s inequalities to derive a new inequality, which is generalization of the
reverse Minkowski’s inequality (5).

2. Results

We need the following Lemmas to prove our main results.

Lemma 1. (Popoviciu’s inequality) ([18], p. 58) Let p > 0, q > 0, 1
p + 1

q = 1, and a = {a1, . . . , an} and b =

{b1, . . . , bn} be two series of positive real numbers and such that ap
1 −∑n

i=2 ap
i > 0 and bq

1−∑n
i=2 bq

i > 0. Then,

(
ap

1 −
n

∑
i=2

ap
i

)1/p (
bq

1 −
n

∑
i=2

bq
i

)1/q

≤ a1b1 −
n

∑
i=2

aibi, (6)

with equality if and only if a = µb, where µ is a constant.

Lemma 2. (Bellman’s inequality) ([19], p. 38) Let a = {a1, . . . , an} and b = {b1, . . . , bn} be two series of
positive real numbers and p > 1 such that ap

1 −∑n
i=2 ap

i > 0 and bp
1 −∑n

i=2 bp
i > 0, then

(
ap

1 −
n

∑
i=2

ap
i

)1/p

+

(
bp

1 −
n

∑
i=2

bp
i

)1/p

≤
(
(a1 + b1)

p −
n

∑
i=2

(ai + bi)
p

)1/p

, (7)

with equality if and only if a = υb, where υ is a constant.

Lemma 3. (Hölder’s weighted inequality) ([13], p. 100) Let p > 0, q > 0, 1
p + 1

q = 1, and ak, bk and ωk be
non-negative real numbers, then

n

∑
k=1

ωkakbk ≤
(

n

∑
k=1

ωkap
k

)1/p ( n

∑
k=1

ωkbq
k

)1/q

. (8)

Lemma 4. Let 0 < 1
q ≤

1
p < 1 and 1

p + 1
q = 1. If uk, v(k) and ωk are non-negative real sequences,

and 0 < m1 ≤ uk ≤ M1, and 0 < m2 ≤ vk ≤ M2 for k = 1, 2, . . . , n, then

`

(
n

∑
k=1

ωk(uk + vk)
2

)1/p

≥
(

n

∑
k=1

ωku2
k

)1/p

+

(
n

∑
k=1

ωkv2
k

)1/p

, (9)

where ` is as in Label (4).
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Proof. From (3), we have

`
n

∑
k=1

ωk(uk + vk)
2 = `

n

∑
k=1

ωkuk(uk + vk) + `
n

∑
k=1

ωkvk(uk + vk)

≥
(

n

∑
k=1

ωku2
k

)1/p ( n

∑
k=1

ωk(uk + vk)
2

)1/q

+

(
n

∑
k=1

ωkv2
k

)1/p ( n

∑
k=1

ωk(uk + vk)
2

)1/q

.

Hence,

`

(
n

∑
k=1

ωk(uk + vk)
2

)1/p

≥
(

n

∑
k=1

ωku2
k

)1/p

+

(
n

∑
k=1

ωkv2
k

)1/p

.

This proof is complete.

Our main results are given in the following theorems.

Theorem 1. Let m, n ∈ N+, 0 < 1
q ≤

1
p < 1 and 1

p + 1
q = 1. Let uk, vk, ak, bk, ωk and µk be non-negative

real sequences such as ωku2
k > mµkap

k and ωkv2
k > mµkbq

k , where k = 1, 2, . . . , n. If 0 < m1 ≤ uk ≤ M1 and
0 < m2 ≤ vk ≤ M2, then

n

∑
k=1

(`ωkukvk −mµkakbk) ≥
(

n

∑
k=1

(
ωku2

k −mµkap
k

))1/p ( n

∑
k=1

(
ωkv2

k −mµkbq
k

))1/q

, (10)

where ` is as in (4).

Proof. Let’s prove this theorem by mathematical induction for m. First, we prove that (10) holds for
m = 1. From (3) and (8), we obtain

`

(
n

∑
k=1

ωkukvk

)
≥
(

n

∑
k=1

ωku2
k

)1/p ( n

∑
k=1

ωkv2
k

)1/q

, (11)

and (
n

∑
k=1

µkakbk

)
≤
(

n

∑
k=1

µkap
k

)1/p ( n

∑
k=1

µkbq
k

)1/q

. (12)

From (11), (12) and, in view of the Popoviciu’s inequality, we have

n

∑
k=1

(`ωkukvk − µkakbk) ≥
(

n

∑
k=1

ωku2
k

)1/p ( n

∑
k=1

ωkv2
k

)1/q

−
(

n

∑
k=1

µkap
k

)1/p ( n

∑
k=1

µkbq
k

)1/q

≥
(

n

∑
k=1

(ωku2
k − µkap

k )

)1/p ( n

∑
k=1

(ωkv2
k − µkbq

k)

)1/q

.

This shows (10) right for m = 1.
Suppose that (10) holds when m = r− 1; we have

n

∑
k=1

(`ωkukvk − (r− 1)µkakbk) ≥
(

n

∑
k=1

(
ωku2

k − (r− 1)µkap
k

))1/p ( n

∑
k=1

(
ωkv2

k − (r− 1)µkbq
k

))1/q

. (13)
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From (6), (12) and (13), we obtain

n

∑
k=1

(`ωkukvk − rµkakbk) ≥
(

n

∑
k=1

(
ωku2

k − (r− 1)µkap
k

))1/p ( n

∑
k=1

(
ωkv2

k − (r− 1)µkbq
k

))1/q

−
(

n

∑
k=1

µkap
k

)1/p ( n

∑
k=1

µkbq
k

)1/q

≥
(

n

∑
k=1

(
ωku2

k − rµkap
k

))1/p ( n

∑
k=1

(
ωkv2

k − rµkbq
k

))1/q

.

This shows that (10) is correct if m = r − 1, then m = r is also correct. Hence, (10) is right for any
m ∈ N+.

This proof is complete.

Taking m = 1 and ωk = µk in Theorem 1, we have the following result.

Corollary 1. Let p, q, uk, vk, ak, bk and ωk are as in Theorem 1, then

n

∑
k=1

(ωk(`ukvk − akbk)) ≥
(

n

∑
k=1

ωk(u2
k − ap

k )

)1/p ( n

∑
k=1

ωk(v2
k − bq

k)

)1/q

,

where ` is as in (4).

Taking m = 1, p = q = 2 and ωk = µk = 1 in Theorem 1, we have the following result.

Corollary 2. Let uk, vk, ak and bk are as in Theorem 1, then

n

∑
k=1

(
M1M2 + m1m2

2
√

m1m2M1M2
ukvk − akbk

)
≥
(

n

∑
k=1

(u2
k − a2

k)

)1/2( n

∑
k=1

(v2
k − b2

k)

)1/2

. (14)

Taking for ak = 0 and bk = 0 in (14), we get the following interesting reverse Cauchy’s inequality.

M1M2 + m1m2

2
√

m1m2M1M2
·

n

∑
k=1

ukvk ≥
(

n

∑
k=1

u2
k

)1/2( n

∑
k=1

v2
k

)1/2

.

Theorem 2. Let m, n ∈ N+, 0 < 1
q ≤

1
p < 1 and 1

p + 1
q = 1. Let uk, vk, ak, bk, ωk and µk be non-negative

real sequences such as ωku2
k > map

k and ωkvk > mbq
k , where k = 1, 2, . . . , n. If 0 < m1 ≤ uk ≤ M1 and

0 < m2 ≤ vk ≤ M2, then

(
n

∑
k=1

(
`pωk(uk + vk)

2 −m(ak + bk)
p
))1/p

≥
(

n

∑
k=1

(ωku2
k −map

k )

)1/p

+

(
n

∑
k=1

(ωkv2
k −mbp

k )

)1/p

, (15)

where ` is as in (4).

Proof. First, we prove that (15) holds for m = 1. From (9) and in view of Minkowski’s inequality, it is
easy to obtain

`

(
n

∑
k=1

ωk(uk + vk)
2

)1/p

≥
(

n

∑
k=1

ωku2
k

)1/p

+

(
n

∑
k=1

ωkv2
k

)1/p

, (16)
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and (
n

∑
k=1

(ak + bk)
pdx

)1/p

≤
(

n

∑
k=1

ap
k

)1/p

+

(
n

∑
k=1

bp
k

)1/p

. (17)

From (16), (17) and the Bellman’s inequality, we have(
n

∑
k=1

(
`pωk(uk + vk)

2 − (ak + bk)
p
))1/p

≥


( n

∑
k=1

ωku2
k

)1/p

+

(
n

∑
k=1

ωkv2
k

)1/p
p

−

( n

∑
k=1

ap
k

)1/p

+

(
n

∑
k=1

bp
k

)1/p
p

1/p

≥
(

n

∑
k=1

(ωku2
k − ap

k )

)1/p

+

(
n

∑
k=1

(ωkv2
k − bp

k )

)1/p

.

This shows that (15) holds for m = 1
Supposing that (15) holds when m = r− 1, we have

(
∑n

k=1
(
`pωk(uk + vk)

2 − (r− 1)(ak + bk)
2))1/p ≥

(
∑n

k=1(ωku2
k − (r− 1)ap

k )
)1/p

+
(

∑n
k=1(ωkv2

k − (r− 1)bp
k )
)1/p

.
(18)

From (17), (18) and by using the Bellman’s inequality again, we obtain(
n

∑
k=1

(
`pωk(uk + vk)

2 − r(ak + bk)
2
))1/p

≥
{[( n

∑
k=1

(ωku2
k − (r− 1)ap

k )

)1/p

+

( n

∑
k=1

(ωkv2
k − (r− 1)bp

k )

)1/p]p

−
[( n

∑
k=1

ap
k

)1/p

+

(
n

∑
k=1

bp
k

)1/p ]p
}1/p

≥
(

n

∑
k=1

(ωku2
k − rap

k )

)1/p

+

(
n

∑
k=1

(ωkv2
k − rbp

k )

)1/p

.

This shows that (15) is correct if m = r− 1, then m = r is also correct. Hence, (15) is right for any
m ∈ N+.

This proof is complete.

Taking for m = 1, p = 2 and ωk = 1, we have the following result.

Corollary 3. Let uk, vk, ak, bk, m1, m2, M1, and M2 be as in Theorem 2, then[(
n

∑
k=1

(
h̄(uk + vk)

2 − (ak + bk)
2
))]1/2

≥
(

n

∑
k=1

(u2
k − a2

k)

)1/2

+

(
n

∑
k=1

(v2
k − b2

k)

)1/2

,

where

h̄ =
(M1M2 + m1m2)

2

4m1m2M1M2
.
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