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Abstract: Springs are critical components in mining vibrating screen elastic supports. However,
long-term alternating loads are likely to lead to spring failures, likely resulting in structural damages
to the vibrating screen and resulting in a lower separation efficiency. Proper dynamic models provide
a basis for spring failure diagnosis. In this paper, a six-degree-of-freedom theoretical rigid body
model of a mining vibrating screen is proposed, and a dynamic equation is established in order to
explore the dynamic characteristics. Numerical simulations, based on the Newmark-β algorithm,
are carried out, and the results indicate that the model proposed is suitable for revealing the dynamic
characteristics of the mining vibrating screen. Meanwhile, the mining vibrating screen amplitudes
change with the spring failures. Therefore, six types of spring failure are selected for simulations,
and the results indicate that the spring failures lead to an amplitude change for the four elastic
support points in the x, y, and z directions, where the changes depend on certain spring failures.
Hence, the key to spring failure diagnosis lies in obtaining the amplitude change rules, which can
reveal particular spring failures. The conclusions provide a theoretical basis for further study and
experiments in spring failure diagnosis for a mining vibrating screen.

Keywords: mining vibrating screen; theoretical rigid body model; spring failures diagnosis;
amplitudes change

1. Introduction

Mining vibrating screens are important equipment for mine washing and processing, and are
widely used for mine grading, dehydration, and desliming in China [1,2], working as a forced vibration
system under alternating loads [3–5]. The SLK3661W double-deck linear mining vibrating screen is
shown in Figure 1, and its main structures include a screen box and four elastic supports, designed
using principles of symmetry. As shown in Figure 2, the screen box is assembled from an exciter,
a lateral plate, an exciting beam, reinforcing beams, upper-bearing beams, under-bearing beams,
an upper-screen deck, and an under-screen deck. Additionally, each elastic support is composed of
several metal helical springs. These springs are critical components in a mining vibrating screen’s
elastic supports, which directly affect the working performance of the mining vibrating screen [6,7].
However, long-term alternating loads are highly likely to lead to spring failure through spring stiffness
decrease [8], causing a negative influence on the mining vibrating screen. On one hand, spring
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failures could lead to structural damages, such as beam fracture or lateral plate cracks [9–11]. On the
other hand, spring failures could produce a loss of particle separation efficiency, thus hardly meeting
practical process demands [12,13]. Therefore, it is necessary to diagnose the spring failures of a mining
vibrating screen for routing maintenance, which can help to ensure safety and reliability.
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Figure 1. The SLK3661W double-deck linear mining vibrating screen, unloading side view.
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Figure 2. Structures of the SLK3661W double-deck linear mining vibrating screen.

Proper dynamic models provide a basis for diagnosing spring failures. In recent years, even
though many studies have reported vibrating screen dynamic models on optimization [14–16],
separation [17,18], and particle motion [19], there has been very little research reported on spring
failure diagnosis. Aimed at spring failure diagnosis, Rodriguez et al. developed a two-dimensional,
three-degree-of-freedom nonlinear model that considered one angular motion and damping, which
allowed for the prediction of the behavior of a vibrating screen when there was a reduction in
spring stiffness, and they used this model to determine a limit on spring failures before separation
efficiency was affected [20]. Peng et al. presented a three-degree-of-freedom rigid plate structure to
describe the isolation system, and they also proposed the method of stiffness identification by stiffness
matrix disassembly; the numerical simulation results demonstrated the feasibility of the developed
method [21]. However, each elastic support of a mining vibrating screen could have spring failures
with spring stiffness decreases. The mining vibrating screen operating mode becomes spatial motion
with very complicated dynamic characteristics, including multiple degrees of freedom.

The purpose of the present study is to explore the mining vibrating screen dynamic characteristics
with spring failures, providing a theoretical basis for spring failure diagnosis. In this paper, a theoretical
rigid body of a mining vibrating screen is proposed, the dynamic equation is established, and the
steady-state solutions are obtained. Numerical simulations were carried out, and the results showed
that the proposed model is feasible. In addition, spring failure simulations were also carried out, and
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the results indicated that the x, y, and z direction amplitude change rules for all the elastic supports
were strongly related to spring failures. Hence, the key for spring failure diagnosis lies in obtaining
the amplitude change rules, which can reveal the certain spring failures.

2. Theoretical Rigid Body Model

2.1. The Model

As shown in Figure 3, a six-degree-of-freedom theoretical rigid body model of spatial motion
considering three rotations (Roll, Pitch, and Yaw) is proposed for exploring the mining vibrating screen
dynamic characteristics with spring failures. The list of symbols is shown in abbreviations section.
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Figure 3. Spatial motion dynamic model of the mining vibrating screen, including three translational
degrees of freedom and three rotational degrees of freedom.

The screen box is simplified to a rigid body, and the four elastic support points are individually
simplified as three mutually perpendicular springs kix, kiy, kiz, (where i is the elastic support point
number, i = 1, 2, 3, 4). The movement of a rigid body is expressed by the position of a body frame
o’x′y′z′ relative to the inertial frame oxyz. The ox-axis and oz-axis are mutually perpendicular and
located in the horizontal plane, and the oy-axis is perpendicular to the horizontal plane. The origin o’
of the body frame is located at the mass center of the rigid body, at all times. The o’x′-axis and o’z′-axis
are mutually perpendicular and located in the rigid body plane, and the o’y′-axis is perpendicular to
the rigid body plane. Initially, the origin o of the inertial frame and the origin o’ of the body frame
are coincident. The distances between the mass center of the rigid body and the four elastic support
points of spring are r1, r2, r3, r4 and, furthermore, the angles between them and oz-axis are α1, α2, α3, α4.
Suppose that the rigid body′s mass is m, and the moments of inertia are Jx, Jy, Jz. Define x, y, z as the
translation displacements of the rigid body and γ, ϕ, θ as the angular displacements in the inertial
frame. The exciting force f is exerted on the rigid body as an alternating load, with included angles
βx, βy, βz between exciting force and the o’x′-axis, o’y′-axis, and o’z′-axis, respectively.

The dynamic equation is established by adopting the Lagrange method, and the processes are as
follows. The three rotation angles are small, define cos γ = cos ϕ = cos θ = 1, sin γ = γ, sin ϕ = ϕ,
and sin θ = θ.
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2.2. System Potential Energy

The dynamic system includes three translation motions and three rotation motions. According to
the Tait–Bryan angles in the literature [22], the rotation matrix between the body frame and the inertial
frame was derived using the rotation system shown in Figure 4.
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Figure 4. (a) Rotation of the inertial frame oxyz around the ox-axis by angle γ; (b) Rotation of the
instantaneous system around the oy′-axis by angle ϕ; (c) Rotation of the instantaneous system around
the oz′ ′-axis by angle θ.

As the three rotation angles of the rigid body are small, they can be simplified as rotations around
the oxyz axis. When rotating the rigid body around the ox-axis by the new angle of roll γ, the moment
of inertia is Jx, and the rotation matrix is written as:

Tx =

 1 0 0
0 cos γ sin γ

0 − sin γ cos γ

. (1)

When rotating the rigid body around the oy′-axis by the new angle of yaw ϕ, the moment of
inertia is Jy, and the rotation matrix is written as:

Ty =

 cos ϕ 0 − sin ϕ

0 1 0
sin ϕ 0 cos ϕ

. (2)

When rotating the rigid body around the oz′ ′-axis by the new angle of pitch θ, the moment of
inertia is Jz, and the rotation matrix is written as:

Tz =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

. (3)

When rotating the rigid body in the sequence oz-oy-ox, the rotation matrix between the body
frame and the inertial frame is obtained as:

R = TzTyTx =

 cos θ cos ϕ sin θ cos γ + cos θ sin ϕ sin γ sin θ sin γ− cos θ sin ϕ cos γ

− sin θ cos ϕ cos θ cos γ− sin θ sin ϕ sin γ cos θ sin γ + sin θ sin ϕ cos γ

sin ϕ − cos ϕ sin γ cos ϕ cos γ

. (4)
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Supposing that the coordinate of the mass center is (x, y, z) in an inertial frame, and any point
of the rigid body is (x′, y′, z′) in the body frame, the coordinate of any point of the rigid body in an
inertial frame is written as:  xd

yd
zd

 =

 x
y
z

+ R ·

 x′d
y′d
z′d

. (5)

Moreover, the coordinates of the four spring support points in the body frame can be written as: x′1
y′1
z′1

 =

 −s1

0
c1

,

 x′2
y′2
z′2

 =

 s2

0
c2

,

 x′3
y′3
z′3

 =

 −s3

0
−c3

,

 x′4
y′4
z′4

 =

 s4

0
−c4

. (6)

In (6), s1 = r1 sin α1, c1 = r1 cos α1, s2 = r2 sin α2, c2 = r2 cos α2, s3 = r3 sin α3, c3 = r3 cos α3,
s4 = r4 sin α4, and c4 = r4 cos α4.

In the initial state, the coordinate of the mass center is (0, 0, 0) in the inertial frame, and the
rotation matrix is R0 = [1, 0, 0; 0, 1, 0; 0, 0, 1]T. Thus, the coordinates of the four spring support
points in the inertial frame can be written as: x1

y1

z1

 = R0

 −s1

0
c1

,

 x2

y2

z2

 = R0

 s2

0
c2

,

 x3

y3

z3

 = R0

 −s3

0
−c3

,

 x4

y4

z4

 = R0

 s4

0
−c4

. (7)

In a motion state, the coordinate of the mass center is (x, y, z) in the inertial frame. Thus, the
coordinates of the four spring support points in the inertial frame can be written as: ∆x1

∆y1

∆z1

 =

 x
y
z

+ (R− R0)

 −s1

0
c1

,

 ∆x2

∆y2

∆z2

 =

 x
y
z

+ (R− R0)

 s2

0
c2

,

 ∆x3

∆y3

∆z3

 =

 x
y
z

+ (R− R0)

 −s3

0
−c3

,

 ∆x4

∆y4

∆z4

 =

 x
y
z

+ (R− R0)

 s4

0
−c4

. (8)

The results in (8) are equivalent to the spring compression and, therefore, the system potential
energy is obtained as:

U = 1
2 k1x[x− c1(ϕ− γθ)]2 + 1

2 k2x[x− c2(ϕ− γθ)]2 + 1
2 k3x[x + c3(ϕ− γθ)]2

+ 1
2 k4x[x + c4(ϕ− γθ)]2 + 1

2 k1y[y + c1(γ + ϕθ) + s1θ]2

+ 1
2 k2y[y + c2(γ + ϕθ)− s2θ]2 + 1

2 k3y[y− c3(γ + ϕθ) + s3θ]2

+ 1
2 k4y[−y + c4(γ + ϕθ) + s4θ]2 + 1

2 k1z(z− s1 ϕ)2 + 1
2 k2z(z + s2 ϕ)2

+ 1
2 k3z(z− s3 ϕ)2 + 1

2 k4z(z + s4 ϕ)2

. (9)

2.3. System Kinetic Energy

According to the literature [23,24], there is a relation expressing a rigid body′s spatial motion,
which is written as: 

ωx =
.
γ−

.
θ cos ϕ tan ϕ

ωy =
.
ϕ cos γ +

.
θ cos ϕ sin γ

ωz = −
.
ϕ sin γ +

.
θ cos ϕ cos γ

. (10)



Mathematics 2019, 7, 246 6 of 16

Therefore, the system’s kinetic energy is obtained as:

E = 1
2 m

.
x2

+ 1
2 m

.
y2

+ 1
2 m

.
z2

+ 1
2 Jxωx

2 + 1
2 Jyωy

2 + 1
2 Jzωz

2

= 1
2 m

.
x2

+ 1
2 m

.
y2

+ 1
2 m

.
z2

+ 1
2 Jx

( .
γ−

.
θϕ
)2

+ 1
2 Jy

( .
ϕ +

.
θγ
)2

+ 1
2 Jz

(
− .

ϕγ +
.
θ
)2

.
(11)

2.4. System Force Vector

The mining vibrating screen in this study is equipped with two groups of counter-rotating
vibrators, with each group having two pairs of eccentric blocks. Due to manufacturing errors and
installation errors, the resultant force f typically does not pass through the center of mass of the screen
box in practice. The resultant force f can be equivalent to a force vector. In the body frame, the force
vector is written as:  f ′x

f ′y
f ′z

 =

 f cos βx sin ωt
f cos βy sin ωt
f cos βz sin ωt

. (12)

On account of the force vector changing with the rigid body motion, the force vector in a body
frame is written as:  fx

fy

fz

 = R ·

 f ′x
f ′y
f ′z

. (13)

Meanwhile, supposing that the coordinate of the point exerting force is (x′f , y′f , z′f ) in a body frame,
the coordinate of the point exerting force in an inertial frame can be written as: x f

y f
z f

 =

 x
y
z

+ R ·

 x′f
y′f
z′f

. (14)

According to the literature [23,24], there is a relation expressing a rigid body′s spatial motion,
which is written as:  Mx

My

Mz

 =

 0 −z f y f
z f 0 −x f
−y f x f 0

 ·
 fx

fy

fz

. (15)

In an inertial frame, the system’s force vector is obtained as:

F =
[

fx fy fz Mx My Mz
]T. (16)

2.5. Dynamic Equation

After linearizing, the dynamic equation can be written as:

Mẍ + Kx = F. (17)

In (17), ẍ is the acceleration column vector:

ẍ =
[

..
x

..
y

..
z

..
γ

..
ϕ

..
θ
]T

. (18)

x is the displacement column vector:

x =
[

x y z γ ϕ θ
]T

. (19)
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M is the mass matrix:

M =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Jx 0 0
0 0 0 0 Jy 0
0 0 0 0 0 Jz


, (20)

and K is the stiffness matrix:

K =



K11 0 0 0 K15 0
0 K22 0 K24 0 K26

0 0 K33 0 K35 0
0 K42 0 K44 0 K46

K51 0 K53 0 K55 0
0 K62 0 K64 0 K66


. (21)

In (21), K11 = k1x + k2x + k3x + k4x,
K15 = −c1k1x − c2k2x + c3k3x + c4k4x,
K22= k1y + k2y + k3y − k4y,
K24 = c1k1y + c2k2y − c3k3y + c4k4y,
K26 = s1k1y − s2k2y + s3k3y + s4k4y,
K33 = k1z + k2z + k3z + k4z,
K35 = −s1k1z + s2k2z − s3k3z + s4k4z,
K42 = c1k1y + c2k2y − c3k3y − c4k4y,
K44 = c2

1k1y + c2
2k2y + c2

3k3y + c2
4k4y,

K46 = c1s1k1y − c2s2k2y − c3s3k3y + c4s4k4y,
K51 = −c1k1x − c2k2x + c3k3x + c4k4x,
K53 = −s1k1z + s2k2z − s3k3z + s4k4z,
K55 = c2

1k1x + c2
2k2x + c2

3k3x + c2
4k4x + s2

1k1z + s2
2k2z + s2

3k3z + s2
4k4z,

K62 = s1k1y − s2k2y + s3k3y − s4k4y,
K64 = c1s1k1y − c2s2k2y − c3s3k3y + c4s4k4y,
K66 = s2

1k1y + s2
2k2y + s2

3k3y + s2
4k4y.

Additionally, F is the force column vector:

F =
[

fx fy fz Mx My Mz
]T. (22)

According to the dynamic theory [20], the steady-state solutions of a forced vibration system can
be written as: 

x = X0 sin ωt
y = Y0 sin ωt
z = Z0 sin ωt
γ = Γ0 sin ωt
ϕ = Φ0 sin ωt
θ = Θ0 sin ωt

. (23)

In (23), ω is the angular speed. It should be noted that the relations are valid for a constant
rotational velocity of counter-rotating vibrators, for which there exists a resultant force acting along
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a straight line towards the body of vibrating screen. Taking the derivative of both sides of (23), the
acceleration can be written as: 

..
x = −ω2X0 sin ωt
..
y = −ω2Y0 sin ωt
..
z = −ω2Z0 sin ωt
..
γ = −ω2Γ0 sin ωt
..
ϕ = −ω2Φ0 sin ωt
..
θ = −ω2Θ0 sin ωt

. (24)

Bringing Equations (23) and (24) into Equation (22), the steady-state solutions can be obtained as:



X0

Y0

Z0

Γ0

Φ0

Θ0


=



K11 −ω2m 0 0 0 K15 0
0 K22 −ω2m 0 K24 0 K26

0 0 K33 −ω2m 0 K35 0
0 K42 0 K44 −ω2 Jx 0 K46

K51 0 K53 0 K55 −ω2 Jy 0
0 K62 0 K64 0 K66 −ω2 Jz



−1

fx

fy

fz

Mx

My

Mz


. (25)

The dynamic equation of a mining vibrating screen in spatial motion, shown above, gives the
dynamic characteristics. In the following section, numerical simulations are carried out to verify the
proposed model.

3. Simulations

3.1. Numerical Simulations Results

In this paper, numerical simulations are carried out using Matlab, and the programs are available
in supplementary materials online. In order to ensure the physical significance of the dynamic equation,
the damping is significant. Generally, the damping matrix can be regarded as a linear combination
of the mass matrix (Equation (20)) and the stiffness matrix (Equation (21)) in a mechanical system
dynamics equation, and can be written as:

C = 0.02M + 0.02K. (26)

After inserting the damping matrix (Equation (26)) into the dynamic Equation (17), the system
dynamic equation can be written as:

Mẍ + C
.
x + Kx = F. (27)

In (27),
.
x is the velocity vector:

.
x =

[ .
x

.
y

.
z

.
γ

.
ϕ

.
θ
]T

. (28)

This paper intends to use the SLK3661W double-deck linear mining vibrating screen as an
exploration object, which has certain parameters, such as screen box mass (18,944 kg), spring stiffness
of each unloading side (1,242,400 N/m), spring stiffness of each loading side (931,800 N/m), screen
deck dimension (3.6× 6.1 m), processing capacity (350–400 t/h), motor speed (1480 r/min), and electric
power (55 kW). Numerical simulations were carried out, based on the Newmark-β algorithm, and the
main parameters used in the simulation are shown in Table 1. Additionally, the coordinate of force
action point was (−0.2, 0, 0) in the body frame. The total time of the simulation was tm, while the time
step was dt.
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Table 1. Simulation parameters table.

Parameters m/kg Jx/(kg·m2) Jy/(kg·m2) Jz/(kg·m2)

value 18,900 35,200 30,650 32,600
parameters k1x/(N/m) k2x/(N/m) k3x/(N/m) k4x/(N/m)

value 353,010 470,680 353,010 470,680
parameters k1y/(N/m) k2y/(N/m) k3y/(N/m) k4y/(N/m)

value 931,800 1,242,400 931,800 1,242,400
parameters k1z/(N/m) k2z/(N/m) k3z/(N/m) k4z/(N/m)

value 353,010 470,680 353,010 470,680
parameters k1z/(N/m) k2z/(N/m) k3z/(N/m) k4z/(N/m)

value 353,010 470,680 353,010 470,680
parameters r1/(m) r2/(m) r3/(m) r4/(m)

value 3 3 3 3
parameters α1/(◦) α2/(◦) α3/(◦) α4/(◦)

value 53.13 53.13 53.13 53.13
parameters βx/(◦) βy/(◦) βz/(◦) ω/(rad/s)

value 45 45 90 93.12
parameters f /(N) tm/(s) dt/(s) -

value 1,800,000 20 1/10,240 -

Under normal conditions, the system vibrations included x, y, and θ, while z = ϕ = γ = 0.
The displacement curves of the mass center are shown in Figure 5.
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displacements (x, y) and one angular displacement (θ). Additionally, z = ϕ = γ = 0.

As shown in Figure 5, the displacements are large initially, then gradually decrease to a stable
range. The stable state amplitudes (peak to peak values of displacement) are as follows:

x = 7.82 mm, y = 7.80 mm, θ = 4.79 × 10−4 rad.

Under spring failure conditions, the value of k1y was decreased to 652,260 N/m and the simulation
was run again. The system vibrations include x, y, and z, as well as γ, ϕ, and θ. The displacement
curves of the mass center are shown in Figure 6.
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As shown in Figure 6, the displacements are large initially, then gradually decrease to a stable
range. The stable state amplitudes (peak to peak values of displacement) are as follows:

x = 7.82 mm, y = 7.79 mm, z = 0.96 mm, γ = 0.2 × 10−4 rad, ϕ = 0.75 × 10−4 rad, θ = 9.40 × 10−4 rad.

According to the analysis of the simulations above, the results showed that the four elastic
supports of the whole system were symmetric on the x-y plane under normal conditions. The system
vibrations included two translations and one rotation; namely, the rigid body only moved in the x–y
plane. In addition, the system vibrations changed into a very complicated spatial motion with spring
stiffness decrease, which included three translations and three rotations. Meanwhile, the amplitudes
changed at the same time.

Therefore, the proposed six-degree-of-freedom model is feasible for exploring the mining vibrating
screen dynamic characteristics with spring stiffness decrease caused by spring failures, and vice versa.

3.2. Spring Failure Simulations Results

Under normal conditions, the four elastic support points were symmetrical (point 1 = point 3, point
2 = point 4) in the proposed model. However, this symmetry broke under spring failure conditions,
and hence six types of failure were selected for the simulation analysis, as shown in Table 2. Aimed
at obtaining the influence rule of the spring failures, only the spring stiffness in the y direction was
changed in the simulations.

Table 2. Types of spring failure.

Failures Type k1 k2 k3 k4

Single spring failure × 1 √ 2 √ √
√

×
√ √

Double spring failure

× ×
√ √

×
√

×
√

×
√ √

×√
×

√
×

Notes: 1 failure; 2 normal.

Due to the difference of each spring’s stiffness and stiffness change, the stiffness variation
coefficient (SVC) for normalization was defined as:

∆ki =
kij0 − kij

kij0
× 100%, (i = 1, 2, 3, 4 ; j = 1, 2, . . . , n). (29)
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In (29), i is the elastic support point sequence number, j is the stiffness sequence number, kij0 is the
normal spring stiffness in the y direction (as shown in Table 2), and kij is the various spring stiffness in
the y direction.

Setting the value of βz as 89◦ in Table 2, the amplitudes of the four elastic support points in
all directions were selected to be normal amplitudes. Due to the difference of each amplitude and
amplitude change, the amplitude variation coefficient (AVC) for normalization was defined as:

∆λid =
λid0 − λid

λid0
× 100%, (i = 1, 2, 3, 4; d = x, y, z). (30)

In (30), i is the elastic support point sequence number, d is one of the three directions, λid0 is the
normal amplitude of one elastic support point, and λid is the various amplitudes of the same elastic
support point.

3.2.1. Single Spring Failure Simulations Results

In the case of k1 failures, the spring stiffness variation coefficient (∆k1) was changed from 0 to
30%, and hence the amplitude variation coefficients of the four elastic support points in all directions
changed together.

As shown in Figure 7, if the spring stiffness variation coefficient (∆k1) increased, the amplitude
variation coefficients of all elastic support points in the x direction decreased, while all amplitude
variation coefficients in the z direction increased. In the y direction, the amplitude variation coefficients
of points 2 and 4 increased, while the amplitude variation coefficients of points 1 and 3 decreased.
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3.2.2. Double Spring Failures Simulations Results

In the case of k1 and k2 failures, the spring stiffness variation coefficient (∆k1 and ∆k2) was
changed from 0% to 30%, and hence the amplitude variation coefficients of four elastic support points
in all directions changed together.

As shown in Figure 8, if the spring stiffness variation coefficient increased, the amplitude variation
coefficients of the four elastic support points in the x direction decreased, increased, or stayed the
same (i.e., indeterminate) under the coupling action of k1 and k2 failures. The amplitude variation
coefficients of all elastic support points in the x direction decreased, increased, or stayed the same (i.e.,
indeterminate) under the coupling action of k1 and k2 failures as well. Meanwhile, the amplitudes of
variation coefficients in the z direction always increased, as well as ∆λ1z = ∆λ3z and ∆λ2z = ∆λ4z.
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3.3. Discussion

Many simulations were carried out with differing failure types, as shown in Table 2, and the
change rules between the spring stiffness coefficient and the amplitude variation coefficient were
obtained, as shown in Table 3.

Table 3. The change rules between the spring stiffness coefficient and the amplitude variation coefficient.

Stiffness
Variation

Coefficient

Amplitude Variation Coefficient

∆λ1x ∆λ2x ∆λ3x ∆λ4x ∆λ1y ∆λ2y ∆λ3y ∆λ4y ∆λ1z ∆λ2z ∆λ3z ∆λ4z

∆k1 − 1 − − − − + 2 − + + + + +
∆k2 + + + + + − + − + + + +

∆k1, ∆k2 ± 3 ± ± ± ± ± ± ± + + + +
∆k1, ∆k3 − − − − ± ± + + ± ± ± ±
∆k1, ∆k4 ± ± ± ± ± ± ± ± ± ± ± ±
∆k2, ∆k4 + + + + + − + − ± ± ± ±

1 decrease; 2 increase; 3 indeterminate.

As shown in Table 3, the amplitude variation coefficient probably increased, decreased or was
indeterminate under different spring failures. The change rules of the amplitude variation coefficient
are the same as the change rules of the amplitudes, according to Formula (30). Hence, the change rules
of the amplitudes of four elastic support points in the x, y, and z directions can be summarized, as
follows:

• In the case of spring k1 failure, the amplitudes of all points in the x direction will decrease, while
all amplitudes increase in the z direction. In the y direction, the amplitudes of points 2 and 4
increase, while the amplitudes of points 1 and 3 decrease.

• In the case of spring k2 failure, all amplitudes will increase in both the x and z directions. In the
y direction, the amplitudes of points 1 and 3 increase, while the amplitudes of points 2 and
4 decrease.

• In the case of spring k1 and spring k2 failure, all amplitudes will increase in the z direction. In the
other directions, the change rules of all amplitudes are indeterminate.

• In the case of spring k1 and spring k3 failure, all amplitudes will decrease in the x direction. In the
y direction, the amplitudes of points 3 and 4 increase, while the change rules of the amplitudes
of points 1 and 2 are indeterminate. In the z direction, the change rules of all amplitudes
are indeterminate.

• In the case of spring k1 and spring k4 failure, the change rules of all amplitudes are indeterminate
in all directions.

• In the case of spring k2 and spring k4 failure, all amplitudes will increase in the x direction. In the
y direction, the amplitudes of points 1 and 3 increase, while the amplitudes of points 2 and 4
decrease. In the z direction, the change rules of all amplitudes are indeterminate.
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The change rules for amplitudes, obtained above, indicated that the spring failures would lead to
amplitude change of the four elastic support points in the x, y, and z directions, and the amplitude
change rules can reveal certain spring failures. Hence, the amplitude change rules can provide useful
information for spring failure diagnosis.

4. Conclusions

The proposed theoretical rigid body model can reveal the dynamic characteristics of a mining
vibrating screen, with or without spring failures. From the numerical simulation results, using the
Newmark-β method, there are certain relationships between the system amplitudes and different
spring failures, which can be used for spring failure diagnosis. This information is useful for operations
and maintenance staff, to determine whether it is necessary to change one or more springs. However,
further study and experiments need to be done to verify the accuracy of this approach.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/7/3/246/s1,
Matlab Program for dynamic equation establishments and simulations with spring failures.m, Matlab Program
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Abbreviations

The list of symbols is as follows:
k1 Spring of the elastic support point 1 in y direction
k2 Spring of the elastic support point 2 in y direction
k3 Spring of the elastic support point 3 in y direction
k4 Spring of the elastic support point 4 in y direction
k1x Spring stiffness of the elastic support point 1 in x direction
k1y Spring stiffness of the elastic support point 1 in y direction
k1z Spring stiffness of the elastic support point 1 in z direction
k2x Spring stiffness of the elastic support point 2 in x direction
k2y Spring stiffness of the elastic support point 2 in y direction
k2z Spring stiffness of the elastic support point 2 in z direction
k3x Spring stiffness of the elastic support point 3 in x direction
k3y Spring stiffness of the elastic support point 3 in y direction
k3z Spring stiffness of the elastic support point 3 in z direction
k4x Spring stiffness of the elastic support point 4 in x direction
k4y Spring stiffness of the elastic support point 4 in y direction
k4z Spring stiffness of the elastic support point 4 in z direction
i Elastic support points number
o Origin of the inertial frame
x x-axis
x Translation displacement of the rigid body in x direction
x Coordinate of the mass center in the inertial frame
xd Coordinate of one point of the rigid body in the inertial frame
x Displacement column vector
.
x Velocity column vector
ẍ Acceleration column vector
y y-axis
y Translation displacement of the rigid body in y direction

http://www.mdpi.com/2227-7390/7/3/246/s1
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y Coordinate of the mass center in the inertial frame
yd Coordinate of one point of the rigid body in the inertial frame
z z-axis
z Translation displacement of the rigid body in z direction
z Coordinate of the mass center in the inertial frame
zd Coordinate of one point of the rigid body in the inertial frame
o’ Origin of the body frame
x′ x′-axis
x′ Coordinate of the mass center in the body frame
y′ y′-axis
y′ Coordinate of the mass center in the body frame
z′ z′-axis
z′ Coordinate of the mass center in the body frame
r1 Distance between the mass center of the rigid body and the elastic support point 1
r2 Distance between the mass center of the rigid body and the elastic support point 2
r3 Distance between the mass center of the rigid body and the elastic support point 3
r4 Distance between the mass center of the rigid body and the elastic support point 4
α1 Angle between r1 and z-axis
α2 Angle between r2 and z-axis
α3 Angle between r3 and z-axis
α4 Angle between r4 and z-axis
m Mass of rigid body
Jx Moment of inertia of the rigid body rotation around ox-axis
Jy Moment of inertia of the rigid body rotation around oy-axis
Jz Moment of inertia of the rigid body rotation around oz-axis
γ Angular of the rigid body rotation around ox-axis
ϕ Angular of the rigid body rotation around oy-axis
θ Angular of the rigid body rotation around oz-axis
f Exciting force
F System force vector
βx Angle between exciting force vector and o’x′-axis
βy Angle between exciting force vector and o’y′-axis
βz Angle between exciting force vector and o’z′-axis
Tx Rotation matrix of the rigid body rotation around ox-axis
Ty Rotation matrix of the rigid body rotation around oy-axis
Tz Rotation matrix of the rigid body rotation around oz-axis
R Rotation matrix of the rigid body in the sequence of oz-oy-ox
s1 = r1 sin α1

s2 = r2 sin α2

s3 = r3 sin α3

s4 = r4 sin α4

c1 = r1 cos α1

c2 = r2 cos α2

c3 = r3 cos α3

c4 = r4 cos α4

U System potential energy
E System kinetic energy
M Mass matrix
K Stiffness matrix
C Damping matrix
ω Circular frequency of exciting force
ωx Angular velocity of the rigid body rotation around ox-axis
ωy Angular velocity of the rigid body rotation around oy-axis
ωz Angular velocity of the rigid body rotation around oz-axis
X0 Steady state solution of the forced vibration system
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Y0 Steady state solution of the forced vibration system
Z0 Steady state solution of the forced vibration system
Γ0 Steady state solution of the forced vibration system
Φ0 Steady state solution of the forced vibration system
Θ0 Steady state solution of the forced vibration system
tm Total time of simulation
dt Time step of simulation
∆k1 Spring stiffness variation coefficient of spring k1

∆k1 Spring stiffness variation coefficient of spring k2

∆k1 Spring stiffness variation coefficient of spring k3

∆k1 Spring stiffness variation coefficient of spring k4

∆k1 Spring stiffness variation coefficient of spring k1

∆k1 Spring stiffness variation coefficient of spring k2

∆k1 Spring stiffness variation coefficient of spring k3

∆k1 Spring stiffness variation coefficient of spring k4

∆λ1x Amplitude variation coefficient of elastic support point 1 in x direction
∆λ1y Amplitude variation coefficient of elastic support point 1 in y direction
∆λ1z Amplitude variation coefficient of elastic support point 1 in z direction
∆λ2x Amplitude variation coefficient of elastic support point 2 in x direction
∆λ2y Amplitude variation coefficient of elastic support point 2 in y direction
∆λ2z Amplitude variation coefficient of elastic support point 2 in z direction
∆λ3x Amplitude variation coefficient of elastic support point 3 in x direction
∆λ3y Amplitude variation coefficient of elastic support point 3 in y direction
∆λ3z Amplitude variation coefficient of elastic support point 3 in z direction
∆λ4x Amplitude variation coefficient of elastic support point 4 in x direction
∆λ4y Amplitude variation coefficient of elastic support point 4 in y direction
∆λ4z Amplitude variation coefficient of elastic support point 4 in z direction
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